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This extended abstract describes our work on the in-
teractivity of interface agents. In particular, it focuses
on the development of a model for designing agents
which are more or less autonomous, but which rec-
ognize opportunities for initiating communication with
their users in order to garner further useful informa-
tion. This design can be applied to many different do-
mains. The workshop call for papers indicates two main
themes around which the workshop discussions will be
organized - the work below fits into the individual agent
(rather than multi-agent) theme, and describes how 
future requirement of making agents less autonomous
and more trustworthy may be addressed.

In recent years, the area of intelligent agents has been
one of the most prevalent fields of research in the AI
community. This paper deals with one specific type of
agent, the interface agent, which is a program that acts
as a personal assistant to a user dealing with a par-
ticular computer-based application, and which is able
to "view" and act upon the application interface just
as a human user might. Previous designs of interface
agents can be broadly classified into two categories: au-
tonomous agents (e.g., (Maes 1994)), which attempt 
automate certain actions on behalf of the user, and col-
laborative agents (e.g., (Rich & Sidner 1997)), which
are more equal partners with their users, working to-
gether on a joint plan and participating in a dialogue
in order to determine an appropriate course of action.

We argue that there is a middle ground to be cov-
ered. Using autonomous learning interface agents as a
starting point, we propose a model which makes these
agents more interactive, allowing them to take the ini-
tiative to solicit further input from the user, toward
improving their overall performance. A very high-level
algorithm for our semi-autonomous agents is shown in
Figure 1. The major points of this algorithm will be
explained throughout this abstract.

The first novel aspect of our algorithm, as com-
pared to the learning interface agents developed at MIT
(see (Maes 1994), for example), is its incorporation 
truly hard-and-fast rules into the agent’s behaviour. An
example of such a rule, fl’om the e-mail domain, might
be "If a message arrives with subject line ~Make money
fast’, then delete it." Rules can either be programmed

by the user, or developed and proposed by the agent
when it has high confidence in a prediction (as in Step
4 of Figure 1). We believe that the incorporation of
rules is a necessary addition for two main reasons: (1)
it will speed up the agent’s performance in situations
where it can simply apply a rule, rather than going
through a series of complex calculations involved in the
agent’s learning algorithm; (2) it helps to provide the
user with a better understanding of, more trust in, and
a better sense of control over, the agent’s behaviour.

We also address the problem of ambiguous situations:
ones in which the agent, via its learning methods, is
unable to select one course of action as being a clear
winner. (See steps 6-10 in the algorithm.) For example,
in the e-mail domain, suppose an agent has successfully
learned that all messages from David Fleming should be
re-filed in the David folder and that all messages with
subject "Hockey pool" should be filed in the Hockey
folder. What will the agent do with a message from
David Fleming with subject "Hockey pool"?

In such ambiguous situations, MIT’s Maxims (Metral
1993) e-mail agent will likely do nothing, due to a low
confidence level in its predicted action. Our more in-
teractive agent, on the other hand, would examine the
same situation and recognize that two (or more) can-
didate actions have similar scores. Based on how close
together the scores are, along with a number of other
factors (including how "important" the agent considers
the candidate actions to be1 and how often the user
has been bothered recently), the agent will compute 
clarification factor. This is then compared to a user-
defined bother threshold to determine whether or not to
initiate a clarification dialogue with the user, to find
out which action is most appropriate in this situation
and to attempt to generalize this into a rule. Even in
cases in which the user is not immediately bothered by
the agent, the user can be made aware of the agent’s
difficulty (e.g., using an additional column in an e-mail
program such as Eudora). The user may then decide to
initiate a dialogue with the agent, at a convenient time.
Our agents also allow for agent-user communication in

1based on the do-it thresholds (Maes 1994) established
by the user for those actions
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the event of conflicts occurring in the actual rules pro-
grammed by the user (Step 0). This communication 
not through natural language, but rather via dialogue
boxes, menus and buttons in a graphical user interface.

The goal of interface agents is to help the user deal
with a particular computer-based application, and to
off-load some of the tedious or repetitive work. Our
work looks at the degree to which such systems com-
municate with a human user. There is a definite trade-
off involved here: both the agent and user can ben-
efit a great deal from increased interaction; however,
an agent which constantly interrupts with questions
and explanations is bound to become an annoyance.
The model which we propose aims to provide improved
performance over strictly learning interface agents, al-
lowing users to be more aware (and trusting) of their
agents’ activities, while keeping the bother level to a
minimum.

Moreover, our work has something to offer to
the growing mixed-initiative research area ((Allen
1994), (Burstein & McDermott 1996)). In providing
opportunities for both agents and users to take the ini-
tiative, we have presented one approach for designing
mixed-initiative interface agents.

Although this discussion has focused on e-mail
agents, the model is applicable to a broad range of ap-
plication domains.
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INPUT: A signal that there exists a new situation to
be addressed (e.g., in the e-mail domain: a new mail
message arrives, the user has just finished reading a
message, etc.)

OUTPUT: The agent has either completed an action
on behalf of the user, or has suggested an action to the
user, for the current situation.

(o)Consult rule database for applicable rules previ-
ously created by the user (with or without the
agent’s help). If a single rule is found to apply,
then use that rule. If two or more conflicting rides
are found, initiate rule conflict dialogue with user.
If no rules are found to apply, then proceed with
step 1.

(1) Use learning techniques to get possible actions
A1, ..., An

(2) if choice of action A is clear" then

(3) Compute confidence value C (as in the 
agents - see (Kozierok 1993), for example)

(4) if C > do-it threshold then perform action
A and indicate that there is a proposed nile for
the user to approve/reject/edit

(5) else if C > tell-me threshold then suggest
action A

(6) else//choice unclear because two or more actions
have similar scores

(7) if peer agents exist and are able to provide
trustworthy advice then automate/suggest rec-
ommended action

(8) else //choice still :mclear

(9) Compute clarification factor CF.

(10) if CF > user-defined bother threshold
then initiate dialogue with user.

aThe choice is considered clear if the score computed for the

highest-scoring action exceeds the score of the next best choice by a

constant difference threshold (say, 10%).

Figure 1: High-level algorithm for our more interactive
interface agents

126




