
Java ]nteragents for Multi-Agent Systems

Francisco J. Martin, Enric Plaza, Juan A. Rodrfguez-Aguilar, and Jordi Sabater
IIIA- Artificial Intelligence Research Institute CSIC - Spanish Council for Scientific Research

Campus UAB, 08193 Bellaterra, Barcelona, Spain
{martin,enric,jarjsabater}@iiia.csic.es

Abstract

In this paper we introduce aa interagent as an au-
tonomous software agent which manages (intermedi-
ates) the communication and coordination between an
agent and the agent society wherein this is situated.
With this aim, we have developed JIM, a general-
purpose interagent that provides agents with a highly
versatile range of programmable --before and during
the agent’s run-time-- communication and coordina-
tion services.

Introduction

There exists a number of problems which involve mul-
tiple sources of knowledge and, thereby, can best
be addressed using a multi-agent system (MAS) 
a computational system composed of several inter-
acting agents which cooperate with one another to
solve complex tasks. Furthermore, the deployment of
multi-agent systems permits to benefit from a number
of advantages --such as parallelism, robustness and
scalability-- that a single agent working isolatedly can
not offer itself. Coordinating the activities of the sev-
eral agents composing a MAS is essential in order to
guarantee the proper workings of a MAS itself and ben-
efit from such advantages.

Currently, we are partners of the SMASH project1, a
collective, joint effort involving several research insti-
tutions that addresses the construction of multi-agent
systems that help solve problems of distributed nature
in hospital services. The development of such multi-
agent systems requires the deployment of (highly flex-
ible) communication and coordination mechanisms to
integrate a set of heterogeneous agents --agents de-
veloped by different people for different purposes and
in different languages-- within a common setting. In-
stead of letting agents deal themselves with such is-
sues, our proposal opts for introducing an autonomous
software agent that we call interagent which manages

I http ://www. ilia. ca ic. es/Proj ect s/smash/

(intermediates) the communication and coordination
between the agent it is attached to and the agent soci-
ety wherein it is situated.

Interagents

In our proposal, the functionality provided by an in-
teragent will highly depend on the role played by the
agent interacting with it. Thus we distinguish two dis-
tinct roles for agents making use of interagents: i) the
user of an interagent regards it as the sole and ex-
clusive means through which it can interact with the
agent society thanks to the set of communication and
coordination services provided by the interagent, but
previously defined by the owner; ii) the owner of an
interagent is provided with a wide range of facilities
to either load or program into the interagent the com-
munication and coordination services that the user is
allowed to employ. Needless to say, an agent can pos-
sibly play both roles at the same time.

Interagents --like KQML facilitators (Patil et
al., 1992)-- are inspired by the efficient secretary
metaphor already introduced in the Actors model of
concurrent computation. Interagents --unlike KQML
routers-- offer the coordination level required by
agents to cooperate in non-trivial ways. Basically, an
interagent is a component which supports a dynami-
cally programmable level of interaction.

We have developed JIM, a general-purpose intera-
gent that provides agents with a highly versatile range
of programmable--before and during the agent’s run-
time-- communication and coordination services2.

Communication Services
An interagent is informed by its user about the message
to be sent and its addressee, and then the interagent
carries out all the operations needed to deliver it cor-
rectly. An interagent and its user can communicate in

2A full paper on JIM is available at
http ://www. iiia. talc. es/Projects/fishmarket/publi-
cat ions-t eam. html

139

From: AAAI Technical Report WS-98-10. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



two ways: a) through (TCP-)stream-sockets --in case
that an interagent and its user are two distinct com-
putational processes (residing in the same computer or
not); b) through shared memory --in case that an in-
teragent and its user are two distinct threads residing
in the same process space.

