
Case Study: Intelligent Software Supply Chain Agents using

ADE

Dr. Anshu Mehra
Gensym Corporation

125 Cambridge Park Dr.
Cambridge, MA 02140
AMehra@gensym.com

Dr. Mark Nissen
Naval Postgraduate School
555 Dyer Rd. Code SM/Ni

Monterey, CA 93943
MNissen@nps.navy.mil

Abstract

This paper reviews extant agent applications and describes
the Agent Development Environment (ADE) toolkit. ADE is
the integrated development environment to design, develop,
debug, simulate and deploy agents. ADE supports the
development of multi-agent applications capable of running
on a single machine or on a distributed network. ADE has
been used to build commercial applications in the area of: (i)
manufacturing scheduling, (ii) manufacturing process
control, (iii) network information filtering, and (iv) network
load balancing.
We present intelligent supply chain agents for the software
procurement process using electronic commerce. The paper
highlights the use and utility of intelligent agents in
electronic commerce using ADE. Supply chain
management represents a critical competency in today’s
fast-paced, global business environment. However, in the
current transition from EDI to Web technology, most of the
capability for process integration is being lost. The
integration of buyer and seller supply chain processes is
critical for speed and responsiveness in today’s
hypercompetitive product and service markets. Intelligent
agent technology offers the potential to overcome this
limitation and effectively integrate buyer and seller
processes without the rigid inflexibility of EDI. We use
domain knowledge in software procurement and distributed
problem solving approaches. The paper concludes with
suggestions for future research.

Commerce Through Intelligent Suppy Chain
Agents

Supply chain management (see Porter and Millar 1985)
represents a critical competency in today’s fast-paced,
global business environment, and a number of effective
practices (e.g., just-in-time deliveries, electronic data
interchange (EDI), supplier inventory management) are
employed to improve the competitiveness and efficiency of
enterprises around the world. With the continuing surge of
activities on the Web and corresponding research on
electronic commerce, many firms are moving to Web-
based support for commercial transactions (e.g., electronic
catalogs, storefronts, malls, etc.). In fact, Web-based
commercial transactions are beginning to supplant the
traditional EDI for some business-to-business commerce,
which itself represents a quantum improvement over paper-

based processes.
However, most of the capability for business process
integration is being lost during the transition from EDI to
Web technology. Whereas EDI effectively compels buyers
and sellers to integrate their supply chain processes, Web-
based supply chain technologies are noticeably one-sided;
that is, the latter sites and applications are predominately
developed for either the buyer or seller, but not both. Our
two decades of experience with EDI (see Sokol 1996)
suggest that integration of buyer and seller supply chain
processes is critical for speed and responsiveness in today’s
hypercompetitive business environment (see D’Aveni
1994).
Alternatively, intelligent agent technology offers the
potential to effectively integrate buyer and seller processes
without the rigid inflexibility of EDI. Using domain
knowledge and distributed problem-solving technology to
develop a set of intelligent supply chain agents, in this
paper we demonstrate this potential through the agent-
integrated supply chain process of software procurement.
We first provide a high-level overview of extant agent
applications and later describe the Agent Development
Environment (ADE) that is used to design and implement
intelligent supply chain agents. A case example follows to
demonstrate the feasibility and to highlight the use and
utility of intelligent agents in this commercial domain. The
paper closes with a set of conclusions and suggestions for
future research along these lines.

Extant Agent Applications

Work in the area of software agents has been ongoing for
some time and it addresses a broad array of applications.
Indeed, one need not research too far back in the literature
to identify a plethora of agent examples--so many that any
attempt to review them, even briefly, would constitute a
journal-length paper in and of itself. In this section we
provide a high-level overview of extant agent applications,
with a particular emphasis on a framework to relate them
with this present work.
It is informative to group extant agent applications into four
classes: 1) information filtering agents, 2) information
retrieval agents, 3) advisory agents, and 4) performative
agents. Briefly, most information filtering agents are
focused on tasks such as filtering user-input preferences for

