From: AAAI Technical Report WS-98-10. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

AFS and HAC: Domain-General Agent Simulation and Control

Marc S. Atkin, David L. Westbrook, Paul R. Cohen
and Gregory D. Jorstad
Experimental Knowledge Systems Laboratory
Department of Computer Science, LGRC, Box 34610
University of Massachusetts, Amherst, MA 01003
{atkin,westy,cohen,jorstad}@cs.umass.edu

Abstract

We present two systems for simulating and designing
agents, respectively. The first, the Abstract Force Sim-
ulator (AFS), is a domain-general simulator of agents
applying forces; many domains can be characterized
in this way. The second, Hierarchical Agent Con-
trol (HAC), is a general toolkit for designing an ac-
tion hierarchy. It supports action abstraction, a multi-
level computational architecture, sensor integration,
and planning. It is particularly well suited to control-
ling large numbers of agents in dynamic environments.
Together, AFS and HAC provide a very general frame-
work for designing and testing agents.

Introduction

We have set ourselves the goal of constructing a domain-
general agent development toolkit. Regardless of the
domain, agent designers must face the same kinds of
problems: processing sensor information, reacting to a
changing environment in a timely manner, integrating
reactive and cognitive processes to achieve an abstract
goal, interleaving planning and execution, distributed
control, allowing code reuse within and across domains,
and using computational resources efficiently.

The best possible solution to any of the above prob-
lems will depend to some extent on the domain. As
a consequence, we wanted our toolkit to have enough
flexibility to allow any one of many solutions to be im-
plemented. We provide the agent designer with differ-
ent tools for dealing with a problem, but it is up to her
to decide which tool to use.

This paper will describe a general framework for
controlling agents, called Hierarchical Agent Control
(HAC). Complementing it is a general simulator of
physical processes, the Abstract Force Simulator (AFS).
AFS can be used to simulate many different domains,
as will be described in the next section. HAC itselfis a
general skeleton for controlling agents. It can work with
many kinds of simulators or even real-life robots, as long
as they adhere to a certain protocol. HAC provides
the mechanics for sensor management, action schedul-
ing, and message passing. The actual implementation
of actions and sensors is provided by separate and in-
terchangeable modules, as is the planner. Additional

89

Other Modules
(language...)

Planner

\V

%
f/‘i’m\
= S

< Physics Model 0

Action/Sensor Sets

0
W@

Agent Control

Other Agents
The “World”

0
&

J

Figure 1: The AFS/HAC system modules and organi-

zation.

modules might be task specific, such as the language
generation module we have used. Figure 1 illustrates
the system decomposition. AFS and HAC are written
in Common Lisp.

We will now describe AFS, which in many ways moti-
vated the need for a general agent control architecture,
before returning to HAC.

The Abstract Force Simulator

Physical Schemas

It occurred to us some time ago that many of the sim-
ulators we had been writing really were just variations
on a theme. Physical processes, military engagements,
and games such as billiards are all about agents mov-
ing and applying force to one another (see, for example,
(Tzu 1988) and (Karr 1981)). Even the somewhat ab-
stract realm of diplomacy can viewed in these terms:
One government might try to apply pressure to another
for some purpose, or intend to contain a crisis before it
spreads.

Furthermore, it became clear that there is a common
set of terms upon which all the above processes oper-
ate. Some examples are move, push, reduce, con-
tain, block, or surround. Collectively, we refer to
these terms as physical schemas. If moving an army
is conceptually no different than moving a robot, both

these processes can be represented with one move ac-
tion in a simulator. We believe that people think and
solve problems in terms of physical schemas. An exam-
ple: A person notices his sink is leaking, and considers
what to about it. He realizes that there are cracks in
the sink. The way to solve the problem is to plug the
cracks. Now confront this person with a military prob-
lem: Hostile forces are moving across a mountain range
into friendly territory. What should be done about it?
If the person understands that military forces can be-
have like water, and that the cracks are passes in the
mountain range, he can prevent the flow by making the
passes untraversable.

