
Experience with the InfoSleuth Agent Architecture

Marian Nodine* and Brad Perry* and Amy Unruht’*

{nodine, bperry, unruh}@mcc.com
¯ Microelectronics and Computer Technology Corporation (MCC)

Austin, Texas 78759
tSystems and Software Lab, DSPS R&D, Texas Instruments

PO Box 655303, MS 8378, Dallas, TX, 75265

Abstract

The MCC InfoSleuth project is developing an ar-
chitecture and toolkit for deploying agent appli-
cations that focus on information gathering and
analysis over diverse and dynamic networks of
multimedia information sources1. In this paper,
we present the structure of the layered agent shell
that we use for rapid and consistent insertion of
agents in the InfoSleuth environment. The shell
attempts to aggregate and make available the com-
mon functionalities and services found across all
classes of agents in our applications. The intent of
the shell is to allow developers to concentrate on
the unique aspects of each agent while inheriting
common, configurable functionality.
Two critical findings are highlighted in our presen-
tation of the agent shell. First, KQML can be used
for interagent messaging, but progress in agent in-
teractions requires a conversational metaphor to
guide conversation policies among agents. Second,
there are multiple "semantic levels" at which the
same set of agents may want to converse over the
lifetime of an application task. These levels are
clearly delineated in our shell and can be real-
ized using combinations of the appropriate transfer
protocols. The structure of the InfoSleuth layered
agent shell provides valuable insight and lessons
for the ongoing definition, development, and ac-
ceptance of tools for open agent-based systems.

Introduction
An agent system is a set of cooperating processes
distributed across a network or internet. Each
agent is a specialist in a particular task or subtask.
Agents are similar to traditional distributed sys-
tems in that they farm out subtasks to other agents
as needed. However, unlike in a distributed sys-
tem, agents are often developed by different groups
of people, and therefore implementing agents that

1The InfoSleuth Project ended June 30, 1997, and is
currently in phase two, called the InfoSleuthII Project.
Some of the work described in this paper has come un-
der the auspices of both projects. However, in the re-
mainder of the paper we refer to both projects as simply
"InfoSleuth".

cooperate well can be more difficult. One further
complicating factor is that agents typically interact
with other agents on a semantic basis, rather than
on a set of shared interfaces such as might be found
in, say, a CORBA-based distributed system.

InfoSleuth (InfoSleuth 1998) is an architecture
and toolkit for deploying agent systems that is un-
dergoing active research and development at MCC.
The InfoSleuth environment focuses on informa-
tion gathering and analysis over diverse and dy-
namic networks of multimedia information sources.
The emphasis behind InfoSleuth is to establish a
stable agent infrastructure and interaction machin-
ery such that disparate groups and organizations
can independently develop agents that meet and
work together in the context of an InfoSleuth ap-
plication. Our working environment is such that
we develop the base InfoSleuth architecture and
agent creation/monitoring tools at MCC and then
release these artifacts for deployment by our invest-
ing corporations and government sponsors. With
the aid of these participants, we have deployed the
InfoSleuth architecture in several application do-
mains, including healthcare, environmental protec-
tion, semiconductor manufacturing, content-based
image dissemination, and military logistics.

In this paper, we present the layered agent shell
that we use for rapid and consistent creation and
monitoring of agents in an InfoSleuth environment.
This shell allows for a clean, multi-layered ap-
proach to interagent organization and communi-
cations. First, it has made implementing and in-
stalling new agents into the system easy, as the
syntax and semantics of many message exchanges
are not only well-specified, but also implemented
for you. Second, it provides a forum for lever-
aging off of existing, more sophisticated technolo-
gies for syntax-level support of message exchange,
while maintaining the semantic nature of the over-
all communication. We standardized the use of an
agent shell within InfoSleuth applications starting
in September, 1996. Our experience with InfoS-
leuth has led us to believe that this layering is the
correct approach to supporting communication in

53

From: AAAI Technical Report WS-98-10. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



Figure 1: InfoSleuth: Dynamic and Broker-based
Agent Architecture.

an open and dynamic agent-based system.
The structure of this paper is as follows. We

begin with a brief overview of the InfoSleuth archi-
tecture and then proceed to expand on the concept
of an "agent shell" and issues with interagent com-
munication and layered architectures that we have
encountered during the development andevolution
of the InfoSleuth agent system. Next we summarize
the effort that was required to deploy InfoSleuth in
three different domain. This is followed by a com-
parison of InfoSleuth to other related technologies.
Finally, we conclude with current research issues
and concluding remarks.

The InfoSleuth System

The InfoSleuth model (Bayardo et al. 1997; No-
dine ~z Unruh 1997) defines a proven framework
for loosely collecting agents based on semantic
advertisements and then dynamically composing
agents based on application needs. Figure 1 de-
picts the agent architecture currently defined and
deployed in the MCC InfoSleuth project. Its cur-
rent implementation is in JavaTM and the agent
tools have been written once and used, without
change, to intermix agents from several UnixTM

and WindowsTM platforms. A few notable aspects
of this architecture are:

¯ Agents advertise their "information gathering
and monitoring" capabilities, using semantic con-
structs from the InfoSleuth agent capability on-
tology. The capability ontology supports descrip-
tions of an agent’s performance, properties, ser-
vices, and content. An agent’s advertisement of
content is in terms of portions of domain-specific
common ontologies, so that an agent may con-
strain its capability advertisement to apply to
only a select set of concepts, relationships, or in-
stances from a particular application domain.