From: AAAI Technical Report WS-98-10. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

e-mail (e.g., Maes 1994, Malone et al. 1987), network news
groups (Sycara and Zeng 1996), frequently asked questions
(Whitehead 1994) and arbitrary text (Verity 1997).
Information retrieval agents address problems associated
with collecting information pertaining to commodities such
as compact disks (Krulwich n.d.) and computer equipment
(uVision 1997), in addition to services such as advertising
(PriceWatch 1997) and insurance (Insurance 1997). We
also include the ubiquitous Web indexing robots in this
class (see Etzioni and Weld 1995) along with Web-based
agents for report writing (Amulet 1997), publishing
(InterAp 1995) and assisted browsing (Burke et al. 1997).
Agents for technical information delivery (Bradshaw et al.
1997) and information gathering (Knobloch and Ambite
1997) are not Web-based per se, but they perform a similar
function.
A third class of agents is oriented toward providing
intelligent advice. Examples include recommendations for
CDs (Maes 1997), an electronic concierge (Etzioni and
Weld 1995), an agent "host" for college campus visits
(Zeng and Sycara 1995) and planning support for
manufacturing systems (Maturana and Norrie 1997).
Agents for strategic planning support (Pinson et al. 1997),
software project coordination (Johar 1997) and computer
interface assistance (Ball et al. 1997) are also grouped in
this class, along with support for military reconnaissance
(Bui et al. n.d.) and financial portfolio management (Sycara
et al. 1996). Performative agents in the fourth class are
generally oriented toward functions such as business
transactions and work performance. Examples include a
marketplace for agent-to-agent transactions (Chavez and
Maes n.d.) and an agent system for negotiation (Bui n.d.),
in addition to the performance of knowledge work such as
automated scheduling (Sen 1997, Walsh et al. 1997),
cooperative learning (Boy 1997) and automated digital
services (Mullen and Wellman 1996).
The intelligent supply chain agents developed through this
present research are probably best categorized in the fourth
group above (i.e., performative agents), but they have been
designed to also exhibit behaviors such as information
filtering and retrieval, and their use can be accomplished
through simulation (i.e., in an advisory role) as well as
enactment (i.e., the performative role). Thus, intelligent
supply chain agents have similarities with examples from
each of the four classes above. To further describe and
differentiate intelligent supply chain agents, we have
integrated the agent-taxonomy work of Franklin and
Graesser (1996) with a three-dimensional structure from
Gilbert et al. (1995) to develop the analytical framework
presented in Figure 1.
In this framework we use the same intelligence and
mobility dimensions noted in the three-dimensional
structure above, but with the substitution of the new
dimension collaboration in lieu of autonomy/agency. This
follows the presumption of agent autonomy stressed by
Franklin and Graesser. For purpose of discussion, we have
annotated this three-dimensional space with one, relatively
"pure" exemplar from each dimension. For example, many

expert system applications are quite extensive in terms of
formalized, expert-level intelligence, but they traditionally
are not designed to operate on foreign hosts nor do they
generally collaborate with other expert systems to jointly
solve problems. Similarly, remote programming of the sort
enabled by Java and Telescript equip programs to execute
on foreign machines, but these procedural applications are
not generally endowed with the capability for intelligent
inference nor are they usually thought of in terms of
collaborative processing. Likewise, parallel processing has
an explicit focus on collaborative problem solving between
multiple, parallel processors, but this problem solving is
usually focused more on procedural processing than
intelligent reasoning and execution on foreign hosts is
rarely envisioned. Clearly exceptions exist for each class
(e.g., distributed AI, intelligent Java agents, etc.), but these
three exemplars should convey the basic concepts
associated with each dimension.

Intelligence

Mobility

Collaboration

Expert systems

Parallel processing

Remote programming

ISCA

Figure 1 Agent Framework

Notice the annotation for intelligent supply chain agents
(labeled "ISCA" in the figure). Although this class of
systems is not as extreme as any of the three exemplars
from above along any particular dimension, it occupies a
position roughly in the middle of this three-dimensional
agent space; all three of the exemplars from above are
situated along only a single axis. This adds to the challenge
of our agent development work, but it serves to enable a
new set of capabilities that prove to be quite effective and
useful for operational processes such as software supply
chain management. With this in mind, we turn now to the
agent development environment and architecture for this
class of intelligent supply chain agents.

Agent Development Environment and
Architecture

Agent Development Environment (ADE) is the integrated
development environment to design, develop, debug,
simulate and deploy agents. ADE is built on G2, an object-

oriented graphical environment that offers a robust
platform for the development of intelligent real time
systems. ADE supports the development of multi-agent
applications capable of running on a single machine or on a
distributed network. The main ADE components are Agent,
Message, Activity, Host and Environment. In this section
we briefly outline each in turn, followed by a discussion of
agent simulation. Examination of this ADE architecture
instantiated for a manufacturing supply chain example is
presented to close the section. We begin with a high-level
architectural schema that inter-relates each of these ADE
components. This is diagrammed in Figure 2.