Based on these ideas, we have developed a simula-
tor of physical schemas, the Abstract Force Simulator
(AFS). It operates with a set of abstract agents, cir-
cular objects® called “blobs,” which are described by
a small set of physical features, including mass, veloc-
ity, friction, radius, attack strength, and so on. A blob
is an abstract unit; it could be an army, a soldier, a
planet, or a political entity. Every blob has a small set
of primitive actions it can perform, primarily move and
apply-force. All other schemas are built from these ac-
tions. Simply by changing the physics of the simulator
(how mass is affected by collisions, what the friction is
for a blob moving over a certain type of surface, etc.),
we can turn AFS from a simulator of billiard balls into
one of unit movements in a military domain.

Simulator Mechanics

AFS is a simulator of physical processes. It is tick-
based, but the ticks are small enough to accurately
model the physical interactions between blobs. Al-
though blobs themselves move continuously in 2D
space, for reasons of efficiency, the properties of this
space, such as terrain attributes, are represented as a
discrete grid of rectangular cells. Such a grid of cells
is also used internally to bin spatially proximal blobs,
making the time complexity of collision detection and
blob sensor modeling no greater than linear in terms of
the number of blobs in the simulator. AFS was designed
from the outset to be able to simulate large numbers (on
the order of hundreds or thousands) of blobs.

The physics of the simulation are presently defined
by the following parameters:

e Blob-specific attributes:
e maximum acceleration and deceleration
e friction of the blob on different surfaces
e viscosity and elasticity: do blobs pass through one
another or bounce off?
e Global parameters:
e the effect of terrain on blobs

!Eventually, blobs will be able to take any shape, and
deform and redistribute their mass. Computing the physical
interactions of arbitrarily-shaped objects is time-consuming;
as a first pass, we intend to make blobs elliptical.

e the different types of blobs present in the simula-
tion (such as blobs that need sustenance).

e the damage model: how blobs affect each others’
masses by moving through each other or applying
force.

e sustenance model: do blobs have to resupplied in
order to prevent them from losing mass?

AFS is an abstract simulator; blobs are abstract enti-
ties that may or may not have internal structure. AFS
allows us to express a blob’s internal structure by com-
posing it from smaller blobs, much like an army is com-
posed of smaller organizational units and ultimately in-
dividual soldiers. But we don’t have to take the in-
ternal structure into account when simulating, since at
any level of abstraction, every blob is completely char-
acterized by the physical attributes associated with it.
Armies can move and apply force just like individual
soldiers do. The physics of armies is different than the
physics of soldiers, and the time and space scales are
different, but the main idea behind AFS is that we can
simulate at the “army” level if we so desire—if we be-
lieve it is unnecessary or inefficient to simulate in more
detail.

Since AFS is basically just simulating physics, the
top-level control loop of the simulator is quite straight-
forward: On each tick, loop over all blobs in the simu-
lator and update each one based on the forces acting on
it. If blobs interact, the physics of the world will spec-
ify what form their interaction will take. Then update
the blob’s low-level sensors, if it has any. Each blob
is assumed to have a state reflector, a data structure
that expresses the current state of the blob’s sensory
experience. It is the simulator’s job to update this data
structure.

Hierarchical Agent Control

Since AFS is such a general simulator, we require an
appropriately general method for controlling the blobs
within it. This control scheme is HAC (Hierarchical
Agent Control). Whereas the physics modeled in AFS
define how an a blob’s actions unfold in the world, HAC
defines what the blob should do. One way to look at
HAC is as a toolset for designing a hierarchy of actions,
goals, and sensors. Another way is as an execution mod-
ule for the many actions that are running concurrently
within a blob and across blobs.

Although we have primarily been using HAC in con-
Jjunction with AFS, HAC is by no means tied to a spe-
cific simulator, and, unlike AFS, could be applied to
domains that are not easily viewed as abstract physical
processes. We are currently working on using HAC to
control actual mobile robots (Pioneers). All HAC re-
quires to work with any given agent is an interface to
the state reflector for that agent (i.e., a way to access
the low-level sensory data the agent collects) and an
implementation of a set of low level action primitives,
like turn, move, and push.

One of the major issues in defining an action set for
an agent, and, one might argue, one of the major is-
sues in defining any kind of intelligent behavior, is the
problem of forming abstractions. No agent designer will
want to specify the solution to a given problem in terms
of primitive low-level actions and sensations. Instead,
she will first build more powerful abstract actions, which
encode solutions to a range of problems, and use these
actions when faced with a new problem. If a robot is
supposed to retrieve an object, we don’t want to give it
individual commands to move its wheels and its grip-
per; we want to give it a “pick-up” command and have
the robot figure out what it needs to do.