¯ At any point, a relevant set of available agents
can be discovered, via the semantic constraint

satisfaction services of the broker, over the ac-
tive set of agent advertisements. The InfoSleuth
system dynamically constructs information gath-
ering agent communities, based on brokering and
planning principles, to satisfy given tasks as best
as possible.

The general class of applications where the In-
foSleuth system has been deployed can be classified
as information gathering and analysis over diverse
and dynamic information networks. In this appli-
cation class, the primary activity of the agents is
to accumulate and transform data from disparate
sources into ontological, or domain, abstractions. A
simplified view of the InfoSleuth information gath-
ering and analysis process is as follows:

The domain ontology defines a set of "domain
events and activities" that drive decision mak-
ing in the application. The ontology relates
these events in a graph-structure where each
"node" of the graph has a distinct and peri-
odic information need. The InfoSleuth agents
cooperate to populate the information needs of
the domain events by accumulating and trans-
forming data from a myriad of disparate data
sources.

InfoSleuth offers a metaphor beyond its counter-
parts in distributed information gathering, such as
(Arens, Knoblock, & Shen 1996; Garcia-Molina et
al. 1997; Levy, Srivastava, ~ Kirk 1995), in that
InfoSleuth is focused on loosely coupled compo-
nents performing complex analysis and mined as-
sociations over the information space.

Additional highlights of the InfoSleuth paradigm
related to agent interaction are:

¯ Community orientation: the agents in an InfoS-
leuth application form communities based the
agents’ advertised domains of interest, capabil-
ities, and current tasks. InfoSleuth brokers are
used to facilitate interconnection within a com-
munity and bridge the gap into other related
communities as application needs expand beyond
a particular community focus.

¯ Semantic matchmaking: when one InfoSleuth
agent requires services from another agent, the
InfoSleuth broker reasons over advertised seman-
tic constraints on agents’ behaviors as well as
syntactic constraints of their interfaces. This
is in contrast to CORBA interface brokering
and keyword-based matchmaking, as further dis-
cussed in the section on related work.

¯ Beyond KQML: KQML (Knowledge Query and
Manipulation Language) (Finin, Labrou, & May-
field 1997) is an effort to define a standard use-
ful set of speech acts, or performatives, that
agents can use to exchange information; as well
as the (semi-formal) semantics behind the perfor-
matives. The performatives each have a number

64



of fields, or parameters associated with them- in
addition to the content of the performative, other
contextual parameters specify e.g., the language
and ontology of the message. Routing parame-
ters specify the sender and receiver. One could
view InfoSleuth as a large-scale testbed, focused
on industrial applications, exercising the sound-
ness and viability of the KQML specification.

Agent Shells and Their Use in

InfoSleuth

At the base of our InfoSleuth system is a software
support module termed the agent shell. This sec-
tion discusses the motivation in defining an agent
shell and then presents the details of the InfoSleuth
agent shell.

What is an agent shell?
An agent shell is an extensible template that at-
tempts to aggregate and make available common
functionalities and services found in agent envi-
ronments. The creation of a new agent involves
subclassing the agent shell, inheriting select func-
tionalities and services from the shell, and link-
ing the agent-specific logic into the "agent appli-
cation API" of the shell. A layered agent shell at-
tempts to align these functionalities and services
behind well-defined interfaces and into semantically
related layers. In other words, a layered agent
shell provides structured support for the rapid cre-
ation and easy deployment of agents in large-scale
multi-agent applications. An agent shell should en-
capsulate the basic functionalities common across
agents, including: Agent startup procedures, ad-
vertisement, monitoring and control, validation and
security, agent community-specific activities, agent
interoperation, and agent abilities such as mobility
and aggregation with other agents. The support for
agent interoperation in an agent shell takes place at
a variety of levels, including

¯ understanding the same interagent message pro-
tocols (e.g., KQML),

¯ sharing the same expectations of agent interac-
tion with respect to subtasks (conversations),

¯ forwarding and/or broadcast of conversations to
other agents,

* communicating evolving task- and conversation-
related specifications, and

¯ monitoring and possibly controlling the opera-
tion of other agents.

Why use agent shells?

Agent shells provide a reusable common operating
environment for developing agents within a given
agent community. This type of architectural design
follows the successful use of layering in other types

of systems where interoperation is integral, such as
data communication networks.

The InfoSleuth agent shell facilitates rapid and
consistent development of agents by multiple dis-
joint parties. The consistent development of agents
is accomplished by capturing the interaction pat-
terns and syntactic and bookkeeping issues of agent
interaction in the layers of the agent shell. The
rapid development of agents is accomplished by col-
lecting a set of specialized agenL support services.

Our initial experience within InfoSleuth showed
us that the KQML specification is loose enough
that it can be subject to a variety of (sometimes
conflicting) interpretations. Even though we were
working closely as a group, the ability of our agents
to interoperate was impeded by these interpreta-
tional differences. The agent shell provided a com-
mon standard that we could all adhere to. Cur-
rently, our developers can focus on the needs of
their individual agent application, and rely on the
shell to provide for the appplication-independent
services. When we need to extend the basic func-
tionality of all agents, for instance by allowing some
to be mobile, this involves only extending the agent
shell; the rest is transparent to the applications.

