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Abstract
Disciple is a learning agent shell and methodology for
efficient development of personal agents. The process of
developing an agent with Disciple relies on importing
ontologies from existing repositories of knowledge and on
teaching the agent to perform various tasks in a way that
resembles how an expert would teach an apprentice, by
giving the agent examples and explanations, and by
supervising and correcting its behavior. The paper presents
briefly the architecture of Disciple, the process of
developing a Disciple agent, and various agents developed
with Disciple. Then it discusses several general issues in the
design and development of intelligent agents, and how they
are dealt with in Disciple.

Introduction

For several years we have been developing the Disciple
apprenticeship, multistrategy learning approach for
building intelligent agents (Tecuci, 1998). The defining
feature of the Disciple approach to building agents is that a
person teaches the agent how to perform domain-specific
tasks. This teaching of the agent is done in much the same
way as teaching a student or apprentice, by giving the
agent examples and explanations, as well as supervising
and correcting its behavior. We claim that the Disciple
approach significantly reduces the involvement of the
knowledge engineer in the process of building an
intelligent agent, most of the work being done directly by
the domain expert. In this respect, the work on Disciple is
part of a long term vision where personal computer users
will no longer be simply consumers of ready-made
software, as they are today, but also developers of their
own software assistants.

Architecture of the Disciple Shell

The current version of the Disciple approach is
implemented in the Disciple Learning Agent Shell (Tecuci,
1998). We define a learning agent shell as consisting of a
learning engine and an inference engine that support a
representation formalism in which a knowledge base can
be encoded, as well as a methodology for building the
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knowledge base. The architecture of the Disciple shell is
presented in Figure 1.

The Disciple shell consists of the five main components
in the light gray area which are domain independent:

¯ a knowledge acquisition and learning component for
developing and improving the knowledge base, with a
general graphical user interface to enable the expert to
interact with the shell for the purpose of developing the
knowledge base;

¯ a knowledge import/export component for accessing
remote ontologies located on servers supporting the
OKBC protocol suite (Chaudhri et al, 1997);

¯ a basic problem solving component which serves both to
provide the various facilities used by the knowledge
acquisition and learning component and to support basic
agent operations;

¯ a knowledge base manager which controls access and
updates to the knowledge base; and

¯ an initial domain-independent knowledge base to be
developed for the specific application domain.

The two components in the dark gray area are the domain
dependent components that need to be developed and
integrated with the Disciple shell to form a customized
agent that performs specific tasks in an application domain.
They are:

¯ a graphical user interface which supports specialized
knowledge elicitation and agent operation, determined
in part by the nature of the tasks to be performed and
in part by the objects in the domain;

¯ a problem solving component which provides the
specific functionality of the Agent.

The domain-specific problem solving component is built
on top of the domain independent problem solving
operations of the Disciple shell, forming together the
Inference Engine of a specific agent. The domain specific
interface is also built for the specific agent to allow the
domain experts to communicate with the agent as close as
possible to the way they communicate in their
environment. Some specific agents need additional user
interfaces to support unique domain requirements for
knowledge representation.
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The methodology for building agents
The Disciple Learning Shell allows rapid development of a
customized agent for a particular application domain.
There are two main types of agent which can be
developed:

¯ an agent which is used by and serves as an assistant to
the expert, and

¯ an agent which is used by and provides a service to a
non-expert user.

In the first case, the expert is both the developer and the
user of the system. The expert initially teaches the agent
basic knowledge about the application domain then the
agent is used as an assistant by the expert. The agent
continues to improve its knowledge during its interactions
with the expert. In the second case, the agent is initially
developed by the expert then is delivered to the non-expert
users. Any necessary changes to its knowledge or
operation mean further involvement by the expert.

An overview of the Disciple methodology is given in
Figure 2. Depending upon the complexity of the
application domain, the expert may require the assistance
of a separate developer (a software and/or knowledge
engineer) to build the domain-dependent modules of the
agent shown in the dark gray area of Figure 1. The expert
and the developer should work closely together to
determine the customization requirements and build the

Disciple Learning Agent Shell

agent. The dark arrows in Figure 2 indicate the extent of
the agent building process if no customization is required
but only the development of the knowledge base. The gray
arrows highlight the customization activities required
during the agent building process. Broken arrows indicate
where the agent development process may require some
additional development effort after the agent has been put
to use, either due to changes in the application domain or
to changes in the operational requirements for the agent.