HAC lets us abstract by providing the mechanisms
to construct a hierarchy of actions. In the hierar-
chy, abstract actions are defined in terms of simpler
ones, ultimately grounding out in the agent’s effec-
tors. Although actions are abstract at higher lev-
els of the hierarchy, they are nonetheless executable.
At the same time, the hierarchy implements a multi-
level computational architecture, allowing us, for ex-
ample, to have both cognitive and reactive actions
within the same framework (Georgeff & Lansky 1987,
Cohen et al. 1989).

The main part of HAC’s execution module is an ac-
tion queue. Any scheduled action gets placed on the
queue. The queue is sorted by the time at which the
action will execute. Actions get taken off the queue and
executed until there are no more actions that are sched-
uled to run at this time step. Actions can reschedule
themselves, but in most cases, they will be rescheduled
when woken up by messages from their children. An
action is executed by calling its realize method. The
realize method does not generally complete the action
on its first invocation; it just does what needs to be done
on this tick. In most cases, an action’s realize method
will be called many times before the action terminates.
We will see an example of this later.

The Action Hierarchy

HAC is a supervenient architecture (Spector & Hendler
1994). This means that it abides by the principle that
higher levels should provide goals and context for the
lower levels, and lower levels provide sensory reports
and messages to the higher levels (“goals down, knowl-
edge up”). A higher level cannot overrule the sensory
information provided by a lower level, nor can a lower
level interfere with the control of a higher level. Super-
venience structures the abstraction process; it allows
us to build modular, reusable actions. HAC goes a step
further in the simplification of the action-writing pro-
cess, by enforcing that every action’s implementation
take the following form:

1. React to messages coming in from children.
2. Update state.

3. Schedule new child actions if necessary.

4. Send messages up to parent.

91

Let’s assume we wanted to build an action that allows
a blob to follow a moving target (see Figure 2). If we
have a move-to-point action (which in turn uses the
primitive move), writing such an action is fairly easy.
We compute a direction that will cause us to intercept
the target. Then we compute a point a short distance
along this vector, and schedule a child move-to-point
action to move us there. We leave all the details of
getting to this location, including such things as obsta-
cle avoidance, up to the child. The child can send any
kind of message up to its parent, including such things
as status reports and errors. At the very least it will
send a completion message (failure or success). When
the child completes, we compute a new direction vector
and repeat the process, until we are successful or give
up, in which case we send a message to our parent.

Domain \ Mobile Offense
Specific |
Actions

8 Harass

<

al

8
Physical g| [Follow Attack
Schemas @ g

g[S

é Move-To-Point ese

&
Primitive Apply
Actions v Move Move ese Force

Figure 2: Actions form a hierarchy; control information
is passed down, messages and sensor integration occurs
bottom-up.

Note that the implementation of an action is left com-
pletely up to the user; she could decide to plan out all
the movement steps in advance and simply schedule the
next one when the move-to-point child completes. Or
she could write a totally reactive implementation, as de-
scribed above. Note also that every parent declares the
set of messages it is interested in receiving. In some
cases, a parent might only be interested in whether or
not the child terminates. The parent can go to sleep
while the child is executing. In other cases, the par-
ent may request periodic status reports from the child,
and run concurrently with the child in order to take
corrective measures, such as interrupting the child.

The very lowest level of the hierarchy consists of very
primitive actions, things like the aforementioned move
and apply-force. These actions are little more than
low-level robotic effectors; they set the blob’s acceler-
ation or attempt to do damage to a neighboring blob.
Using these primitives, we build the layer of physical
schemas, which consists of actions such as move-to-
point, attack, and block. Above this layer we have
domain-specific actions, if needed. It is interesting to

(defclass* swarm (level-n-action)
area ;Swarm area
(blobs nil)
;3 storage
(first-call t)))

;blobs involved in swarm

(defmethod handle-message ((game-state game-state) (action swarm) (message completion))

(redirect game-state action (blob (from message))))

(defmethod handle-message ((game-state game-state) (action swarm) (message afs-movement-message))

(interrupt-action game-state (from message))

(redirect game-state action (blob (from message))))

(defmethod redirect ((game-state game-state) (action swarm) blob)

