
Virtual Battlefield Simulation Agents, Experience with the SIM_AGENT

Toolkit

Jeremy W. Baxter, Richard T. Hepplewhite

DERA Malvem
St Andrews Road, Malvem,

Worcs. WR14 3JP, UK
(jbaxter, rth) @signal.dera.gov.uk

Abstract
This paper describes our use of the SIM_AGENT toolkit for
research into agents for battlefield simulations. We briefly
describe our work and then try to classify the domain in
which we are working with respect to the environment,
agent’s goals and actions, the architecture of our agents and
environmental representation. The facilities of the toolkit are
outlined and discussed with respect to the ease with which
they enabled us to apply the toolkit to our domain. We
conclude by discussing some benchmarks we believe could
help in categorising toolkits and describing some features we
would like to see in future agent toolkits.

Introduction

Our work on agents has been in the area of Computer
Generated Forces (Hepplewhite 1996). More specifically
we have used agents to control groups of tanks within
virtual reality type simulations. This paper concentrates on
a characterization of the domain and the agents and
discusses how this domain affected our choice of toolkit
and considers how well the features provided by the toolkit
used (SIM_AGENT (Sloman 1995)) have matched up
evolving needs of our research and implementation.
The simulations which we are working with are designed to
operate as part of a training system for military
commanders. These commanders interact with the
simulation from a map display or an ’out of the window’
view into the simulation. The virtual battlefield needs to be
populated by opposing and supporting forces, which in
order to reduce manpower costs, need to be as independent
as possible. The agents are therefore expected to interact
with each other and the trainees as realistically as possible,
and in real time. The behaviour of tank agents is governed
by two main factors, the terrain over which they are moving
and their beliefs about the enemy. In trying to produce
battlefield behaviour which mimics that of a human
tactician it is advantageous to model the existing command
structure used by the army. This helps with the gathering of
knowledge from subject matter experts and enables a
hierarchical decomposition of the problems. High level
commanders are given objectives which are used to
produce lower level objectives for their subordinates.

Information flows both up and down the command chain
and agents need to co-operate with their peers to achieve
the overall goal set by their commander. This natural
decomposition of the problem allows higher level agents to
work on long term plans while the individual tank agents
carry out orders designed to achieve more immediate
objectives. Our agents fulfill the roles of both individual
tank commanders and the commanders of groups. Their
roles are closely tied in to the roles performed by military
commanders in the army’s command and control structure.

Classifying the domain

The categories used to describe our domain are based on
those suggested by Logan (Logan 1998). They are divided
into consideration of the agents’ environment, their goal
types and representations, the properties of the agents
actions, internal architectural systems and internal
representation of the environment.

The Environment

The environment of our agents can be regarded as
inherently dynamic as there are many agents forming the
supporting and opposing forces who can move freely in the
environment. The terrain however, is a largely static
portion of the environment which changes little. In our
simulations the terrain is fully observable as each agent has
access to the terrain database but the actions and positions
of other agents are only partially observable through
simulated sensors since agents need line of sight across the
terrain to identify other agents. The actions of these other
agents are only partially predictable, depending on their
types and relationship to the agent observing them. Given
these features we classify our environment as a fairly
complex one, made dynamic and unpredictable by the
presence of other agents.

The Agents’ goals

An agent’s goals, viewed from outside the agent, are
relatively simple. Goals are assigned externally, either by a
human operator or from agents higher up the command

47

From: AAAI Technical Report WS-98-10. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

hierarchy. The agents are inherently cooperative in that
they will always try to achieve the goal they have been set,
in conjunction with their peers. The agent has a single goal,
which may be a maintenance goal but its goal is almost
certain to conflict with the goals of opposing agents.
Agents can only abandon a goal when told to do so by an
agent above them in the hierarchy. Even if they believe the
goal to be unachievable it cannot be abandoned, only
reported as such. The external goals usually have
constraints associated with them covering the time within
which they should be completed and the area of terrain over
which the agent can operate. One of the difficulties
however is that there are no clear cut utility functions or
optimal policies available for the domain. Advice and
comments can be sought from military experts and tactics
manuals but conversion to the sorts of utilities usable by
computer algorithms is extremely difficult. In many cases
the best that can be hoped for is a measure of how
reasonable the resulting behaviour appears to be. One of the
problems is that adopting some fixed policy is inherently
sub-optimal since one of the desired features of tactical
behaviour is to be unpredictable.