Figure 2 ADE Architectural Schema

Agent. In ADE, agents communicate through
messages or events (a subclass of message). ADE
provides a basic direct addressing message
service, with some optional functionality (e.g.,

guaranteed delivery, message broadcast, subject-based
addressing). ADE uses delegation based event handling
similar to the JavaBeans model in which agents use
messages to generate and listen for events. Each agent has
a network-wide unique name. This enables communication
among agents distributed across a network to be
independent from an agent’ s location. Agents refer to each
other by their name and the name of an agent cannot be
changed during its entire “life.” ADE provides a "Yellow
Pages" lookup capability; that is, specific properties can be
defined for agents, enabling other agents to send messages
qualified by their properties. Each agent can query the
yellow pages to find the names of agents matching a
specific Boolean set of properties. Agents can be
dynamically created, deleted, cloned and moved across the
network. ADE provides a base agent class called
AdeAgent. AdeAgent can be specialized and augmented by
application specific agent types. Example agents include:
ResourceMonitoringAgent, ManufacturingCell-Agent and
JobBrokerAgent.
Agents in ADE are autonomous, multi-threaded objects
with their own state. Each thread of control of an agent is
represented by an activity instance. An agent can
concurrently perform multiple activities. For example, a
MachineToolAgent can be concurrently performing two
activities: monitoring a machine job and negotiating future
jobs with other agents. Messages and other events are sent,
and listened for, within the context of a specific activity of
an agent. Agent activities are defined either using the
Grafcet graphical language (discussed below) or directly

with methods for activity subclasses.

Message. ADE provides a base level message
class of type AdeMessage. Agents communicate
with each other by sending objects of type
AdeMessage or its subclass. A message

contains the destination agent name. Messages are handled
by agent activities. A message can be sent to a specific
activity of an agent. In ADE, no acknowledgment is
required for messages. Exchange of messages between
agents may be synchronous or asynchronous. A
synchronous message blocks the activity of the agent until
the reply is received from the agent to which the message
was sent. Alternatively, an agent may continue to perform
its activity without blocking. It is assumed that messages
take a finite amount of time to be delivered. Thus, it is
possible for messages to get delayed or lost, and for
messages sent in opposite directions by different agents to
cross one another (i.e., both be in transit at the same time).
ADE supports two major subclasses of AdeMessage: (i)
AdeSolication is a message for which the sending agent
expects a reply; and, (ii) AdeAssertion is a message for
which the sending agent expects no reply. Messages are
used for the communication between agents and between
the different activities of the same agent. Communication
between agents and external devices or processes is also
accomplished through messages. A subclass of
AdeMessage called AdeEvent is provided in ADE for
discrete event simulation.

Activity. An activity defines a specific behavior
of an agent. AdeActivity class provided in ADE
facilitates the development of a multi-thread
capability without dealing with threads, stacks

and priorities. An agent may be concurrently performing
multiple activities of the same type or of different types.
Within an activity, multiple threads may be active at the
same time. Messages sent to an agent may either initiate a
new activity or may continue a dialog with an ongoing
activity. In the first case, the agent starts a new thread of
activity. During execution of an activity the agent can send
and receive synchronous and asynchronous messages. Once
an activity is started, the message can be sent directly to it.
An activity maintains a queue of received messages. Within
an agent, the AgentHandler defines the destination activity
for each message received. This handler is called when a
message does not identify its destination activity, which
usually occurs when an agent is initiating communication
with other agents.
Activities are defined either as methods or using Grafcets
(see Figure 3 for an example Grafcet used to define a
supply chain management application). AdeGrafcet is a
graphical language that shows both parallel and sequential
control structures in easy-to-understand pictorial form.
AdeGrafcet is an extension of Grafcet, or Sequential
Function Charts (SFC), a graphical language that has been
accepted as an industrial standard (IEC 848 and IEC 1131-
3) for local, PLC-level sequential logic control (David and

Alla 1992). A Grafcet Chart contains Nodes and the Links
among them define the flow of control of the activity of an
agent. The main types of nodes are Steps, Transitions,
MacroSteps, IterativeSteps and ProcessSteps. The main
types of links are Branches and Joins.