(start-new-child action game-state ’move-to-point

:blob blob

:destination-geom (make-destination-geom (random-location-in-geom (area action)))
:messages—-to-generate ’(completion contact no-progress—in—movement)

:speed nil
:terminal-velocity nil))

(defmethod check-and-generate-message ((game-state game-state) (action swarm) (type (eql ’completion)))

(values nil)) ;never completes

(defmethod realize ((game-state game-state) (action swarm))

(when (first-call action)
(setf (first-call action) nil)
(loop for blob in (blobs action) do

(redirect game-state action blob))))

Figure 3: Implementation of a multi-agent “swarm” behavior in HAC.

note that as you go up the hierarchy, the actions tend to
deal with larger time and space scales, and have more of
a deliberative than a reactive character. But the transi-
tion to these cognitive actions is a smooth one; no extra
mechanism is needed to implement them.

An Example Action Definition

In the last section, we described in general terms how
actions are defined within HAC. This section will elu-
cidate the process using a concrete example and actual
code. HAC provides a number of methods to make
the process of writing actions easier. Across actions we
must perform the same sort of tasks: generating mes-
sages for the parent, advancing the action, etc. In HAC,
actions are classes; each action defines a set of methods
that address these tasks.

Figure 3 shows the implementation of a multi-agent
action, swarm. It is a simple action that causes a num-
ber of blobs to move around randomly within a circular
region. We use the simpler action move-to-point to
implement this; it is invoked with the construct start-
new-child. When the blobs bump or get stuck, they
change direction. First, we define the swarm action to
be a level-n-action. This means it is non-primitive and
must handle messages from below as well as pass mes-
sages up. We define how we will react to messages from
children using the handle-messages methods. Mes-
sage handlers specialize on the type of message that a
child might send. In the example, we redirect a blob to a
new location when the move-to-point action control-
ling it completes. If the move-to-point reports any
kind of error (all errors relating to movement are sub-

92

classes of afs-movement-message), such as contact
with another blob, we simply interrupt it and redirect
the blob somewhere else.

These handle-messages methods are invoked when-
ever a message of the specified type is sent to swarm.
When this happens, the realize method is also called.
In our example, the realize method is only used for ini-
tialization: the first time it is called, it sends all the
blobs off to random locations.

The set of check-and-generate methods define the
set of messages that this action can send up to its par-
ents. When the realize message is called, the check-
and-generate methods are invoked. We can specify if
they should be called before or after the realize method.
The swarm example never completes, and it doesn’t re-
port on its status, so it generates no messages.

Note how simple it was to write a multi-agent ac-
tion using the HAC methods. HAC is action-based,
not blob-based. Writing an action for multiple blobs is
no different from writing an action for a single blob that
has to do several things at the same time (like turning
and moving). We envision the different methods for im-
plementing parts of actions as the beginnings of an ac-
tion construction language, and we hope to move HAC
in this direction. There would be constructs for combin-
ing actions, either sequentially or concurrently. There
would be constructs specifying how resources should be
used, whether or not something can be used by two
agents at the same time, and so on.

Resources

Resources are a very important part of agent control.
There are many types of resources: the effectors of each
individual agent, the objects in the world that agents
use to fulfill their tasks, and the agents themselves.
Some resources can only be used by one agent at a time,
some resources are scarce, and some resources emerge
only in the process of performing some action.

HAC provides mechanisms for managing resources
and assigning resources to actions. HAC currently does
not contain any general resource arbitration code, but
instead assumes that a parent will arbitrate when its
children are all vying for the same resources. Actions
can return unused resources to their parent, who can
then reassign them. Actions can also request more re-
sources if they need them.

The Sensor Hierarchy

HAC not only supports a hierarchy of actions, but also
a hierarchy of sensors. The sensor hierarchy is not yet
fully implemented, so we will provide only a short de-
scription here.

Just as a more complex action uses simpler ones to
accomplish its goal, complex sensors use the values of
simpler ones to compute their values. These are abstract
sensors. They are not physical, since they don’t sense
anything directly from the world. They take the out-
put of other sensors and integrate and re-interpret it.
A low-level vision system (a physical sensor) produces
a black and white pixel array. An abstract sensor might
take this image and mark line segments in it. A higher
level abstract sensor takes the line segments and deter-
mines whether or not there is a stretch of road ahead.
A follow-road action can use this abstract sensor to
compute where to go next.