Internal goals can be generated by the agent either in
response to goals received from outside or be an implicit
part of the agent’s nature. For example agents operate with
an implicit goal of self preservation and an implicit goal to
destroy opposing agents. Agents also generate subgoals
internally as part of the planning process to achieve their
top level, externally supplied goal. These goals are more
complex since unlike the externally supplied goal there may
be several competing goals. An agent may decide to
abandon an internally derived subgoal if it believes it is
unnecessary or no longer achievable. This ability is a
necessary part of operating in a dynamic or partially
observable environment since the information which caused
an agent to adopt a goal may change or be found to be
inaccurate.

Actions
The agents can affect their environment in several ways,
they can move, shoot and communicate. These actions are
fallible but only infrequently so. Agents may be unable to
move due to impassable terrain or the risk of collision.
They may be unable to shoot due to the loss of sight of the
target, battle damage or ammunition supply and the effects
of the action are probabilistic. Communication acts are
usually successful but their effects are not guaranteed since
orders given to subordinates may turn out to be
unachievable. In our implementation agents communicate
using a very simple language of orders and reports with
well prescribed meanings. There are no complex semantics
and so communication should be regarded as data passing
rather than natural language communication.
Communication with the operator is very limited, as is
discussed below in the section on debugging.
The actions of agents affect their ability to perceive the
environment, either through motion to a different vantage

point or by tasking other agents to move and gather
information. The actions have different costs and could be
subject to resource constraints although our present agents
ignore their fuel and ammunition supply states. The
primary cost considerations are of time and exposure to
danger.

Architectural properties
Our system is hierarchical, with multiple agents
cooperating to achieve a single goal, this is based on the
real world military command structure. Agents are
therefore organised in a semi-rigid structure within which
they have to support and cooperate with their peers. Their
goal is given to them by a superior in the hierarchy and they
may plan to achieve this by giving tasks to subordinates in
the command structure. At the lowest level (individual
tanks) there is a considerable reactive component to the
architecture, agents react to the detection of new enemy
vehicles immediately and this reaction consists of several
actions, considering the new vehicle as a target, turning to
face this new threat and communicating its sighting
information to other agents in its group.
All agents and particularly those higher up the command
chain have a considerable deliberative component. In most
cases this deliberation takes the form of planning and
search over the complex terrain to identify suitable routes
for movement or positions on the terrain to provide
protection or concealment. The ability of our agents to
reflect about their own reasoning processes is extremely
limited, instead most of our techniques rely on an ’anytime’
component to provide plans within suitable time frames. No
learning takes place within our agents, their capabilities are
fixed before execution and do not change.

Environmental representation
The agents manufacture and hold several different
representations of the environment. The terrain surface is
held as a static database and the agent can create
abstractions of this data for different reasoning purposes.
All these representations however are essentially spatial
maps of the environment, holding additional information
about the benefits or dangers of particular locations. In
addition to this agents have dynamic beliefs about the
locations of other agents which they build up from sensor
information and radio messages. The present formulation
relies on the fact that such information is always accurate
and consistent so that agents do not have to process the
sensor information to maintain hypotheses or belief
measures. Perceptual information is not complete however
so an agent cannot assume that it knows of all other agents
in its environment and do have to make assumptions about
the continuing existence of agents which are not currently
visible to sensors.
The agents do not try and reason about the beliefs and
intentions of other agents, however some simple
assumptions about the short term actions of agents are
made. The complex representation of the beliefs and

48

SimAgent (Tool-Kit) Sensors/ AnAge.nt
.. : /Messazes RuleSetl i RuleSet~
i Scheduler Pass 11 t ~ ~ ~

~ Scheduler Pass 2i ¢ I Ac~ons : ...
i Actions RuleSet

Actions ~ t Sensors/messages ~ ...

Simulation Methods ~"gimuiationiiiierfadlNetworkRemote

i Simulation

Figure 1. Tool-Kit Overview.

intentions of other agents may well be required in the future
development of the agents.

The SIM_AGENT Toolkit

The toolkit which we have been using was developed in
collaboration with Prof. Aaron Sloman at Birmingham
University as the SIM_AGENT (Sloman 1995) tool-kit,
written in Poplog. The tool-kit executes multiple agents,
controls the message passing between them and allows
physical simulation of the agents. It was designed as a
general purpose toolkit for exploring different agent
architectures and has been used for several different
implementations at Birmingham University in addition to
the work at DERA.
The tool-kit provides the facility to support different
architectures between the agents, and possibly a number of
sub-architectures within each agent to support all its
functionality. The agents need to interact with each other
and possibly with other entities and so must be physically
simulated. This can be achieved either using modules
internal to the tool-kit, or by enabling the agents to control
the actions of a separate simulation system, in the work
described here an external simulation has been used. Figure
1. shows the relationship between the agent objects, agent
rule-sets, the tool-kit and remote simulation.