Functional layering within an agent shell, with
a clearly defined interface for each layer, facilitates
the integration of and plug-and-play experimenta-
tion with application and/or third-party software
in an agent support environment. For instance,
our shell has a message layer which currently al-
lows the agent to run over a variety of transport
mechanisms, including TCP and CORBA. Insert-
ing SMTP as a transport mechanism involves de-
veloping an SMTP-generating version of the mes-
sage layer. Similarly, generating a shell for an agent
community that uses, say, market-based control
strategies does not require any changes to layers
which support messaging.

From the outside of an agent community, an
agent shell provides a standard interface to all
agents in the community. Because of this, the use
of a shell allows the developers of interoperating
agents to bypass common initial discussions such
as how to structure messages and what types of
conversational exchanges to support.

The Infosleuth Agent Shell

Figure 2 shows the original agent shell layering de-
fined and implemented in the InfoSleuth project.
Each layer has a clean semantics and a well-defined
interface. This section provides a succinct sum-
mary of the functionality in the existing InfoSleuth
agent shell.

Message Layer The agent message layer maps
logical KQML requests made by the conversation
layer into and out of physical network exchanges
with other agents. Our current message layer maps

65



(’rcP/IP, l.n-r p)

Figure 2: InfoSleuth agent layers.

logical KQML requests into network exchanges over
the TCP/IP, HTTP, and CORBA communication
protocols. The message layer encapsulates three
basic functionalities:

¯ Maintains a mapping of recently-used logical
agent names to their physical network access ad-
dresses. Name lookup failures result in the mes-
sage layer automatically contacting an InfoSleuth
broker to resolve the address.

¯ Ensures that all agents employing it are consis-
tent in their syntactic use of KQML. This con-
sistency involves two aspects: (1) assuring the
creation of valid KQML messages from logical
requests made by the conversation layer; and
(2) parsing and checking messages received from
other agents into valid KQML messages, then
propagated to the conversation layer. This func-
tionality frees our agents from worrying about
syntactic inconsistencies in their use of KQML.

¯ Standardizes the process of transferring KQML
over TCP/IP and HTTP communication links in
InfoSleuth.

Conversation Layer The conversation layer of
the InfoSleuth architecture defines and enforces
conversation policies for a group of cooperating
agents. A set of standard messages, e.g. in KQML,
representing the available speech acts, can serve
as a basis for very simple communication among
agents. However, messages do not get sent in isola-
tion; rather, there are often ongoing dialogs among
two or more agents. Within a dialog, the inter-
pretation of an individual message may depend on
the context of the dialog in which they are partici-
pating. A "conversation" is a partially-ordered set
of messages transmitted among a set of agents, all
of which relate conceptually to an initiating speech

A SUBSCRIBE contains an embedded ASK-* performative.

Figure 3: A finite-state model describing a SUB-
SCRIBE conversation. The messages from the ini-
tiating agent are in uppercase; the messages from
the responding agent are in lowercase.

act. A conversation policy is a formal and deter-
ministic specification of the ordering of speech acts
exchanged between agents during a conversation.
Conversation policies may be presriptive or emer-
gent. A prescriptive conversation policy is one that
is defined a priori, and used to enforce the agents’
communications. Emergent conversations are those
in which the agents are not following specific exter-
nal conversational policies; but rather where the
performatives they use are determined by their in-
ternal functionality. These actions may be (but are
not necessarily) driven by the agent’s semantic un-
derstanding of the discourse taking place (Smith 
Cohen 1996).

Open agent communication requires that any
agents that communicate share a common set of
conversation policies. However, in an open system,
one cannot make assumptions about the agents’
common understanding of a semantics for dis-
course. Instead, agents need to both expect and
provide similar responses in similar contexts. We
believe that support of interoperation requires im-
position of prescriptional structure on at least some
functional subset of the agents’ conversational poli-
cies. This does not preclude the use of dynamically-
and incrementally-specifiable conversation policies,
however.

Approach and Implementation. In InfoSleuth,
we currently support a default set of system-
wide pairwise conversation policies The conversa-
tion policies specify the allowable messaging inter-
actions that may occur among a set of collaborating
agents. They guarantee consistent interaction be-
tween agents and enable the conversing agents to
maintain a reliable context, or session, throughout
their interactions. While the use of shared prescrip-
tive conversations does not guarantee semantically
consistent actions by the agents, it facilitates con-
sistency in an open system by providing the agent
with an implicit semantics for the content of its
messages.

66



Finite-state machines are used to specify the al-
lowable pairwise conversations between agents in
the system. Conversation polices are currently
identified based on the initial performative, so that
a distinct conversation policy exists for each pos-
sible initiating message. Other work has used a
similar approach (Bradshaw et al. 1997; Cost et al.
1998; Labrou 1996; FIPA ).

Figure 3 shows an example of a conversation pol-
icy. The transition from the start states in all mod-
els correspond to the sending of the conversation-
initiating message. The remaining transitions de-
fine acceptable message between the two agents at a
given time. Final states indicate the end of the con-
versation. Conversation support is multi-threaded,
for both the initiator of a conversation and the re-
cipient. Each thread maintains state, performs er-
ror checking, and communicates with the agent for
the duration of its conversation.