There are three stages and three different participants in
the agent’s lifetime:

1 The agent developer (software and knowledge engineer),
cooperating with the domain expert, customizes the
Disciple shell by developing a domain specific interface
on top of the domain independent graphical user
interface of the Disciple shell. This domain specific
interface gives the domain experts a natural means of
expressing their knowledge. The result of this effort is an
agent which has learning capabilities, a generic problem
solving component, and an empty knowledge base, but
with an interface customized for knowledge elicitation.
This agent can interact with the expert during the
knowledge base development process.
The domain expert and the agent developer also decide
on the nature and extent of a domain-specific problem
solver, based upon the type and purpose of the agent to
be developed. The agent developer continues the
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Figure 2 Disciple’s agent-building methodology

customization of the agent with the development of the
domain-specific problem solver. The final agent is fully
customized and can interact with the expert not only for
knowledge elicitation but also for problem solving and
learning.

2 The domain expert interacts with the customized agent
to develop its initial knowledge base and to teach it to
perform domain specific tasks. The expert both teaches
and uses an agent which is to be his or her assistant. If
the agent is to be used by another user, the expert
teaches, verifies and validates the agent and then
releases it to the user.

3 The agent is released to the user and performs the tasks
it was taught. In some cases the agent may require
retraining by the expert or further customization by the
developer to update or refine its interfaces or problem
solving methods. The process of retraining and
redevelopment does not differ from the agent’s initial
training and development.

In summary, the building of a Disciple agent consists of
the following activities:

¯ the customization of the Disciple shell to support
specialized knowledge elicitation;

¯ development of the agent’s ontology and its
representation in a semantic network;

¯ customization of the Disciple shell with a domain-
dependent problem solver;

¯ training of the agent for its domain-specific tasks; and
¯ verification and validation of the agent.

Application domains

We have experimentally applied the Disciple methodology
and shell to the development of five different agents.

Two of the agents generate history tests to assist in the
assessment of students’ understanding and use of higher-
order thinking skills (Tecuci and Keeling, 1998). These
two assessment agents are representative of the class of
agents built by an expert (in education and history, in this
case) to assist other users (history teachers and students).
One of the assessment agents is integrated with the MMTS
(Multimedia and Thinking Skills) educational system,
creating a system with expanded capabilities, called
Intelligent MMTS (IMMTS). Inside IMMTS, the agent has
the role of generating an exam consisting of a set of test
questions of different levels of difficulty. The student has
to answer one test question at a time and, after each
question, he or she receives the correct answer and an
explanation of the answer. This type of application of a
Disciple-generated agent illustrates a possible role for
these agents, that of enhancing the capabilities, generality,
and usefulness of non-KB software. The IMMTS system
has been field-tested in American history classes in several
middle schools on American installations in Germany and
Italy. The other test generation agent is a stand-alone agent
that can be used independently of the MMTS software.
The student interacts directly with this agent to assess
him/herself. He or she chooses the type of test question to
solve, and will receive, on request, feedback in the form of
hints to answer the question, the correct answer, and some
or all the explanations of the answer. That is, this agent
also tutors the student. We have performed four types of
experiments with the stand-alone test generation agent, and
the results were very encouraging. The first experiment
tested the correctness of the agent’s knowledge base, as
judged by the domain expert who developed the agent.
This was intended to clarify how well the developed agent
represents the expertise of the expert who taught the agent.
The second experiment tested the correctness of the
knowledge base, as judged by a domain expert who was
not involved in its development. This was intended to test
the generality of the agent. The third and the fourth
experiments tested the quality of the test generation agent,
as judged by students and by teachers.