Figure 3 Sample Grafcet Chart for Supply Chain
Management

A Step represents a state, phase or mode. Associated with a
step are actions that are performed when a step is activated.
In standard Grafcet the actions that can be done in a step
are of a Boolean nature, whereas AdeGrafcet actions in
steps are more general; they can be compared with
statements of a conventional programming language.
Message statements to other agents may be embedded in
the action of a step, and actions are internally represented
as procedures. The transitions act as gates on the flow of
control through the Grafcet Chart. Each transition is
associated with a condition that determines whether or not
control can pass through the transition. In ADE Grafcet
transition conditions are expressed as Boolean expressions
written as procedures. Control can pass through a transition

when its Boolean control expression evaluates to TRUE.
Wait statements for specific messages from other agents
may be embedded in condition procedures. AdeGrafcet
also provides MacroStep as a way to embed one Grafcet
chart in another. IterativeStep enables the definition of
embedded Grafcet Charts whose process is repeated a
number of times. ProcessStep is a MacroStep executed in
more than one Grafcet Chart. They are equivalent to
subroutines in standard programming languages. A Link
connects steps to transitions. Grafcet allows a single step to
be followed by more than one transition, and a single
transition to be followed by more than one step. Thus,
Grafcet allows control to fan-in and fan-out, and Grafcet
provides for a choice between synchronous and
asynchronous operations through a variety of fan-in and
fan-out links. There are five types of links: Asynchronous
Branch, SynchronousBranch, First-True Branch,
Asynchronous Join and Synchronous Join.

Host. In ADE, every agent registers itself to
AdeHost. There is one AdeHost for every
software process on which a multi-agent
application is running. An AdeHost is

responsible for delivering messages, as well as dynamically
initializing, moving, cloning and destroying agents. When
an agent is created, it is assigned to a specific host. The
host then installs the agent, registers the agent properties
and, if requested, connects the agent to databases, on-line
control systems, etc. The "Locator Service" of a host
enables each agent to locate all the other agents in the
application. When an agent moves (e.g., from one machine
to another), AdeHost forwards all the future messages to
the new address.

Environment. ADE supports agent clusters
by providing a special agent called
AdeEnvironment. As depicted in the figure
above, agents belonging to an environment

may reside on different hosts. AdeEnvironment enables
hierarchical grouping and encapsulation of agents and
provides local "Yellow Pages" services. Although agents
can move to different hosts across a network, an agent may
belong to only one environment. Agents within an
environment may be disallowed to communicate with
outside agents, and an environment can be a cluster of other
environments.
Agent Simulation. Because agent-based systems can
exhibit complex emergent dynamics, simulation is an
essential component of a multi-agent development
environment. ADE supports simulation during development
through a SimulationAgent that emulates the behavior of
external devices or processes. In this way, the interaction of
agents with the external physical environment can be
simulated during the development phase. When the multi-
agent application is deployed, the interface with the
Simulation-agents is replaced by the actual interface with
the physical devices.

Summary. In summary, ADE provides (i) a predefined
class hierarchy of agents and agent components; (ii) an
agent communications "middleware"; (iii) a graphical
programming language to design and develop agents’
behavior based on the Grafcet standard; (iv) a distributed
simulation environment to test multi-agent applications
built with ADE; (v) a complete debugging and tracing
environment; and, (v) a deployment center to deploy agents
in the G2 environment or as "JavaBeans" in Java Virtual
Machine.

Manufacturing Supply Chain Instantiation
To add context to this discussion, ADE is used to build a
generic, three-level supply chain. Figure 4 shows a process
with an order agent, a customer agent and four suppliers--
one each for the engine, crankshaft, piston and cylinder.
The customer agent requires engines to make cars, and the
engine agent requires crankshafts, pistons and cylinders. In
this example, all agents are on a single process, but they
could just as well be distributed on multiple processes
instead. To further elaborate, we briefly address the
registration of agents in this supply chain instance and the
negotiation protocol defined for their purposeful
communications.
Registration of Agent. As noted in previous sections, each
agent has a unique name and specific properties. For
example, an engine supplier provides engines of a certain
kind and quality. Each agent and its properties are
registered with the host. Agents can find each other by
querying the host. An example query by an agent may be:
“get the name of all engine suppliers located in Ohio.”
Agents communicate by sending messages addressed to the
name of each destination agent. The agent handler
distributes the message to the appropriate Activity (thread)
instance inside an agent. The logic of an Activity type of an
agent is described using a Grafcet Chart similar to one in
Figure 3. Agent sends the message via AdeHost. The
AdeHost locates the address of destination agent and
delivers the message.
Negotiation Protocol. The five-layer contract negotiation
protocol used in this example is delineated in Figure 5.
The customer sends a "request for quotation" (RFQ)
message to the first-tier supplier. The supplier then sends
"RFQ" messages to the second-tier suppliers. The first tier
supplier is therefore a consumer of the second tier
suppliers’ products, so the same rules, protocols and
intelligent behaviors can be defined and applied recursively
for supply chains of arbitrary depth. Each supplier sends a
"bid" message with a due date, quantity and cost, or a "no-
bid" message with reason for no-bid. The customer then
sends an "award" or a "no-award" to each supplier. The
suppliers return either "confirmation" or "non-
confirmation" messages. Finally the customer sends either
a “proceed” message with purchase order number or a “no-
proceed” message.