An interagent provides its user with the follow-
ing communication services based upon TCP/IP: i)
queueing and serialization of outgoing messages from
its user and queueing and serialization of incom-
ing messages from (the interagents of) other agents;
ii) asynchronous communication between agents; iii)
synchronous communication between agents (imple-
mented on top of buffered asynchronous communica-
tion between interagents); iv) agent naming services
(white pages); v) handling of expired messages and
automatic recovery of transmission errors.

Coordination Services

An interagent allows interdependencies between
agents’ communicative acts, expressed as performa-
tives of high-level agent communication language, to
be ordered by means of conversation protocols which
represent the conventions adopted by agents when in-
teracting through the exchange of messages.

We have modeled and implemented conversation
protocols as a special type of pushdown automata be-
cause unlike finite state machines, pushdown automata
allow to store and subsequently retrieve the context of
an ongoing conversation. On the one hand, each state
in the finite state control of the pushdown automaton
represents the situation of an agent during an ongo-
ing conversation. On the other hand, each transition
in the automaton indicates what message has to be
either sent or received to produce a transition in the
conversation protocol. Therefore, it can be said that
interagents constrain what an agent can utter and hear,
and when.

An interagent can support a wide range of conversa-
tion protocols that can be declaratively defined stat-
ically (before the user’s run-time, as an element to
be stored in the library of conversation protocols) and
dynamically (the owner can interactively define new
conversation protocols at run-time using a conversa-
tion protocol definition language). This capability of
allowing agents to alter and define themselves their
conversation protocols at run-time distinguishes them
from other approaches like COOL (Barbuceanu and
Fox, 1995) or JAFMAS (Chauhan, 1997).

Conclusions and Ongoing Work

An interagent provides an agent with the basic mech-
anisms to interact (communicate and coordinate) with

other members of an agent society. In this way, the
overload related to the management of the communi-
cation and coordination tasks needed by an agent to
live in a multi-agent system is shifted to its interagent,
that relieves its user from such a "tedious" work.

Two major benefits are gained from employing in-
teragents. On the one hand, it permits agents to rea-
son about both communication and coordination at a
higher level of abstraction, whereas on the other hand
it provides a complete set of facilities that allows agent
engineers to concentrate on the design of their agents’
inner and social behavior.

JIM is currently being used in two directions: i) to
promote the knowledge representation language Noos
to an agent-oriented language (Martin et al., 1998); ii)
to coordinate the activities of the market intermedi-
aries composing the Fishmarket3 system (Rodriguez-
Aguilar et al., 1998) and the interaction between the
market as a whole and the participating buyers and
sellers.

Acknowledgments This work has been supported
by the Spanish CICYT project SMASH, TIC96-1038-
C04001 and the DGR-CIRIT doctoral scholarships FI-
PG/96-8490 and FI-DT/96-8472.

References

Mihai Barbuceanu and Mark S. Fox. Cool: A lan-
guage for describing coordination in multi agent sys-
tems. In Proceedings of the First International Con-
ference on Multi-Agent Systems, 1995.

Deepika Chauhan. JAFMAS: A Java-based Agent
Framework for Multiagent Systems Development and
Implementation. PhD thesis, ECECS Department,
University of Cincinnati, 1997.

Francisco J. Martin, Enric Plaza, and Josep L. Ar-
cos. Interagents: Providing knowledge representation
languages with agent-oriented capabilities. 1998. Sub-
mitted.

R. S. Patil, R. E. Fikes, P. F. Patel-Schneider,
D. McKay, T. Finin, T. R. Gruber, and R. Neches.
The darpa knowledge sharing effort: Progress report.
In Proceedings of the Third International Conference
on Principles of Knowledge Representation and Rea-
soning, 1992.

Juan A. Rodriguez-Aguilar, Francisco J. Martin,
Pablo Noriega, Pere Garcia, and Carles Sierra. Com-
petitive scenarios for heterogenous trading agents.
In Second International Conference on Autonomous
Agents, 1998.

3http://www.iiia.csic.es/Projects/fishmarket

2

140