Another agent, the Statistical Analysis Assessment and
Support Agent, is developed to be integrated in a
university-level introductory science course and to be
accessed on the Internet through a web browser. The
course "The Natural World" introduces students to the
world of science using collaborative assignments and
problem-centered group projects that look at scientific
issues which underlie public policy making and stimulate
the development of students’ analytic skills. The agent
supports two aspects of students’ learning in this course:
students’ knowledge and understanding of statistics, and
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students’ analyses of issues related to statistics. It does this
in several ways. As in the case of the two history
assessment agents, it can be used as a traditional test
generator. It also integrates the documents accessed by
students on the web and interacts with the students during
the learning process. Finally, it can be used as an assistant
by the students as they work through their assignments.

An early agent was developed by an expert to act as an
assistant in an engineering design domain by supporting
computer configuration tasks (Dybala et al., 1996). This
type of agent has to be continuously supervised and
customized by the user according to the changing practices
in the user’s domain, as well as the needs and the
preferences of the user. The agent initially behaves as a
novice unable to compose the majority of designs. As the
expert and the assistant interact, the assistant learns to
perform most of the routine (but usually more labor
intensive) designs within the domain. Because of its
plausible reasoning capabilities, the assistant is also able to
propose innovative designs that are corrected and finalized
by the designer. Creative designs are specified by the
designer and presented to the assisting agent. As a result of
learning, designs that were innovative for the assistant
became routine, and designs that were creative became
first innovative and later routine ones.

Another early agent is an agent trained to behave as a
military commander in a virtual environment (Tecuci and
Hieb, 1996). This is a type of agent that is trained by a user
to perform tasks on user’s behalf. The virtual military
environment is the ModSAF (Modular Semi-Automated
Forces) distributed interactive simulation that enables
human participants at various locations to enter a synthetic
world containing the essential elements of a military
operation (Ceranowicz, 1994). ModSAF is a very complex
real-time application which simulates military operations.
In the ModSAF environment, human participants may
cooperate with, command or compete against virtual
agents. The agent was trained to perform defensive
missions using the graphical interface of ModSAF.

One general conclusion that can be drawn from these
experimental applications is that the Disciple approach
could be easily used to develop agents for a wide range of
problems and domains.

The rest of this paper discusses the Disciple proposed
solutions to several critical issues that have been found to
be limiting factors in building intelligent agents for
complex real world domains.

General issues in developing Disciple agents

Some of the issues that have been found to be limiting
factors in developing intelligent agents for a wide range of
problems and domains are:
¯ limited ability to reuse previously developed knowledge;

¯ the knowledge acquisition bottleneck;

¯ the knowledge adaptation bottleneck;

¯ the scalability of the agent building process;
¯ finding the right balance between using general tools and

developing domain specific modules;
¯ the portability of the agent building tools and of the

developed agents;

Each of these issues has been an important concern in
developing the Disciple agent building approach. We
discuss each of them in the following.

Reuse of previously developed knowledge
Sharing and reusing the components of different
Knowledge Representation Systems are hard research
problems because of the incompatibilities in their implicit
knowledge models (the precise definition of declarative
knowledge structures) assumed by their various underlying
knowledge components. Recently, however, the Open
Knowledge Base Connectivity (OKBC) protocol (formerly
called "Generic Frame Protocol") has been developed.
OKBC is a standard for accessing knowledge bases stored
in different frame representation systems (Chaudhri et al,
1997). It provides a set of operations for a generic interface
to such systems. There is also an ongoing effort of
developing OKBC servers, such as the Cyc (Lenat, 1995),
Loom (MacGregor, 1995), and Ontolingua (Farquhar et al.,
1996) servers. These servers are becoming repositories of
reusable ontologies and domain theories, and can be
accessed using the OKBC protocol.