Figure 4 Modeling of Agents in a Supply Chain
Management Application

Figure 5 Contract Negotiation Protocol

GOVERNMENT SOFTWARE
PROCUREMENT APPLICATION

In this section we discuss the use of ADE and application
of intelligent supply chain agents to redesign the
government software procurement process. We begin by
outlining the two primary processes involved--government

software purchasing and commercial software order
fulfillment. We then describe the structure and behavior of
the intelligent supply chain agents developed to perform in
this environment.

Software Supply Chain Processes
As noted above, two primary processes are involved with
this application of intelligent supply chain agents:
government software purchasing and commercial software
order fulfillment Because process integration is critical to
effective supply chain management, we present and discuss
two process instances in terms of a single, integrated
whole; that is, both purchasing and order fulfillment are
modeled as a single process that spans organizational
boundaries. Specifically, the government software
purchasing process examined through this investigation
pertains to work done by the Supply Department at the
Naval Postgraduate School (NPS). Although a leading,
accredited university like most schools that offers graduate
management, engineering and like degrees, NPS is also a
government institution. Therefore it is subject to all the
same procurement laws and regulations that govern the
purchasing activities of any military unit or federal agency.
The commercial software order fulfillment process
examined through this investigation pertains to work done
by the Product and Licensing Department at Gensym
Corporation. Gensym is a leader in software for developing
intelligent real-time applications and maintains an active
research and development activity that drives frequent
product introductions, updates and releases. Therefore it
represents the kind of rapid product evolution that has been
problematic for government procurement. The high-level
process delineated in Figure 6 depicts the integration of the
User, NPS Supply Department and software Contractor.
Notice that the process flow in this government software
procurement instance differs somewhat from its
manufacturing supply chain counterpart discussed above.
The power of an agent-based solution derives in part from
the ability to capture and formalize the knowledge and
details that are specific to each domain and application.
The baseline (i.e., before redesign using agent technology)
process begins with a user in the organization identifying a
need and determining his or her preliminary software
requirements. A market survey follows with the market
information (e.g., products, capabilities, companies, prices,
etc.) used to complete a (paper-based) procurement request
form. This form is submitted to the Supply Department for
processing, in which a Buyer verifies the form (e.g., in
terms of completeness, required documentation such as
sole-source justification, adequate budget, etc.) and then
researches some potential sources for procurement (e.g.,
existing contracts, approved-vendor lists, small/
disadvantaged-business lists, etc.) in addition to the sources
identified through the market survey. An RFQ is generally
issued and quotations are analyzed by the Buyer, who then
summarizes the information for review and source
selection by the user. A purchase order is then issued and
the transaction is completed as the software is delivered to

the user and payment is made.

ID rqmts
 User Supply Dept Contractor

Market survey

PR form Verify form

Research sources

Issue RFQ Prep quotes

Analyze quotesSource selection

Issue order Fulfill order

Receive goodsUse goods

Make payment

Send invoice

Deposit funds

Figure 6 Integrated Process

Not shown in the figure is the underlying knowledge,
expertise and information that is required for people to
perform the software purchasing and order fulfillment
processes depicted above. For example, the user must know
how to conduct a market survey and have access to
alternative sources of software supply, as well as an
understanding of the basic procedures for government
procurement and information pertaining to the specific
purchase request form used. Similarly, the Buyer must
possess thorough knowledge of the Federal Acquisition
Regulation and know how to review the purchase request
(e.g., what constitutes completeness, when to request
additional information, etc.) and have current information
pertaining to alternative sources of supply. The Buyer must
also have access to one or more suppliers’ systems to be
able to post the RFQ and requires knowledge of the
procedures required for quotation analysis and source
selection. Access to and understanding of the receiving and
payment systems and procedures is also necessary to
complete the transaction, and of course vendor personnel
must understand the policies, procedures and systems
associated with software product and licensing. These are
precisely the kinds of knowledge, expertise and information
that we capture in the intelligent software supply chain
agents through the integration of rules and methods in the
object-oriented, ADE implementation.