Generic Agent Layer The generic agent layer
embodies the services crucial to the operation of
all agents that participate in an InfoSleuth com-
munity. Within InfoSleuth, there are two such ser-
vices. The first is the semantic matchmaking ser-
vice, which enables an agent that is requesting a
service to locate another agent that can provide
that service. The second service provides informa-
tion on the knowledge accessible through the on-
toIogies defined within the community.

Approach and Implementation. InfoSleuth im-
plements these generic agent services as separate
agents within the community. Broker agents col-
lect agent advertisements and implement semantic
matchmaking. Ontology agents store the different
domain models and answer questions concerning
them.

The generic agent layer of the InfoSleuth agent
shell implements the following interfaces to these
generic agent services:

¯ Standard advertisement interface to broker
agents. This includes the agent’s initial adver-
tisement as well as incremental changes to that
advertisement. This interface also implements
the ability for the agent to unadvertise itself be-
fore it goes offiine.

¯ Standard querying interface to broker agents.
This provides abilities for the agent to query a
broker about other agents whose services may be
available to it. It also parses the result from the
broker into a meaningful structure and inserts
any new agents into the agent’s address book.

¯ Standard querying interface to ontology agents.
This allows the agent to query an ontology agent
about the different domains in the system and
the types of knowledge that they represent.

Agent Application Layer The agent applica-
tion layer implements the functionality specific to

the agent itself. It is the intent of the layered agent
shell architecture to allow the agent developer to
focus his efforts primarily on the agent application
layer, and to inherit directly the agent shell capa-
bilities and the optional services that it supports.

In InfoSleuth, agent applications such as the bro-
ker, the multiresource query agent, the resource
agents, and the data mining agents each implement
their own specific capabilities within the agent ap-
plication layer. The process of collaboration among
the agent applications is that of speech-act-based
conversational requests and replies. Conversation
requests embody the speech act, ontology, content
language and specific content of the different inter-
agent service requests and assertions. In this way,
we abstract details about operational issues such as
message passing mechanisms and agent location is-
sues from the purview of the application developer.

Issues with Agent Shell Development

In this section, we discuss some of the issues that
have emerged during the design, implementation,
and use of our agent shell. This section is organized
from the top down in the layering of Figure 2.

Conversation Issues

Our experiences with InfoSleuth thus far have
pointed out a number of areas in which our cur-
rent support of conversation policies needs to be
extended.

Speech Acts vs. Performatives. We believe it is
important to restrict the agents’ conversation poli-
cies to operate over "true" speech acts instead of
KQML performatives (Finin, Labrou, & Mayfield
1997). The conversations should be described at
a semantic level, and should not include performa-
tives designed to support data flow management,
such as stream-all, toady, and next; instead of
ask. Data flow management and indirect data ref-
erences should be transparent to the conversation
structure, and supported by a lower architectural
level in the agent architecture. This implies a re-
finement of the layering in Figure 2, with a new
layering that separates flow control and conversa-
tional structure. An agent’s support for flow con-
trol should be represented in the system’s capability
ontology and advertised by the agent, thus allow-
ing an agent to determine what data management
protocols it uses - including, potentially, KQML
data-management performatives - to talk to an-
other agent. This layering of functionality allows
robust and open specification of conversation poli-
cies independent of the way a particular agent im-
plements its data management.

Declarative Conversation Policies. We need
to support declarative and dynamically-specifiable
conversation structures. As the complexity of the
tasks support by the InfoSleuth system grows, the

57



set of required conversation policies grows as well.
Declaratively-specifiable state machines will make
conversation specifications more robust, and will al-
low conversation policies to be added dynamically
to an agent (sub)system. Furthermore, if InfoS-
leuth’s conversation policies are declaratively speci-
fiable, it will be possible to support incremental
definition of policies via message exchange between
agents. For example, an agent might specify the
set of speech acts from which it expects a reply to
a message to be drawn. (Cost et al. 1998) describes
one approach in support of declarative conversation
templates.

Decoupling Conversations from Message Types.
As InfoSleuth supports increasingly more complex
activities, it has become evident that the conversa-
tion structures must be decoupled from the perfor-
matives with which they are initiated, so that the
same performative can start more than one conver-
sation. As an example, an ask can potentially start
a simple query/reply conversation, or a negotia-
tion.

If performatives are not decoupled from conver-
sations, it would either a) be necessary to create
a new performative for each new conversational
structure; or b) require the individual agent appli-
cations to maintain context between smaller con-
versations -- in effect, to move some of the conver-
sation management to the agent application level.
We do not believe that either of these options are
an appropriate solution for an open system. Thus,
we will assume that the same performative can start
more than one conversation, and that in some cases
additional context may be sent in the initiating
message to identify the conversation policy.

Multicasting, Forwarding, and Delegation. The
conversation structures supported by InfoSleuth
must grow more complex in other dimensions as
well. An agent must be able to send a message to
more than one recipient agent, where the recipients
are identified by either their logical name, or a se-
mantic description in support of associative multi-
casting. An agent must be able to forward a request
to another agent for handling and reply. Similarly,
an agent must be able to delegate by initiating a
request but specifying that the recipient send its
reply elsewhere.