Agent Scheduling
The tool-kit scheduler is responsible for the correct running
of the agents. The scheduler runs in a two pass operation.
Firstly, it allows the agents to perform their mental
processes, this is controlled via POPRULEBASE a forward
chaining production system. Secondly, it passes messages
between agents and runs any physical simulation, or
external actions of the agents. The external simulation
returns messages back to the agents reporting changes in
state, or information from sensors. Running in this two pass
manner ensures the behaviour is independent of the order of
the agents, because all agents get to perform sensor and
thinking activities before the actual state of any entity
changes. It does however require that the time allowed to
perform reasoning for all agents during the first pass should
be short enough to ensure that updates to and from the
simulation happen frequently enough to give reasonable
behaviour. In many cases this requires that algorithms are

Orders, Messages

[Tank Planner Tank Sensing l
Tank Plan Troop [
Monitor Perceptions I

Tank Messa~les 1
Troop Plan

Orders, Messages

Figure 2. Example Troop Commander Architecture.

interruptible and operate in small incremental stages.

Internal Agent Mechanisms
Each agent has an associated collection of rule-sets known
as its rule-system. A rule-set contains a collection of
condition-action rules interacting via a database. The
condition action components of a rule are not limited to a
particular style, since they can invoke any POP11 function,
it is possible to call other languages such as C++, Prolog,
etc. The rule-sets are a method of grouping similar
behaviour components. The rules can switch between rule-
sets and databases, push them on a stack, restore them, etc.
(c.f. SOAR (Laird 1993)).
The toolkit allows the rulesets to behave in a number of
different ways, all applicable rules can be run in parallel or
the most applicable rule can be selected by a number of
criteria, including precedence (rules are ordered)
weighting schemes. In our application we have used the
settings which allow for only one rule to fire at a time with
the first applicable rule in an ordered list of rules being
selected. The selection of a ’style’ of rule matching is
usually dependent on the style the programmer is used to.
Although learning is not included in our implementation, it
is supported in the tool kit. A rule can introduce new rules
or rule-sets within an agent.
Each agent within the hierarchy is based on the same
architecture, Figure 2 shows the basic design. The
fundamental properties of this design are:
¯ It contains a central database, through which all the

rule-sets communicate. This database can be
partitioned on a keyword, each sub-database holding
related data, allowing searching to be performed much
more quickly.

¯ Individual rule-sets can be identified to perform
fundamental tasks, although their operation may be
inter-linked Separating functionality enables
parallelism of the rule-sets.

¯ The modules only simulate the agent’s intelligence and
do not perform any actual physical modelling. To
perform actions the agent sends instructions to the
physical simulator, and receives confirmation back
about the action via its sensors. This allows separation

49

of the intelligence modelling from the physical
simulation. Additional or modified behaviour can be
easily implanted into the agent by simply loading
different, or additional rule-sets into the agent.

Control of an Agent’s Resources
Within the tool-kit there are several mechanisms for
controlling resources, not all of which we use. The prime
means of controlling agents is by limiting the number of
rules which may be run within a rule-set on any pass. This
may be set as a limit specific to each rule-set or apply to a
rule-system as a whole. Additionally agents may run their
rule-systems a multiple number of times in a. pass or
include rule-sets multiple times within their rule-system but
we have not made use of these mechanisms. One of the
effects of this is that rulesets may be written which would
keep operating continuously but the scheduling will ensure
that they can be considered to run in parallel with all other
rulesets. Each time the scheduler is run it is given a list of
agents to execute, each agent reports if it did not fire any
rules on a pass, allowing it to be temporarily removed from
the list of active agents.

Meta-level Reasoning

Reasoning about the computational resources and abilities
available to an agent (sometimes called meta-level
reasoning) is one of the features of the tool-kit which is still
developing. Presently there are mechanisms known as rule-
families which can be used to control which of a number of
rule-sets are available to an agent at a given time. These
can be used to focus attention on a particular problem, such
as planning a route, to prevent time being wasted checking
all the rules within a module when a clearly identified
subset is all that is required.
Control of other aspects of reasoning, for instance the depth
of a search the degree of abstraction to be used and how
much real time to allow before execution must commence
is done through setting parameters via rules which make
modifications in the database. In theory this allows ’meta-
management’ rules to control the types of reasoning as well
as the resources available to an agent depending on the
present situation. In practice we have only just begun to
explore the use of these mechanisms and most of the
parameters used to control the resources an agent has
remain fixed.

