
Designing Autonomous Agents for Process Control.

Virginio Chiodini

vlc@gensym.com

Anshu Mehra
am@gensym.com

Gensym Corporation
125 CambridgePark Drive
Cambridge MA, 02140.

During the past two years we have developed the Agent
Development Environment (ADE) and have used ADE 
multiple planning and control applications. In this paper we
provide a brief overview of ADE and present two Adaptive
Control applications developed with ADE.

The Agent Development Environment is an integrated
platform for building distributed multi-agent applications.
ADE enables a graphical definition of Agents and Agents’
Activities. ADE provides a simulation environment in which
Agents can be tested before being deployed. ADE is built on
G2, an object-oriented graphical environment that offers a
robust platform for the development of real-time systems.

Distinctive components of ADE are:

¯ A predefmed class hierarchy of agents and agent
components.

¯ An agent communications "middleware".

A graphical programming language to design and
develop Agents’ behavior based on the Grafcet
standard.

¯ A complete debugging environment.

¯ A distributed simulation environment to test Multi-
Agent applications built with ADE.

¯ A deployment center to deploy Agents as G2 objects or
JavaBeans in a Java virtual machine.

¯ A Leaming Context to enable Agents to develop their
behavior through a learning process.

Multi-Agent applications built with ADE may run on a single
machine or on a distributed network. Agents communicate
through Messages. ADE provides a basic direct addressing
message service, with some optional functionality, for

example, guaranteed delivery and subject-based addressing.
ADE uses a delegation based event mechanism similar to
JDK 1.1 model. Agents use messages to generate and listen
for events. Each Agent has a network-wide unique Name and
can be endowed with specific Properties. Using an SQL
language, Agents can query the Multi-Agent environment in
search of Agents with specific properties. ADE also enables
Agents to send messages to other Agents qualified by their
properties. An Agent can concurrently perform multiple
Activities while multiple Agents can perform a specific
Activity. Agent Activities can be Transient or Permanent.
Transient Activities are created and started by messages sent
by Agents and are deleted when the tasks assigned to the
activity have been completed. Permanent activities are created
and started at Agent initialization and are deleted at Agent
termination. Permanent activities concurrently perform tasks
requested by multiple messages.

Agent Activities are defined as Grafcet, using the ADE
Grafcet Development Environment. The Grafcet
Development Environment facilitates the design and
development of single- and multi-thread Agent Activities as
standard IEC-848 Function Charts with a sophisticated
graphical environment. Agent activities defined as Grafcet
Charts can be executed in interpreted or compiled mode. In
Interpreted Mode, Agents activities can be monitored and
suspended with a variety of graphical tools and can be
modified in real time by modifying the corresponding Grafcet
Chart.

Applications.

ADE is currently being used in two prototype
control applications:

¯ A Model Predictive Control application of an
Induction Heating Process.

¯ A Model Free Control application of an
Electrolytic Metal Plating Process.

113

From: AAAI Technical Report WS-98-10. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



Closed-Loop Control of an Induction Heating Process. Agent-Based Design.

Induction Heating involves placing an electrical conducting
work piece in a varying magnetic field. The magnetic field
induces eddy currents at a power level and frequency in the
work piece. The work piece heats up because it has resistivity
to the eddy currents induced by the magnetic field. The goal
of induction heating for forging is to uniformly heat a work
piece to the proper forging temperature. Work pieces are
moved through several induction coils whose voltage can be
controlled. Multiple work pieces may be concurrently
processed within one induction coil. The goal of the closed-
loop control system is to adjust the voltage of the induction
coils to stabilize the temperature of the outgoing work pieces,
managing variations in temperature of incoming pieces and
transitions from "run" to "hold" and back to "run" of the
work pieces along the heating line.

An adequate mathematical model is available for the
induction heating process. Using the mathematical model, we
developed and validated an Agent Based process simulator.
The simulator is then used to enable Agents to leam an
appropriate control policy.

Closed-Loop Control of a Plating Process.

In a Plating Process work pieces are moved through a set
of baths that deposit various metals via electrolysis. At the
end of the process a control device checks the thickness of
each metallic layer and evaluates discrepancies between
set points and actual values. The process has two control
variables: the rectifier current of each electrolytic bath
and the line speed. Increasing the speed of the line
increases the production throughput, but demands higher
current in the electrolytic baths. High current levels may
cause instabilities in the plating process. When the
thickness of a specific metal is insufficient, plates must be
discarded, causing a loss in productivity. On the other
hand, raising thickness set points would cause a waste of
precious metals, increasing production costs. Other state
variables like metal concentration, temperature, and PH
affect the plating process. The goal of the closed-loop
control system is to maintain the best possible equilibrium
among these competing requirements and to manage
unpredictable changes in the conditions of the
environment that affect the plating process. The
functional relationship between current, process time and
metal thickness can be determined only via complex
mathematical processes. Lengthy and costly system
identification procedures must be performed for each
different type and shape of plate to derive transfer
functions linking each control variable to the thickness of
metallic layers. No accurate model is available to evaluate
the interaction among the different control variables.

In both applications process entities are represented by
Agents. We distinguish two types of Agents:

¯ StaticAgents.

The behavior of Static Agents is defined when Agents are
created through Grafcets or standard methods. Work pieces
heated by an Induction Heating Process are examples of
Static Agents. The main task of a "Work Piece Agent" is to
evaluate its final temperature profile, given the values of the
control variables (for example, voltage and frequency)
utilizing the mathematical model of induction heating.

¯ DynamicAgents.

The behavior (policy) of Dynamic Agents is developed and
refined during the learning phase. All the Agents that operate
control variables are modeled as Dynamic Agents. Dynamic
Agents adapt their behavior by interacting among them and
with the environment through the Learning Context. The
Learning Context is a special activity of Dynamic Agents that
continuously modifies their control by optimizing
environmental feedback, through a mapping between
perceptions and actions. Learning Contexts operate until
stable and consistent sequences of good control decisions are
made. The Learning Context is activated whenever the
current control policies fail to produce good results in
unexplored regions of the state space. Several learning
contexts with different learning strategies have been
developed. All the Dynamic Agents of an application must
use the same Leaming Context.

When a model of the process is not available (for example in
the Plating Process) two options are available:

Learn an approximate model using Supervised Learning
techniques like Feed-forward Neural Networks. In this
case the learning process can take place in a simulated
environment. Work-pieces can be represented as Static
Agents whose behavior is defined by a Neural Network.

.
Leam control policies without learning a model of the
environment. In this case a simulation environment is not
available. The Learning phase must be performed in real-
time concurrently with the execution of the actual
production process. Some techniques developed in
Reinforcement Learning enable Agents to learn directly
state-action value. A model-free approach is feasible
only if the speed of convergence of the Learning Process
is fast.

Both approaches are currently being evaluated.

114