In addition, agents must be able to receive replies
to a request from more than one agent. Such a situ-
ation often arises in complex tasks, where an agent
handles part of a request itself, but delegates some
aspect of it to another. For example, InfoSleuth
supports knowledge mining activities in which a
task execution agent receives a knowledge mining
task from a user agent. As part of accomplishing
that task, the task execution agent sends a series of
messages to a knowledge mining agent. The knowl-
edge mining agent’s replies, as well as additional
replies by the task execution agent, are all returned

!

Figure 4: Delegation in support of a query, and
replies to the query returned to a user agent from
both a task execution agent and a knowledge min-
ing agent.

Agent Message Conversation Agent
Layer Layer Layer
:perf-type :perf-type :content
:sender :sender :language
:receiver :reply-with :ontology

:in-reply-to :aspect
:code
:comment

Table 1: KQML Performative Properties and Layer
Dependencies

to the user agent in response to its original message.
Figure 4 shows this process.

KQML Issues
Our diverse deployment of InfoSleuth has given us
an in-depth analysis into the use of KQML in real
applications under significant workloads. This sec-
tion highlights our most significant findings and
suggestions for how to carry KQML into a "prime-
time" agent communication standard.

Performatives as Property Lists. KQML’93 de-
fines a message as a fiat property list with string
valued properties. During our development of agent
interactions in InfoSleuth, we found an interest-
ing "allocation" of the KQML properties to logical
layers in our agent shell. Different properties are
linked to different functional aspects of agent com-
munication. If we group the properties in a KQML
message with the layer that uses them, we get the
allocation in Table 1.

Since a KQML message is a flat property list, the
agent message layer must process and parse each in-
coming KQML message in its entirety before chan-
neling the message into the conversation layer. This
"all or nothing" parsing is quite inefficient and in-
troduces a noticeable performance detriment in the
InfoSleuth applications we have tested under real-
istic application loads. We believe that each layer
should be involved in extracting only those prop-
erties that are needed for that layer’s processing.
Thus, the agent’s message layer should be able to

58



ignore :perf-type, as it has nothing to do with the
sending and receiving of the messages. This would
also mean that properties such as :ontology could
be totally ignored until they reach the agent layer.
Some of the mechanisms that allow delaying the
parsing and extracting of properties were present
in an earlier version of KQML (Finin & Wieder-
hold 1991).

"Open content exchange" standards, such as
HTTP, have realized this need for explicitly defin-
ing message layers to support early termination and
deferred parsing of messages. Following this ap-
proach would lead to a more structured agent com-
munication message, where the message is nested
according to where the information is needed in a
layered architecture. A more structured version of
a KQML (or agent communication) message would
look similar to that in Figure 5. The structure in
Figure 5 is motivated by the layering in the In-
foSleuth agent shell. We believe the layering is
sound and stress that the agent communication
world would benefit from adopting some form of
agent message layering.

:sender value
:receiver value

:speech-act

:perf-type
:reply-with
:in-reply-to
:cnv-handle
:seq-key

:message

value

value
value

value

value
:content value
:language value
:ontology value
:aspect value
:comment value

Figure 5: A Nested Version of a KQML Message

Sending Knowledge vs. Sending Information.
Another fallacy we found in the KQML specifi-
cation is the unnecessary and confusing mixture
of knowledge and information in agent communi-
cations. We believe that (1) agents should use
KQML to exchange knowledge about what they
know and what information they have available;
and (2) agents should operate outside of KQML 
negotiate the actual exchange of bulk, or complex,
information products. Unfortunately, the KQML
specification mixes knowledge exchange with data
exchange without delineating the difference be-
tween these paradigms. We feel that KQML is
effective when used compactly at the knowledge-
level and agent systems should use existing proto-
cols for streaming large information products be-
tween agents once they have agreed, by conversing
in KQML, on the need to exchange an informa-
tion product. This separation of "sending knowl-
edge packets" from "streaming information prod-
ucts" has proven to be quite straightforward and

natural in our large-scale agent application experi-
ences.

Infosleuth Application Experiences

Creating a new application from InfoSleuth involves
iteration over the following three activities:

¯ Develop an ontology describing the "domain
events and activities" to be populated from the
information network.

¯ Reuse any number of the "generic" agents pro-
vided by the InfoSleuth base (i.e., the broker,
ontology agent, user agent, etc.).

¯ Connect any application-specific logic to the In-
foSleuth agent shell and advertise it in the net-
work as an agent ready to provide information
services on fragments of the domain ontology.

The intent of our agent shell is to make the third
item as straight-forward as possible and enable new
logic to easily connect into larger application en-
vironments. In the next few paragraphs, we give
an overview of various applications that have been
constructed from InfoSleuth and give a summary of
the effort that was required (or saved) by using the
InfoSleuth infrastructure.