Discussion

The main feature of the toolkit which benefited our
research was its flexibility and extensibility. Each ruleset
can be configured to behave in a variety of ways, providing
different mechanisms for breaking ties between rules and
selecting actions. This combined with the ability to access
arbitrary functions in conditions and actions allowed us to
develop in a way which matched our domain and re-used
existing code without being overly restricted by the toolkit.

The downside of this, however, is the lack of detailed
support for specific architectural features which might be
expected in a more specialised toolkit. Additions can be
made to the toolkit but in most cases it is the programmer
who has to design and code the architectural support which
their agents need. The benefit of this is that a simple
implementation can be made using the basic toolkit and
supporting systems added as their need becomes apparent.
In particular for our research into battlefield simulation
agents we had to add support for an external simulation,
distributing agents across multiple machines, operating in
real time, and a hierarchical representation of goals and
plans.

Physical Distribution
Adding an external simulation and distributing the agents
across several machines proved relatively easy since the
design of the toolkit allows the programmer to overload
methods used by the toolkit and so provide functions which
mapped getting sensor data, performing actions and
communicating to other agents onto network messages.
Allowing agents themselves to migrate between machines
would be a harder task since no absolute boundary is
enforced between the agent, the toolkit and the operating
system. While this allows all agents to access common data
held within the toolkit (such as the large terrain database in
our case) it does make mobility harder.

Real-time operation
One of the more difficult tasks which we faced was
introducing the concept of real time operation into the
toolkit. One of the reasons for this is that the resource
control mechanisms described above do not include any
reference to real time or the processor time, only to counts
of rule firings. If real time operation is desired it is
important to ensure that the actions performed by rules take
a small amount of time to prevent single rule firings
consuming large amounts of real time.
We attempt to achieve real time operation by constraining
the amount of processing an agent can perform on a cycle
(single pass of the scheduler) and by updating the agents
from the simulation at regular time steps (typically two
seconds).
The agents therefore operate by all running up to their rule
limit (or completion) in the first pass of the scheduler
which point the scheduler checks to see if the next time step
has been reached. If more time is available another pass is
made through all active agents. This continues until all
agents have completed (have no more rules they can run)
the time step is reached.
It is therefore impossible for an agent to predict how much
processor time it will get in any slice of real time since this
depends on the number of agents running and how much
work they are doing. This requires the use of ’anytime’
techniques which always have a solution of some sort
available so that the agent can start executing it when
desired or the use of continuations, functions which return

5O

after a given amount of time with either a solution or the
information needed to call the function again and progress
towards the solution. For some techniques the requirement
to write them in the form of continuations is a fairly
onerous overhead (particularly is the code is re-used from
different application). The ability to run multiple threads
for each agent would be a useful additional capability.
Related to the issue of running in real time is the response
time of a single agent. By operating at a level of two second
time steps our agents have a long response time and so have
to rely on the simulation to perform fast responses. In many
systems there are a variety of different time frames which
are appropriate and more sophisticated resource scheduling
might make it easier to combine fast reactions with
complex deliberative algorithms.

Data storage
There are several ways of storing data in the toolkit. Agents
have ’slots’ (the equivalent of C++ class variables) which
can be used to hold information, for example the position of
an agent and information about its status. These slots are
easy for external functions, such as those dealing with
sensors, to access and their values can be used in the
conditions of rules. Procedural knowledge is generally
encoded in the rules and rulesets available to agents. In
theory these can be altered although we have no experience
in doing this. Some shared data can be stored in global
objects available to all agents, for example our terrain
database or information about the physical capabilities of
various vehicle types. The prime storage location for data
however is the central database, held separately by each
agent. The basic toolkit comes with no distinction between
types of data although for different applications different
ways of updating and indexing data may be required.
In the work we have done and from experience at
Birmingham University one of the desirable features has
been shown to be some form of truth maintenance system.
That is a means of automatically identifying dependent data
entries and removing facts from the database when the
evidence supporting no longer holds. One specific example
(Baxter 1996) of this is in a hierarchy of goals, sub-goals
and plans maintained by our agents. In this case not only is
it useful to have unsupported data removed (i.e. sub-goals
which no longer apply due to achievement of a higher level
goal) but it is useful to be able to identify the relationships
between plans and goal easily by some form of data tagging
scheme. It is probable that future versions of the toolkit
include some form of truth maintenance system. Clearly the
support provided by a toolkit for different types of data
representation will affect its applications. Learning
applications tend to prefer homogenous data representations
and physically realised systems (e.g. robots) need tight
links to the real world and sensor data. In all cases it is also
important to allow the user easy access to the data as an aid
to debugging.