Intelligent Software Supply Chain Agent
Application
In order to describe the structure and behavior of the
intelligent supply chain agents developed to perform in this
environment, we draw from the ADE discussion in
previous sections and begin with the Grafcets developed to
support the NPS-Gensym software supply chain. The first
Grafcet, presented in Figure 7, depicts the user behavior
and maps homomorphically to the integrated process flow

from Figure 6. For example, the Grafcet flow begins with
the user identifying his or her need and determining the
preliminary software requirements. The next step involves
the market survey. Notice the “market agent” that is
identified as the recipient of a task message here. The
supply chain agent does not care whether this task is
accomplished by a human or machine agent, so long as the
market survey is completed. Upon receipt of acceptable
market survey results, the agent uses its knowledge of NPS
purchasing procedures to create the purchase request form
which is sent to the Supply Department for processing.

Figure 7 Grafcet for User Behavior

The corresponding Grafcet for the Supply Department is
presented in Figure 8, where the supply agent is “listening”
for a purchase request. Recall that the agents are multi-
threaded, so they can be performing a host of other
activities while waiting for such requests. As depicted in
Figure 6 above, the supply agent verifies the purchase
request, which is either returned for additional information
or processed through the subsequent steps (e.g., researching

sources, issuing RFQ, etc.) depicted in the figure.

Figure 8 Grafcet for Supply Department Behavior

The software contractor behavior is specified through the
Grafcet presented in Figure 9. As above, the contractor
agent is multi-threaded, so it can do more than just wait for
an incoming order from the NPS Supply Department. Upon
receipt of such an order, however, it prepares a quotation
and sends it to the requesting agent (i.e., supply). If an
order is received, the agent’s tasks branch to fulfill the
order (i.e., send the software “goods”) and invoice the
customer.
The agents' activity behaviors are implemented via the
Grafcet Charts shown in Figures 7-9. Specific behavior for
each step and node of the Grafcet chart is described
through a method. The distributed nature of the ADE
enables agents to inter-operate on different hosts (i.e.,
agents can be simultaneously at the customer’s and
supplier’s sites). The distributed agents can communicate
with each other via AdeHost. The supply chain application
described in this paper involves multiple instances of only a
single agent type for the user, supply department and
software contractor. A marketspace of multiple agent types
can be created by subclassing AdeAgent and describing the
agents behavior using Grafcets.

Figure 9 Grafcet for Software Contractor Behavior

OTHER ADE APPLICATIONS

Intelligent Distributed Supply Chain Management
Agents
The application uses Agent Development Environment to
show distributed decision making of a car manufacturer
and its supply chain. Each supplier and consumer in the
supply chain is represented by an autonomous intelligent
agent. The agent has some internal goals and beliefs. It
makes independent decisions based on interaction with
other agents and inputs from the environment. The agents
are developed in G2 and can be deployed on the remote
Java Virtual Machine as Java Applications by a simple
click and drag operation. The agent can move between G2s
or between G2 and Java Virtual Machine in real time.

Multi-Agent Learning in Adaptive Process
Control
This application describes a prototype application of multi-
agent architecture and reinforcement learning to adaptive
control. The application domain is a Plating Line, which
deposits layers of different metals on plates to produce
electrical connectors. Plates go through a sequence of baths
where different metals are layered by electrolytic process.
At the end of the process, a controller checks the thickness
of the layers of metals and determines discrepancies

between set points and actual values. The process is
regulated by two control variables: the Baths Rectifier
Current and the Line Speed. The objective of the prototype
is to demonstrate: (1) A possibility to distribute the
problem solving activities of a complex control problem
over multiple interactive components. (2) A capacity to
learn in a simulated environment and apply the learning in
real time to maintain a stable output thickness of the Plates
as close as possible to the set point. The prototype adopts:
(1) A multi-agent architecture to represent the decision
making of the components of the plating process and their
interaction. (2) Reinforcement learning as a method
through which the agents learn to adapt their behavior by
interacting among themselves and with the environment.