Evironmental Data Exchange Network (EDEN).
The EDEN project (Pitts & Fowler 1998) is 
multinational program between the United States
and Europe aimed at sharing information about
environmentally contaminated sites and technolo-
gies used to remediate the conditions. The pro-
gram is using InfoSleuth to provide access to dy-
namically changing sets of information resources
and to perform associational queries across mul-
tiple resources. In this application a resource is
a database documenting sites, remediation tech-
nologies, or both. The application need is to an-
swer ontological requests at the level of "what sites
are contaminated in Texas?" and "notify me when
any site uses phyto-remediation for treatment." In
terms of InfoSleuth, EDEN required the creation
of two classes of agents. (1) Resource agents for
individual resources (i.e., databases) that map and
advertise their content in the EDEN ontology. (2)
Value mapping agents that translate between the
instance-level terms found in the EDEN databases.
InfoSleuth provides a specialization of the agent
shell termed the resource agent shell that encap-
sulates (and parameterizes) the conversations a re-
source may have with the other agents in the net-
work. Using this shell and its associated tools,
EDEN resource agents are usually constructed in
about one day. The value mapping agents are
implemented as resources too (i.e., a database of
translation tables). Overall, the EDEN application
is primarily aimed at integrated multiresource in-
formation gathering from an evolving resource base.

69



The InfoSleuth agent shell enables new data re-
sources to be quickly and autonomously injected
into the ongoing application instance.

Conlent-based Image Disseminalion. At Hughes
Research Laboratories (HRL), InfoSleuth is being
used to perform integrated content-based image
dissemination from collections of satellite image
repositories (Shek et al. 1998). In terms of In-
foSleuth, the HRL application required performing
the followin two tasks. (1) Interfacing the conver-
sational interface of the agent shell with the search
facilities of the image repositories. (2) Constructing
an agent that performed "fuzzy joins" over multi-
ple image resources. Connecting the interfaces of
the image repositories to the conversational inter-
face turned out to be a straight-forward task and
we were able to "agentify" a repository in a mat-
ter of days. The more difficult task was providing
a mapping from the logical ontological requests a
conversation would contain into image processing
patterns in the underlying repository. It took about
one month to construct this mapping and bring two
different image repositories online and advertising
their content as resource agents.

To construct an information request in this ap-
plication, end-users provide two things (a) a set 
sample images portraying weather patterns of in-
terest; and (b) a set of concepts, or hints, from
an ontology of geoscientific phenonema defining the
user’s semantic focus in the sample images. An-
swering a request in this application is a 3-step pro-
cess: (1) use the InfoSleuth broker to find the set 
active resources that "best match" the user request;
(2) forward appropriate fragments of the request
to the identified resources; and (3) perform a fuzzy
join (or integrated union) of the results to arrive 
a ranked answer list. To summarize, it took about
one month to bring the first version of the system
online, and about three months to demonstrate its
scalability across a large number of diverse satel-
lite image repositories. Again, the consistency of
the InfoSleuth agent shell and its existing informa-
tion gathering components made this application a
highly productive exercise.

Heallhcare Data Analysis. The InfoSleuth team
has had an ongoing relationship with the NIST
healthcare "community" to provide data analysis
capabilities across multiple healthcare institutions
and providers (Fowler & Martin 1997). One of the
more interesting applications of InfoSleuth in this
domain was that of delecting deviations in heallh-
care encounter cosls. This is best understood by
providing an example of the ontological request
being satisfied in the network: "Notify when the
cost of reattaching major limbs deviates from the
expected norm; also notify when this event hap-
pens at hospitals in the same HMO group." There
were three essential components this application
added to the InfoSleuth base. (1) The resource

agents that monitor hospital data sources for en-
counter information. (2) A deviation detection
agent (DDAgent) that computes "expected norms"
from encounter data emanating from multiple hos-
pitals and checks new encounter events for devia-
tions from the expected norm. (3) A pattern col-
lection agent that subscribes to deviations com-
puted in the DDAgent and looks for temporally
correlated events from "related hospitals." As with
the EDEN application, the resource agents inter-
faced with structured databases and each was con-
structed in less than one week. The DDAgent used
the "subscription conversations" in the InfoSleuth
agent shell to setup "encounter event notifications"
with appropriate resources recommended by the
broker. The pattern collection agent also used sub-
scription conversations to setup "cost deviation no-
tifications" from the DDAgent. For both of these
analysis agents, the only work required was to inter-
face the specific algorithms themselves to the event-
based conversations in the agent shell. This appli-
cation is quite intriquing because it demonstrates
coordinated information gathering and analysis be-
ing performed at multiple levels (i.e., resources,
multiresource norms, deviations, correlated pat-
terns) and occurring in an event-driven manner in
a dynamic network of information sources. It took
three weeks to hook the application-specific func-
tionality into the agent shell and bring the initial
demonstration of this application online and inter-
acting with actual data sources.

This section gave a feeling for the applications
that have been built with the InfoSleuth infrastruc-
ture. In each, adding "new application logic" to
the InfoSleuth information gathering paradigm re-
quired a straight-forward interfacing with the con-
versational interface of the agent shell. InfoSleuth
itself is being supported by 6 commercial companies
and several government entities. In all cases, we
are experiencing very rapid "time to deployment"
of complex and domain-specific information gath-
ering and analysis applications.

Related Work

There are a number of areas of agent research re-
lated to our development of the InfoSleuth architec-
ture. These include work on agent communication
languages; development of conversation policies as
well as support of conversation policies via agent
tasks; and agent architectures and frameworks.