The knowledge base of a Disciple agent consists of an
ontology (Gruber, 1993) that defines and organizes the
concepts from the application domain, and a set of problem
solving rules expressed in terms of these concepts. The
process of building this knowledge base starts with
creating a domain ontology, by accessing an OKBC server
and importing concepts from the available shared
ontologies. To make this possible, we are currently
developing a OKBC wrapper, to make Disciple an OKBC
client. We are also developing the "Knowledge
Import/Export Module" which allows an expert to guide
the import of knowledge from an OKBC server, as well as
to export knowledge from the Disciple’s knowledge base.
For example, the domain expert can extract some
interesting concepts from server and represent them in
Disciple’s KB. During this process, the expert can freely
modify the definitions of the imported terms. The expert
can also extract an entire sub-hierarchy of a certain concept
and the knowledge import module will automatically
introduce this new knowledge into Disciple’s knowledge
base. This process involves various kinds of verifications
to maintain the consistency of Disciple’s knowledge.
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concepts, examples, explanations and critique

Figure 3 Processes supporting the development of the knowledge base

The knowledge acquisition bottleneck
The knowledge acquisition bottleneck expresses the
difficulty of encoding knowledge in the knowledge base of
an intelligent agent. The Disciple approach is developed to
primarily address this issue.

Figure 3 presents the knowledge base development
processes which are supported by Disciple’s knowledge
acquisition and learning component (see also Figure 1).

During Knowledge Elicitation, the expert defines
knowledge that he/she could easily express. As has been
indicated in the previous section, some of the initial
knowledge could also be imported from an existing
knowledge base.

During Rule Learning, the expert teaches the agent how
to solve domain specific problems. He/she shows the agent
how to solve typical problems and helps it to understand
their solutions. The agent uses learning from explanations
and by analogy to learn general plausible version space
rule that will allow it to solve similar problems.

During Rule Refinement, the agent employs learning by
experimentation and analogy, inductive learning from
examples and learning from explanations, to refine the
rules in the knowledge base. These could be either rules
learned during the Rule Learning process, rules directly
defined by the expert during Knowledge Elicitation, or

rules that have other origins (for instance, rules transferred
from another knowledge base). Rule refinement will also
cause a refinement of the concepts from the agent’s
ontology (semantic network).

A refined rule may have exceptions. A negative
exception is a negative example that is covered by the rule
and a positive exception is a positive example that is not
covered by the rule. One common cause of the exceptions
is the incompleteness of the knowledge base; that is, it does
not contain the terms to distinguish between the rule’s
examples and exceptions. During Exception Handling, the
agent hypothesizes additional knowledge and/or guides the
expert to define this knowledge in agent’s ontology. This
will extend the representation space for learning such that,
in the new space, the rules could be modified to remove the
exceptions.

The expert interacts with the agent’s knowledge
acquisition and learning facilities via both a domain-
dependent interface and a domain-independent interface.
These interfaces provide overall control over the process of
developing the knowledge base, and consists of browsing
and editing facilities, which support the knowledge
elicitation requirements for building an ontology, and rule
learning and refinement facilities, which integrate
multistrategy machine learning techniques with the
expert’s experience for the development of rules.
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We will briefly illustrate part of this process with an
example of teaching a workaround agent. The agent has to
act as an assistant of anlysist who has to determine the best
way of working around various damages to an
infrastructure, such as a damaged bridge or tunnel.

Rule Learning. The rule learning method is schematically
represented in Figure 4. As Explanation-based Learning
(DeJong and Mooney, 1986; Mitchell, Keller, Kedar-
Cabelli, 1986), it consists of two phases, explanation and
generalization. However, in the explanation phase the
agent is not building a proof tree, but only a justification.
Also, the generalization is not a deductive one, but an
analogy-based one. Figure 5 shows the rule learning
interface after a rule has been learned.

The expert starts teaching the agent how one could work
around a certain class of infrastructure damage (such as 
damaged bridge) by providing an initial example of 
workaround task and its solution. A narrative description of
the example is dynamically constructed through an
interaction between the expert and the agent. An image
corresponding to the bridge described in the task is also
dynamically displayed for the expert’s review before the
solution is developed (see the bottom of Figure 5). The
internal representation of the example is generated by
Disciple and shown in the top left pane of Figure 5.