Scheduling & Dispatching using Intelligent
Distributed Autonomous Agents
The application shows intelligent scheduling and
dispatching decisions being made by small intelligent
autonomous agents using the market mechanism. Each job
and its sub-jobs, and each resource is represented by an
agent. The resources are aggregated into manufacturing
cells. There are agents for tracking production, generating
reports, alarm management, maintenance management, and
process planning. The application displays the current load
and number of jobs for each resource, number of jobs early,
late, or on time, and various other shop floor statistics. The
agents in this application are distributed over multiple
CPUs.

Information Filtering Agents
The application shows Intelligent Information Filtering
Agents developed using the Agent Development
Environment. The information filtering agents can be
configured and their filtration rules can be described using
graphical and spread sheet displays in ADE & G2. The
agents can be deployed on the remote nodes as Java Beans.
Once the agents are deployed, they can be dynamically
monitored, controlled, and rebuild if necessary by ADE.

Network Load balancing
The application shows real-time load balancing by agents
distributed over the network. The system consists of
multiple nodes (agents) which manage a subset of the
network. The node agents performs localize load balancing
in their sub-network especially in cases of a node failure or
high network loads. In such cases, the node agent
redistributes the network traffic among other nodes in the
network by negotiating with other agents. The network
traffic is redistributed to the least loaded and the closest
node(s). The dynamic reallocation results in a leveling of
loads and the most efficient processing of all network
traffic in the system.

CONCLUSIONS

In this paper, we described an Agent Development
Environment for developing distributed multi-agent
applications. ADE is an integrated environment to design,
develop, debug, simulate and deploy intelligent agents. The
behavior of an agent can be described using a graphical
language, Grafcets. We then presented a supply chain
management application developed for the government
software procurement process. The application is extremely
important because the U.S. government procurement lead
times are notoriously long and the time required for
software purchases often exceeds the product lifecycles
themselves. Since the U.S. government represents the
largest single buyer in the world with an estimated $40B
worth of annual software procurement (STSC 1996), any
significant improvement in the federal procurement process
can effect tremendous savings for the nation.
We designed, developed and integrated three types of
agents for the government software procurement process
using ADE: (a) government software user, (b) government
supply department, and (c) commercial software vendor.
Although the proof-of-concept implementation is far from
an "industrial strength" application, it satisfies our
feasibility goals and suggests that the agent-based approach
and ADE technology has the potential to scale well across
multiple users, customers and vendors. This represents our
primary objective at this early research stage.
We also constructed a simulation model for the paper-
based "as is" process that is used today at the Naval
Postgraduate School and Gensym Corp. We plan to use
simulation to analyze procurement cost and lead time
between the paper-based "as is" process and the agent-
based "redesigned" process. The simulation results will also
be used to adapt and tailor the supply chain agents.
Also, since software as a product is comprised of digital
information, the exchange of software-product information
and the goods themselves can be performed electronically.
Future work in this area can utilize Electronic Data
Interchange to exchange products and products information
via intelligent autonomous agents, thus further reducing
procurement lead times. The agent-based commercial
transactions between buyers and sellers can supplant the
traditional EDI for business-to-business commerce and can
potentially increase speed and responsiveness in today’s
hypercompetitive business environment.

References

Amulet. Amulet online description. Internet address:
http://www.amulet.com (1997).

Ball, G., Ling, D., Kurlander, D., Miller, J., Pugh, D.,
Skelly, T., Stankosky, A., Thiel, D., Van Dantzich, M. and
Wax T. "Lifelike Computer Characters: The Persona
Project at Microsoft," in J. Bradshaw (Ed.). Software
Agents. AAAI Press: Menlo Park, CA (1997).

Boy, G.A. "Software Agents for Cooperative Learning," in

J. Bradshaw (Ed.). Software Agents. AAAI Press: Menlo
Park, CA (1997).

Bradshaw, J.M., Dutfield. S. Benoit, P. and Woolley, J.D.
"KAoS: Toward an Industrial-Strength Open Agent
Architecture," in J. Bradshaw (Ed.), Software Agents.
AAAI Press: Menlo Park, CA (1997).

Bui, T. "Intelligent Negotiation Agents for Supporting
Internet-based Competitive Procurement," working paper
(n.d.).

Bui, T., Jones, C., Sridar, S. and Ludlow, N. "Decision
Support for Reconnaissance Using Intelligent Software
Agents," Naval Postgraduate School research proposal
(n.d.).

Burke, R.D., Hammond, K.J. and Young, B.C. "The
FindMe Approach to Assisted Browsing," IEEE Expert
(July/August 1997), pp. 32-40.