Agent Communication Languages. The concept
of speech acts, or illocutionary acts, has grown out
of philosophy and linguistics research (Cohen
Levesque 1995). These actions include requesting,
promising, offering, acknowledging, asserting, etc.
It is suggested that human utterances are the ob-
servable byproduct of such actions. Speech act the-
ory has been proposed recently as the foundation

7O



for inter-agent communication. The use of a stan-
dard set of speech acts in open systems provides a
structure to agent discourse in which the intended
meaning of the content of the speech act (what is
being said) can be interpreted more easily, and pro-
vides a semantic structure to the messages intuitive
to the human users of a system.

It has been observed (Smith & Cohen 1996)
that the speech acts in existing agent systems
fall primarily into two general categories: requests
and assertions. This suggests -- and has been
borne out by our own observations - that there
is a strong overlap in the speech acts required by
many agent systems, and that a small compre-
hensive set would be sufficient for many multia-
gent systems. Currently, there are several efforts
towards defining this standard, comprehensive set
of speech acts (Finin, Labrou, & Mayfield 1997;
FIPA ).

Conversation Policies and Task Planning. A few
other systems share InfoSleuth’s use of conversation
policies as state machines (Bradshaw et al. 1997;
Cost et al. 1998; Finin, Labrou, ~z Mayfield 1997),
although we are not aware of any which allow dy-
namically and incrementally specifiable policies. In
addition, work in DAI, e.g. (Decker & Lesser 1993),
has explored the use of "toolkits" of interaction
policies.

Task specification is closely related to specifica-
tion of conversation policies, since tasks must of-
ten incorporate speech-act actions. Efforts such as
(SPAR) support the exchange of declarative task
information between agents.

Some agent systems do not employ a conversa-
tion layer, but enforce a conversational policy via
rule-based agents which all share the same con-
versation rules (Barbuceanu 1997; Chauhan 1997).
This approach works very well in a system of agents
that all support rule-based reasoning. The InfoS-
leuth architecture allows agents to exploit rules for
conversation when they have that ability, but does
not require this ability in an open system -- the
conversation layer enforces conversational consis-
tency even in purely procedural agents.

Agent Shells and Agent Architectures. There are
a number of other agent systems targeted towards
information-gathering tasks, which share similar-
ities with InfoSleuth in the functionality of the
agents as well as the system organization. Most
contain agents which "wrap" resources, matchmak-
ing services of varying degrees of complexity, mid-
dleware agents to access and combine information,
and user agents which interact with the user and
maintain information about their preferences and
task history. None provide the same set of func-
tionality as does InfoSleuth, with respect to het-
erogeneous and global query processing, knowledge
and data mining, the use of conversation policies,
semantic and constraint-based brokering, and task

planning. Table 2 provides a comparison of some
of these systems.

There are number of architectures that support
agent mobility as well (IBM 1996; Dartmouth 
ObjectSpace 1997). These architectures are at 
somewhat lower level than the top layers of the In-
foSleuth architecture, in that they provide a possi-
ble foundation on which to build agents that both
exchange data; and move and dock when appro-
priate. We are investigating the feasibility of in-
corporating an existing mobility package, such as
(ObjectSpace 1997), into the InfoSleuth architec-
ture.

Discussion and Conclusions
In this paper we reviewed and discussed the InfoS-
leuth layered agent shell used for rapid and con-
sistent creation of agents in an open environment.
The shell aggregates and makes available the com-
mon functionalities and services found across all
agents and various classes of agents in our applica-
tions. The intent of the shell is to allow developers
to concentrate on the unique aspects of each agent
while inheriting common, configurable functional-
ity.

At the core of our experiences are three critical
conclusions. First, progress in agent interactions re-
quires more than context-free syntactic standards.
Indeed, the successful deployment of the many In-
foSleuth applications can be traced to our introduc-
tion of a conversation layer oriented around enforc-
ing conversation policies among interacting agents.
Second, we have developed and deployed one of
the most advanced testbeds exercising the KQML
proposed agent communication standard. We con-
cluded that KQML itself was only a step in the
right direction and must be used within the con-
text of a conversational metaphor. Furthermore,
we have cataloged a set of lessons-learned with the
KQML specification, including inconsistencies, in-
efficiencies, and confusing mixtures of "semantic
levels" in its speech-act performatives. Finally, it
became necessary to define a clean layering of agent
functionalities and services in InfoSleuth.

Our layered approach to agent shell development
resulted in an easily configured and extensible agent
shell. An important aspect of this approach is
that each layer is predicated on a well-defined set
of interfaces, allowing plug-and-play experimenta-
tion with special purpose or third-party implemen-
tations of a layer’s interface. The experiences de-
scribed in this paper provide valuable insight and
lessons for the ongoing definition, development, and
acceptance of tools for open agent-based systems.

References

Arens, Y.; Knoblock, C. A.; and Shen, W. 1996.
Query reformulation for dynamic information integra-
tion. JIIS.