In the explanation phase (see Figure 4), the expert helps
the agent to understand why the example is correct. He or
she guides the agent to propose explanations and then
selects the correct ones. For instance, the expert may point
to the most relevant objects from the input example and
may specify the types of explanations to be generated by
the agent (e.g. a correlation between two objects or 
property of an object). The agent uses such guidance and
specific heuristics to propose plausible explanations to the
expert who has to select the correct ones. Initially, the
expert must select from many proposed explanations.
However, as Disciple learns more and more rules within

Figure 4 The rule learning method of Disciple.

the domain, it can immediately suggest fewer, possibly
relevant explanations via analogical reasoning with these
rules. For instance, if the agent "understands" why a
company can build a floating bridge over a river segment
then, by analogy, it can hypothesize many of the conditions
required to use a floating bridge as a ferry, or to simply
ford the river. This is very important for rapidly developing
large knowledge bases because typically such knowledge
bases are composed of clusters of similar rules. Once a rule
from a cluster has been learned, the agent can much easier
learn the other rules. The middle pain in Figure 5 shows the
explanations of the initial example.

Once the explanations are identified, Disciple enters the
generalization phase (see Figure 4), and performs 
analogy-based generalization of the example and its
explanation into a plausible version space (PVS) rule. 
PVS rule is an IF-THEN rule except that, instead of a
single applicability condition, it has two conditions that
represent a plausible version space for the hypothetical
exact condition. The plausible lower bound condition is
very specific, covering only the given example. The
plausible upper bound condition is an analogical
generalization of the plausible lower bound condition. Part
of the plausible upper bound condition of this rule (in 
simplified form) is shown in the upper right of Figure 5.

The explanation is generalized to an analogy criterion by
generalizing its components. Object instances are
generalized to more general concepts from the agent’s
ontology. Numbers are generalized to intervals or union of
intervals, to functional expressions (such as "(* ?ul ?nl)")
or to symbolic concepts (such as "odd-number"). Strings
are generalized to sets of strings. For instance, the third
explanation piece from the middle pane of Figure 5

M4T6-TRACK-COMP-D TOTAL-LENGTH 480,
MO-RIVER-UP-647-314 WIDTH-OF-RIVER 300 < 480

which means "M4T6 bridging capability of Tracked
Company D has a total length of 480m and the Missouri
river segment at map coordinates 647-314 has a width of
300m < 480m", is automatically generalized to

?M17 IS RIVER-SEGMENT
WIDTH-OF-RIVER ?M20

?M18 IS BREACHING-CAPABILITY
TOTAL-LENGTH ?M 19

?M19 IS [0,2000]
¯ = (* ?M27 ?M28)

?M20 IS [0,2000)
< ?M19

To determine how to generalize an object, Disciple
analyzes all the features from the example and the
explanation that are connected to that object. Each such
feature is defined in Disciple’s ontology by a domain (that
specifies the set of all the objects from the application
domain that may have that feature) and a range (that
specifies all the possible values of that feature).
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Figure 5 Learning a rule from aninitial example and proposed explanations.

The domains and the ranges of these features restrict the
generalizations of the objects. The generalization of
"480m" to "(* ?M27 ?M28)" is based on the fact that the
total length of a floating bridge that a company can build is
computed by multiplying the number of floating units and
the length of such a unit.

The analogy criterion and the example are used to
generate the plausible upper bound condition of the rule,
while the explanation and the example are used to generate
the plausible lower bound condition of the rule. The
learned rule is shown in Figure 6.

Rule refinement. The representation of the PVS rule in the
right hand side of Figure 4 shows the most likely relation
between the plausible lower bound, the plausible upper
bound and the hypothetical exact condition of the rule.
Notice that there are instances of the plausible upper bound

that are not instances of the hypothetical exact condition of
the rule. This means that the learned rule in Figure 6 covers
also some negative examples. Also, there are instances of
the hypothetical exact condition that are not instances of
the plausible upper bound. This means that the plausible
upper bound does not cover all the positive examples of the
rule. Both of these situations are a consequence of the fact
that the explanation of the initial example might be
incomplete, and are consistent with what one would expect
from an agent performing analogical reasoning. To
improve this rule, the expert will invoke the rule
refinement process represented schematically in Figure 7.
The expert will ask the agent to use the learned rule to
generate examples similar with the initial example (the one
from the bottom of Figure 5. Each example generated by
the agent is covered by the plausible upper bound and is
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and ?MI9 is in the interval [0 , 2000]
computed by the product of ?M27 and 7M28
?MI7 is a river segment v~ich
flc~s under the bridge ?BI6 & is characterized