Chavez, A. and Maes, P. "Kasbah: An Agent Marketplace
for Buying and Selling Goods," working paper (n.d.).

D'Aveni, R. “Call for Papers on the Topic of
Hypercompetition,” Organization Science (1994).

David, R. and Alla, H. Petri Nets and Grafcet: Tools for
Modeling Discrete Events Systems. Prentice-Hall
International: UK (1992).

David, R. “Grafcet: A Powerful Toll for Specification of
Logic Controllers,” IEEE Transactions on Control Systems
Technology 3:3 (September 1995), pp. 253-268.

Etzioni, O. and Weld, D.S. "Intelligent Agents on the
Internet: Fact, Fiction, and Forecast," IEEE Expert (August
1995), pp. 44-49.

Franklin, S. and Graesser, A. “Is It an Agent or Just a
Program? A Taxonomy for Autonomous Agents,” in
Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages Springer-Verlag:
New York, NY (1996).

Gilbert, D., Aparicio, M., Atkinson, B., Brady, S.,
Ciccarino, J., Grosof, B., O’Connor, P., Osisek, D., Pritko,
S., Spagna, R., and Wilson, L. “IBM Intelligent Agent
Strategy,” working paper, IBM Corporation (1995).

Insurance. Insurance online description. Internet address:
http://www.dmatters.co.uk (1997).

InterAp. "InterAp Assigns Intelligent Agents to the Web,"
PCWeek (12 June 1995).

Johar, H.V. "SoftCord: an Intelligent Agent for
Coordination in Software Development Projects," Decision
Support Systems 20 (1997), pp. 65-81.

Knobloch, C.A. and Ambite, J.L. "Agents for Information
Gathering," in J. Bradshaw (Ed.), Software Agents. AAAI
Press: Menlo Park, CA (1997).

Krulwich, D. An Agent of Change. Andersen Consulting
Center for Strategic Technology Research (n.d.).

Maes, P. "Agents that Reduce Work and Information
Overload," Communications of the ACM 37:7 (July 1994),
pp. 30-40.

Maes, P. "Pattie Maes on Software Agents: Humanizing
the Global Computer," Internet Computing (July-August
1997).

Malone, T.W., Grant, K.R., Turbak, F.A., Brobst, S.A and
Cohen, M.D. "Intelligent Information-Sharing Systems,"
Communications of the ACM 30:5 (1987), pp. 390-402.

Maturana, F.P. and Norrie, D.H. "Distributed Decision-
making Using the Contract Net Within a Mediator
Architecture," Decision Support Systems 20 (1997), pp. 53-
64.

Mullen, T. and Wellman, M.P. “Market-based negotiation
for digital library services,” Second USENIX Workshop on
Electronic Commerce (November 1996).

Pinson, S., Louca, J.A. and Moraitis, P. "A Distributed
Decision Support System for Strategic Planning," Decision
Support Systems 20 (1997), pp. 35-51.

Porter, M. and Millar. V. 1985.

PriceWatch. PriceWatch online description. Internet
address: http://www.pricewatch.com (1997).

Sen, S. "Developing an Automated Distributed Meeting
Scheduler," IEEE Expert (July/August 1997), pp. 41-45.

Sokol, P. From EDI to Electronic Commerce: A Business
Initiative McGraw-Hill: New York, NY (1996).

STSC. Guidelines for Successful Acquisition and
Management of Software Intensive Systems Software
Technology Support Center: Hill AFB, UT (1996).

Sycara, K., Pannu, A., Williamson, M. and Zeng, D.
"Distributed Intelligent Agents," IEEE Expert (December
1996), pp. 36-46.

Sycara, K. and Zeng, D. "Coordination of Multiple
Intelligent Software Agents," to appear in International
Journal of Cooperative Information Systems (1996).

Verity. Verity online description. Internet address:
http://www.verity.com (1997).

Walsh, W.E., Wellman, M.P., Wurman, P.R. and MacKie-
Mason, J.K. “Some Economics of Market-based
Distributed Scheduling, Submitted for publication (1997).

Whitehead, S.D. "Auto-faq: An Experiment in Cyberspace
Leveraging,: Proceedings of the Second International
WWW Conference 1 (1994), pp. 25-38.

Zeng, D. and Sycara, K. "Cooperative Intelligent Software
Agents," Carnegie Mellon University technical report no.
CMU-RI-TR-95-14 (March 1995).