71



Agent Global Query Conversation Semantic Task Layered
Architectures Processing Policies Brokering Plans Architecture
RETSINA (RETSINA 1998) 4 4
KaOs (Bradshaw et al. 1997)

4
JatLite (Petrie & Jeon 

4 4 4
JAFMAS (Chauhan 1997) ,/

4
,/

GMU (Kerschberg 1997)
OOA (Martin et al. 1997)

4
,/

Lockheed-Martin (McKay et al. 1996)
4
,/

4
4

InfoSleuth 4 ,/ 4
Table 2: Agent architectures and their relationship to InfoSleuth

Barbuceanu, M. 1997. Coordinating agents by role
based social constraints and conversation plans. In
Proceedings of AAAI ’97, 16-21.

Bayardo, R.; Bohrer, W.; Brice, R.; Cichocki, A.;
Fowler, J.; Helal, A.; Kashyap, V.; Ksiezyk, T.; Mar-
tin, G.; Nodine, M.; Rashid, M.; Rusinkiewicz, M.;
Shea, R.; Unnikrishnan, C.; Unruh, A.; and Woelk, D.
1997. Infosleuth: Agent-based semantic integration of
information in open and dynamic environments. In
Proceedings of SIGMOD ’97.

Bradshaw, J.; Dutfield, S.; Benoit, P.; and Woolley,
J. 1997. KAoS: Toward an industrial-strength open
agent architecture. In Bradshaw, J., ed., Software
Agents. AAAI Press. chapter 17.

Chauhan, D. 1997. JAFMAS: A Java-based Agent
Framework for Multiagent Systems Development and
Implementation. Ph.D. Dissertation, ECECS Depart-
ment, University of Cincinnati.

Cohen, P., and Levesque, H. 1995. Communicative
actions for artificial agents. In ICMAS-95.

Computer Science Dept., Dartmouth. Agent TCL.
<www. cs. dartmouth, edu/agentt cl. html>.

Cost, R. S.; Finin, T.; Labrou, Y.; Luan, X.; Peng, Y.;
Soboroff, I.; Mayfield, J.; and Boughannam, A. 1998.
Jackal: a java-based tool for agent development. In
this volume.

Decker, K., and Lesser, V. 1993. Designing a family
of coordination algorithms. In Proceedings of the 11th
National Conference on Artificial Intelligence.

Tate, A., et ai.
Shared planning and activity representation.
<www. aiai. ed. ac. uk: 80/~arpi/spar/>.

Syeara, K., et al. 1998. RETSINA.
<www. es. cmu. edu/~soft agent s/ret sina/ans/
j ava/docs/ansHTML/index.html>.

Finin, T., and Wiederhold, G. 1991. An overview
of KQML: A knowledge query and manipulation lan-
guage. Stanford CS Dept TR.

Finin, T.; Labrou, Y.; and Mayfield, J. 1997. KQML
as an agent communication language. In Bradshaw,
J., ed., Software Agents. AAAI Press.

FIPA. <www. cselt, stet. it/lips>.

Fowler, J., and Martin, G. 1997. The healthcare ad-
ministrator’s associate: An experiment in distributed
healthcare information systems. In Proceedings 1997
AMIA Annual Fall Symposium, 548-552.

Pitts, G., and Fowler, J. 1998. Collaboration and
knowledge sharing of environmental information: The
EDEN project. In IEEE International Symposium on
Electronics and the Environment (ISEE).
Garcia-Molina, H.; Papakonstantinou, Y.; Quass, D.;
Rajaraman, A.; Sagiv, Y.; Ullman, J.; Vassalos, V.;
and Widom, J. 1997. The TSIMMIS approach to
mediation: Data models and languages. JIIS 8(2).
ObjectSpace, Inc. 1997. Voyager techni-
cal review. <http ://www. obj ectspace, com/voyager/
voyager_whit e_papers, html>.
InfoSleuth. 1998.
<www. mcc. com/proj ects/infosleuth>

Kerschberg, L. 1997. The role of intelligent software
agents in advanced information systems. In British
National Conference on Databases (BNCOD 97).
IBM Tokyo Research Laboratory. 1996. IBM
aglets: Programming mobile agents in Java.
<www. ibm. co. jp/trl/aglets/whitepaper, htm>.

Labrou, Y. 1996. Semantics for an Agent Commu-
nication Language. Ph.D. Dissertation, University of
Maryland at Baltimore County.

Levy, A.; Srivastava, D.; and Kirk, T. 1995. Data
model and query evaluation in global information sys-
tems. JIIS 5(2).
Martin, D. L.; Oohama, H.; Moran, D.; and Cheyer,
A. 1997. Information brokering in an agent archi-
tecture. In Proceedings of the Second International
Conference on the Practical Application of Intelligent
Agents and Multi-Agent Technology.

McKay, D.; Pastor, J.; McEntire, R.; and Finin, T.
1996. An architecture for information agents. In AIPS-
96.
Nodine, M., and Unruh, A. 1997. Facilitating open
communication in agent systems: the infosleuth in-
frastructure. In Proceedings of ATAL-97.

Petrie, C., and Jeon, H. JatLite.
<http ://j ava. stanford, edu/j ava_agent/html/>.

Shek, E.; Vellaikal, A.; Dao, S.; and Perry, B.
1998. Semantic agents for content-based discovery
in distributed image libraries. In IEEE Workshop of
Content-Based Access of Image and Video Databases.

Smith, I., and Cohen, P. 1996. Toward a semantics for
an agent communications language based on speech-
acts. In Proceedings of AAAI-96, 24-31.

72