by consistency of the left bank ?M53
consistency of the right hank ?M47
slope of right side ?M43
slope of left side ?M42
maxLmum river velocity ?/~5
maximum depth ?M22

width .~M20
river width ?M20 is between 0 and 2000m
and is less than ?MI9, and
draft ?M21 is between ~m and 100m, and
max depth ?M22 is between om and 100m
and is greater than ?M21, and
max c. rate ?M24 is between 0 and 10om/s
max riv.vel ?M25 is bet~e~ 0 and 100m/s

and is less than ?M24, and
max slope 7M26 is between 0 and i00%,
length of unit ?M28 is between 0 and 10ore,
left slope ?M42 is between 0% and 100%
and is less than ?M26, and
right slope ?M43 is between 0% and 100%
and is less than ?M26
consistency of right hank ?M47
ccnsistency of left bank 75~3

IF (~l&uJible Lower Bo~d)
the task is to overcome a destroyed
bridge for ?BI6
by ?n6 end
?BI6 is the bridge at ~ap grid UP 647 314 and
?TI6 is tracked Company D
has the breaching capability 71418 and
?MI8 is the M4T6 breaching capability of Co.~oany~
with the component type ?M23 end

ntm~er of units ?M27 and
the total length ?M19 and
7M23 is a M4T6 bridging/rafting cc~ponent
characterized by a max_hm~ bank slope of ?M26
a max/m~, current velocity of ?M24
a length of ?M28
and a draft of ?M21

of units ?M27 is 24,
and total length ?MI9 is 480 meters
ccmpated by the pro~/ct of ?M27 and ?M28
?MI7 is the Missouri river segnent ~Sich
flows under the bridge ?BI6 and is characterized
by oonsistency of the left bank ?M53
consistency of the right bank ?M47
slope of right side ?M43
slope of left side ?M42

¯ maximum river velocity ?M25
¯ maxha~ depth ?M22

¯ width ?M20
¯ river width ?M20 is 300 meters

¯ and is less than ?MI9, and
¯ draft ?}~i is 0.66 meters,
¯ mex depth ?M22 is between 15 meters
¯ and is greater than ?M21, and
¯ max c. rate ?M24 is 3.5 msters/seccr~
¯ max riv. vel. ?M25 is 2 meters/secocd
¯ and is less than ?M24, and
¯ ~ slope ?M26 is 30%, and
. length of unit ?M28 20 meters,
¯ left slope ?M42 is 5%
¯ and is less than ?M26, and
¯ right slope ?M43 is 5%
¯ and is less than .~426, and
¯ conslatency of right bank ?M47 is firm
¯ consistency of left bank ?~3 is firm

Then
¯ Reduce this task to ?BI2, %k~re
¯ ?BI2 is the task to Bridge river
¯ over the river segnent ?MI7
¯ with the breaching capability ?MI8

Figure 6 Learned floating bridge rule
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Figure 7 The rule refinement method of Disciple

not covered by the plausible lower bound of the rule. The
natural language equivalent of this example (which looks
like the one in Figure 5) is shown to the expert who is
asked to accept it as correct or to reject it, thus
characterizing it as a positive or a negative example of the
rule. A positive example is used to generalize the plausible
lower bound of the rule’s condition through empirical
induction. A negative example is used to elicit additional
explanations from the expert and to specialize both bounds,
or only the plausible upper bound. During rule refinement
the two conditions of the rule will converge toward the
exact applicability condition.

The collaboration between the expert and Disciple
during knowledge elicitation and rule learning is an
iterative process which ultimately results in a knowledge
base which is complete and correct enough for the
successful operation of the agent.

The central idea of the Disciple approach is to facilitate
the agent building process by the use of synergism at
several levels. First, there is the synergism between
different learning methods employed by the agent. By
integrating complementary learning methods (such as
inductive learning from examples, explanation-based
learning, learning by analogy, learning by experimentation)
in a dynamic way, the agent is able to learn from the
human expert in situations in which no single strategy
learning method would be sufficient. Second, there is the
synergism between teaching (of the agent by the expert)
and learning (from the expert by the agent). For instance,
the expert may select representative examples to teach the
agent, may provide explanations, and may answer agent’s
questions. The agent, on the other hand, will learn general
rules that are difficult to be defined by the expert, and will
consistently integrate them into its knowledge base.