Debugging Agent systems.
As with any software system debugging agents is an
important consideration. However this does not seem to
feature early in development for toolkits. SIM_AGENT
comes with a wide variety of tracing functions which can
be configured to produce a wide variety of data about what
an agent is doing. The equivalent of ’print’ statements are
available for inclusion in rules and can be dynamically
enabled or disabled. By using similar mechanisms we have
included the ability to display visual debugging information
overlaid onto a graphical display. In most cases however
locating errors from voluminous output files is an art form
and potentially a tedious process. Debugging is especially
difficult when errors are produced by timing problems in
network communications or rule firings. One clear need for
future toolkits therefore is a consideration of how to
analyse and debug the performance of agents whose
behaviour depends upon communication with other equally
complex agents. This would seem to point to the need to be
able to accurately instrument agent systems not only for
debugging but to allow meaningful performance
comparisons to be made.

Classifying toolkits
By examining the domain in which we operate and the
facilities provided by the toolkit which we use it has
become clear that there are several ways in which toolkits
might be classified. One of the most complex areas which
we have dealt with is the representation of time within our
agents and coping with scheduling problems to allow us to
run in real time. Even so the response time of the toolkit
probably limits its application in hard real time systems
where events occur every time a user types something into
a desktop application for instance. The agents are also
implicitly designed to run in parallel with and communicate
with an environment, rather than being embedded within an
application.
A major benefit of the toolkit has been its flexibility and the
ability to add different types of functionality for different
tasks. In categorising a toolkit it needs to be made clear
what representation conventions are forced on the user (for
example expressing all actions in a temporal logic).
general toolkit should provide libraries or possible
representations and techniques rather than overly restricting
the user. It must be borne in mind however that specialised
toolkits tightly coupled to their domain are almost certain to
be more efficient than general ones.
For a user selecting a toolkit we believe it would be useful
to be able to measure the response or cycle time of a toolkit
and to provide some idea of relative efficiency and
flexibility. Flexibility seems too fuzzy a measure to be
easily used but response times and a set of benchmarks
might be easier to develop. Possible benchmarks could be
response time to a simple message and the minimum time
delay between posting a goal and generating an external
action. This would give a lower bound on the response time
of any agent implemented in the toolkit and enable

51

potential user to identify whether it would be possible to
use the toolkit for their application.

Conclusions
We have briefly described the SIM_AGENT toolkit and the
way we have used it within the domain of Computer
Generated Forces. Without more experience with other
toolkits in the same domain, e.g. SOAR (Tambe et al
1995), it is difficult to draw conclusions about how
effective other tools would have been applied to this
domain. The flexibility of the toolkit made it easy for us to
develop domain specific enhancements, however this came
at a cost in overall efficiency.
Facilities for making and reasoning about communication
would seem to us to be a prime contender for addition to a
toolkit (e.g. an Agent Communication Language and
model of expected responses) although it may be useful to
have a clear distinction between an internal and external
representation to allow the use of common external
communication languages. We can also see the need for
agent to be able to reason about their own capabilities and
performance, which requires the ability to instrument and
monitor performance. Finally in many cases we can see a
need for internal self-simulation. This would allow agents
to run a model of themselves internally to discover what
their reactions would be in hypothetical situations and
return some results which can be used in decision making.

Magazine 16(1).

© British Crown Copyright 1998 / DERA

Reproduced with the permission of the controller of Her
Britannic Majesty’s Stationery Office.

References

Baxter J W. 1996 ’Executing Plans in a Land Battlefield
Simulation’ In Proceedings of the AAAI Fall symposia, 15-

18

Hepplewhite R. T. and Baxter J. W. 1996 Broad Agents for
Intelligent Battlefield Simulation. In Proceedings of the 6~

Conference on Computer Generated Forces and
Behavioural Representation, Orlando, Florida: Institute of
Simulation and Training

Laird, J. E. Clave, B. L. Erik A. and Roberts D. 1993. Soar
User’s Manual (V6), University of Michigan, Carnegie
Mellon University.

Logan, B 1998 http//www.cs.bham.ac.uk/-bsl/aaai-98/
agent-classification.html

Sloman A. and Poli R. 1995 SIM_AGENT: A tool-kit for
exploring agent designs. ATAL-95 Workshop on Agent
Theories, Architectures, and Languages, IJCAI-95
Montreal, August.

Tambe, M., Johnson, W. L., Jones, R.M., Koss, F., Laird,
J.E., Rosenbloom, P.S., Schwamb, K. 1995 Intelligent
Agents for Interactive Simulation Environments. AI

52