Since the lowest level sensors are associated with
blobs moving around on the map, and higher level ac-
tions use abstract sensors that in turn use the values
produced by these low level sensors, the structure of
the sensor hierarchy will often mirror that of the ac-
tion hierarchy. The two hierarchies cannot be merged,
however. Suppose we have an abstract sensor that uses
data from within a spatial region. This sensor uses all
the data produced by blobs operating within this re-
gion, regardless of whether the blobs are all performing
the same action. Thus, the two hierarchies might not
correspond exactly.

We are implementing a simple blackboard architec-
ture that allows us to index sensor information based on
location and type. We will still use the HAC’s schedul-
ing and message passing mechanism to organize sensors
into a hierarchy, except that it is now sensor-update
functions that are being scheduled, not actions, and
sensor values that are being passed, not status reports
and completion messages.

Actions will use the blackboard to query sensors. An
action can also ask to receive a message when a sen-
sor achieves a certain value. Currently, actions do this

93

checking themselves. These messages allow an action
to be interrupted when a certain event occurs, enabling
the action to take advantage of unexpected opportuni-
ties.

The Planner

As one of its modules, HAC includes a planner. How do
goals and plans fit into HAC’s action hierarchy? Quite
simply: Scheduling a child action can be viewed as post-
ing a goal, and executing the child action that satisfies
this goal. Planning is necessary when the goal is satis-
fied by several actions and we have to decide between
them. Simple goals, like moving to a location, are con-
strained enough that we can write out one good solu-
tion. All the actions we have seen so far were simple
enough to require only one solution. But particularly as
you get higher in the hierarchy, there will be more am-
biguity with respect to how a goal should be achieved.
Accordingly, goals might have multiple potential solu-
tions.

In HAC, we use the term “plan” to denote an action
that satisfies a goal. We introduce a special child action,
match-goal, that gets scheduled whenever an action
posts a goal. Match-goal will check which plans can
satisfy the goal, evaluate them, and choose the best one
to execute. If no plan matches, match-goal reports
failure back to the poster of the goal. Plans themselves
may also contain sub-goals, which are satisfied using
the same process.

Plans are evaluated by a process of forward simula-
tion: Instead of using some heuristic to pick the best
plan, we actually use an even more abstract version of
AFS to simulate what would happen if this plan were
to execute. This process is made efficient by estimating
the time at which something interesting will happen in
the simulation, and advancing the simulation directly
to these critical points.

This type of planning, which uses stored solutions
(plans) that are not fully elaborated, is known as partial
hierarchical planning (Georgeff & Lansky 1986). Due
to the flexibility within the plans, it is particularly well
suited to dealing with dynamic environments. In addi-
tion, the fact that we have pre-compiled solutions for
certain types of problems cuts down enormously on the
amount of search we would otherwise have to do.

Partial hierarchical planning meshes very well with
the idea that people understand and reason about the
world in terms of physical schemas. Viewed at the level
of physical schemas, there really are only a few different
ways to solve a problem. For example, if A and B are
point masses, A can cause B to move by i) pushing it,
i1) asking it to move (if it is an intentional agent), or iii)
initiating movement in B. These separate solutions can
be written down as plans that satisfy the goal “make
B move”. The exciting thing about planning at the
physical schema level is that the plans you use are not
limited to just one domain. If you can figure out what
“move” and “push” mean in a domain, you can use your
old plans.

w
o

Figure 4: The Capture the Flag domain.

Since match-goal is a child action, just like any
other, interleaving planning and execution is a straight-
forward process. Let’s assume match-goal takes a cer-
tain amount of time, ¢, to finish evaluating all the plans
that match. All this means is that it will take ¢ time
units before a plan starts executing. All other actions
that the parent scheduled during this time interval will
continue to execute normally. And since every action
must be written to respond to failures or unexpected
events in its children, so must a goal poster respond
to the failure of one the matched plans. This is how
replanning is initiated.

An Example Domain: Capture the Flag

We have been developing a dynamic and adversarial
domain in which to test AFS, HAC, and the planner.

94

This domain is based on the game of “Capture the
Flag.” There are two teams, red and blue. Some of the
blobs on each team are of a special type, “flag”; they
cannot move. The objective for both teams is to cap-
ture all the opponent’s flags. Figure 4 shows one of the
randomly generated starting positions for this domain.
Notice that we use different types of terrain. Some of
the terrain, such as mountains and water, cannot be
traversed by blobs, which gives us the opportunity to
reason about such physical schemas as “blocked” and
“constriction.”