The knowledge adaptation bottleneck
The knowledge adaptation bottleneck expresses the
difficulty of changing the knowledge in the knowledge
base of the agent in response to changes in the application

domain or in the requirements of the agent. While a natural
approach to this type of bottleneck would be autonomous
learning by the agent from its own experience, this
approach alone is not powerful enough for complex
application environments. Disciple supports an approach to
the knowledge adaptation bottleneck based on a retraining
process. During its normal problem solving activity, the
Disciple agent will accumulate exceptions to general rules
and concepts. Also, various changes in the application
domain will require corresponding updates of the
knowledge base. When the mismatch between the agent’s
model of the world and the world itself is above a certain
threshold, the agent enters a retraining phase in which it is
again directly taught by the expert. This Retraining
Process involves the same processes of Knowledge
Elicitation, Rule Learning, Rule Refinement and Exception
Handling. That is, in the Disciple approach, knowledge
maintenance over the life-cycle of the knowledge base is
no different from knowledge acquisition. Indeed, because
the whole process of developing the knowledge base is one
of creating and adapting knowledge pieces, this creation
and adaptation may also occur in response to changes in
the environment or goals of the system.

The scalability of the agent building process
Another critical issue addressed by the Disciple approach is
the scalability of the agent building process. This is mainly
achieved in two ways. The first is the use of an advanced
model of interaction between the expert and the agent that
allows the expert to guide the agent in building a large
knowledge base. The second is the use of efficient
multistrategy learning methods based on the plausible
version space representation (Tecuci and Hieb, 1996).

Balance between using general tools and
developing domain specific mddules

In designing an agent building tool, it is also important to
find a suitable balance between using general (and
therefore reusable) modules and specific (and therefore
powerful) modules. Using general modules significantly
speeds up the development process. However, the agent
may not be well adapted to its specific application domain
and may not be that useful. On the contrary, building the
agent from domain-specific modules leads to a well-
adapted and useful agent, but the development process is
very difficult. The Disciple shell provides a set of general
and powerful modules for knowledge acquisition and
learning. They are domain-independent and are
incorporated as such in a developed agent. However, for
the interface and the problem solver, that are domain
dependent, the Disciple shell contains a generic graphical-
user interface and problem solving modules that support
only basic problem solving operations (such as, transitivity
of certain relations, inheritance of features in a semantic
network, network matching, rule matching and example
generation). Therefore, for a given application domain, one
has to develop additional, domain-specific interfaces and
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problem solving modules, in order to create an easy to train
and a useful agent. Moreover, if the agent has to execute in,
or communicate with, an existing application, such as the
MMTS or ModSAF, then one also has to develop the
interface with the application. For instance, Figure 4 shows
both a domain-independent graphical user interface (the
top window), and two domain dependent interfaces (the
bottom windows). The problem solver for this workaround
agent is also specially developed for it. It is a problem
solver based on problem decomposition which is
implemented on top of the basic problem solving
operations of the Disciple shell.

The portability of the agent building tools and of
the developed agents
Currently, the Disciple shell is implemented in Common
Lisp and runs on Macintosh. However, only the interface is
platform dependent. To enable the use of Disciple on a
variety of platforms, to allow future development of
multiple user and networked access to Disciple, and to
simplify the creation of specialized interfaces, Disciple’s
interfaces are currently being developed as a JAVA-based
graphical user interface having a client-server relationship
with the other components of Disciple.

Conclusions
In this paper we have discussed several issues in the design
and development of intelligent agents, and their solutions
in the Disciple approach. We believe that through such an
approach it will some day be possible to develop learning
agent shells that will be customized, taught and trained by
normal users as easily as they now use personal computers
for text processing or email. Therefore, the work on
Disciple is part of a long term vision where personal
computer users will no longer be simply consumers of
ready-made software, as they are today, but also developers
of their own software assistants.
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