We have constructed an action hierarchy based on
the primitives move and apply-force that allows us to
move to a location, attack a target, and defend a blob.
We can also block passes or intercept hostile blobs. The
top-level actions are more domain-specific and concern

themselves primarily with the allocation of resources.
They generate a list of tasks, such as “attack an spe-
cific enemy” or “defend a flag,” and then construct a list
of physical schemas that achieve these tasks. Each task
might be achieved by more than one physical schema (a
flag could be defended by placing blobs around it or by
intercepting the blobs that are threatening it, for exam-
ple). Depending on how tasks are weighted and what
physical schemas are chosen to achieve these tasks, one
arrives at different high-level solutions to the ultimate
goal of capturing the opponent’s flags. If attack tasks
are weighted more strongly than defense, one might end
up with a more aggressive strategy.

The different strategies correspond to different plans
for achieving the goal “win-capture-the-flag.” They
are evaluated within match-goal by forward simulation.
Forward simulation also takes into account how the op-
ponent might respond. The best plan, determined by
a static evaluation function of the resulting map and
placement of blobs, is chosen and executed.

Our goal for this domain is to show how one can rea-
son with physical schemas, and how this reasoning fits
in with our general HAC architecture. Beating the com-
puter is already non-trivial, and as our plans become
more refined, it will only get harder. Furthermore, the
actions we use and a lot of the reasoning we do during
planning is not specific to the Capture the Flag do-
main. In fact, since we already had implementations
of move-to-point and attack from other domains, it
took us only two weeks to implement this scenario and
a first version of the plans that solve it. This speaks for
the power and flexibility of HAC.

Summary and Discussion

This paper has introduced AFS as a general simulator
for any domain that can be described as agents moving
and applying force to one another, and HAC as toolset
for controlling such agents. We set out not to build a
domain-specific agent design tool, but to only provide
a general framework that helps the designer, and leaves
the actual implementation up to her. These are the
issues we believe HAC addresses well:

o Reactive and cognitive processes are integrated seam-
lessly.

e Agent control, action execution, planning, and sens-
ing are all part of the same framework

e HAC is a modular system; it can be used to control
agents in simulation or real robots. Supervenience
enables us build re-usable action modules.

o Efficient multi-agent control and simulation.
e Planning in continuous domains.

e Easy transference of knowledge across domains
through the use of physical schemas.

'These are the issues we believe still need work:

e Communication between agents in the hierarchy,
without going through a parent.

95

e An automatic domain to physics mapper.
e A fully implemented agent sensor model.
e A specification of an action construction language.

Acknowledgements

This research is supported by DARPA/USAF un-
der contract numbers N66001-96-C-8504, F30602-97-1-
0289, and F30602-95-1-0021. The U.S. Government is
authorized to reproduce and distribute reprints for gov-
ernmental purposes notwithstanding any copyright no-
tation hereon. The views and conclusions contained
herein are those of the authors and should not be in-
terpreted as necessarily representing the official poli-
cies or endorsements either expressed or implied, of the
Defense Advanced Research Projects Agency/Air Force
Materiel Command or the U.S. Government.

References

Cohen, P. R.; Greenberg, M. L.; Hart, D. M.; and
Howe, A. E. 1989. Trial by fire: Understanding the de-
sign requirements for agents in complex environments.
AI Magazine 10(3):32-48.

Georgeff, M. P., and Lansky, A. L. 1986. Procedural
knowledge. IEEE Special Issue on Knowledge Repre-
sentation 74(10):1383-1398.

Georgeff, M. P., and Lansky, A. L. 1987. Reactive
reasoning and planning. In AAAJI 87, 677-682. MIT
Press.

Karr, A. F. 1981. Lanchester attrition processes and
theater-level combat models. Technical report, Insti-
tute for Defense Analyses, Program Analysis Division,
Arlington, VA.

Spector, L., and Hendler, J. 1994. The use of superve-
nience in dynamic-world planning. In Hammond, K.,
ed., Proceedings of The Second International Confer-
ence on Artificial Intelligence Planning Systems, 158—
163.

Tzu, S. 1988. The Art of War. Shambhala Publica-
tions.

96

