
An Agent Architecture for Telecommunication Applications:
Extended Abstract

Murhimanya Clovis Muhugusa
Microcell Labs Inc.

1250 Blvd Ren~-L~vesque West
Suite 400, Montreal, Quebec

H3B 4W8 Canada
clovis@labs.microcell.ca

Objectives and Requirements

Our objective is to design an agent architecture which
will serve as a reference model for agent implementa-
tions. Additionally, we aim at devising an appropriate
methodology for the implementation of agents that fit
in the proposed agent architecture.

The architecture should be general enough to sup-
port different kinds of agents: from purely reactive
agents to deliberative utility-oriented agents mainly in
the telecommunications domain. Examples of agent ap-
plications include: personal agents for mediating inter-
action between users and services, marketing agents for
introducing new services to users, network management
agents for monitoring network operation and taking cor-
rective automated actions when network failure is de-
tected, network resources allocation agents for ensur-
ing that users get enough resources for the quality of
service they require, pricing agents and various agents
for different services available to users such as weather
forecast, stock, etc.

All the above agents will act in a complex and non-
deterministic environment. In such a setting, robust-
ness is a major requirement. To achieve robustness,
agents should be implemented by different modules run-
ning in parallel and asynchronously, without any cen-
tralized control mechanism. The rationale for this, is
the observation that complex and robust systems are in-
herently decentralized: no single element of the system
is crucial for the operation of the whole system. Notable
examples of such systems are the Internet, markets, and
various societies of insects.

We expect agents to be very complex pieces of soft-
ware. To master such complexity, agents have to be
implemented in a modular and step wise way. Each
module should implement a well identified functional-
ity. Modules should be added incrementally to an agent
to enhance its capabilities.

Finally, agents will use a combination of different
techniques to achieve their goals. For example, to adapt
itself to its environment, an agent will use learning.
However, no single learning technique is appropriate for
all the situations the agent might face. Our approach is
therefore to have the agent use different learning tech-
niques implemented by different modules. In circum-

stances where some technique is not efficient, a differ-
ent one might be more efficient. With this approach, we
expect increased effectiveness from the agent in achiev-
ing its goal. Not surprisingly, expert human agents
routinely use different approaches to accomplish their
tasks. Their expertise is in fact due to their ability
to apply appropriately the adequate approach in each
circumstance.

The Agent Architecture

Our architecture is a hybrid architecture inspired by the
subsumption architecture (Brooks 1986; 1991a; 1991b)
and deliberative architectures such as the BDI architec-
ture (Rao ~ Georgeff 1992; 1995; Kinny, Georgeff, 
Rao 1996). The aim is to bring in a single agent archi-
tecture the robustness and reactiveness of subsumption-
like architectures and the goal-orientedness of deliber-
ative architectures. All the challenge is to marry the
advantages of these different approaches without incur-
ring their respective disadvantages.

In order to achieve the requirements presented in
the above section, we use 3 parameters to structure
an agent: the mental parameter, the competence pa-
rameter, and the replication parameter. The mental
parameter characterizes the mental level of the agent.
Purely reactive agents work at the reflex level. Deliber-
ative agents work at the cognitive level and social-aware
agents work at the social level.

At the cognitive level, we intend to use the BDI
model. Finally, we intend to use a market-oriented ap-
proach to model the behavior of social-aware agents.
Each agent maintains a model of the capabilities and
the effectiveness of other agents to solve some kinds
of problems. When an agent is faced with a prob-
lem it cannot solve, it makes a bid to other agents
that it believes are able to help solve the problem.
Communication between agents may be based on a
subset of KQML (Finin et al. 1994) or on a con-
tract net (CNET) based protocol (Smith 1977; 1980;
Tidhar & Rosenschein 1992).

The rationale for the competence parameter is to rep-
resent an agent as a collection of orthogonal competence
modules at the different levels of the mental parameter.
This requires the agent implementor to identify clearly

141

From: AAAI Technical Report WS-98-10. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



different orthogonal functionalities that will determine
the agent behavior. In this way, functionality may be
added incrementally to an agent. Finally, the replica-
tion parameter reflects the fact that different functional
modules of an agent will provide the same functionality
using different strategies and techniques.

Prototype implementations will serve to identify
functionality needed by different kinds of agents. Such
functionality will be implemented by various compe-
tence modules that may be reused in the implementa-
tion of other agents. In the long term, we expect to
have a ’toolkit’ of competence modules which can be
combined in various ways to build other agents.

To achieve robustness, interaction between the dif-
ferent modules composing an agent must occur asyn-
chronously. We intend to use for this an asynchronous
message queueing mechanism. Modules will dynam-
ically subscribe/unsubscribe for messages originating
from other modules. This defines a kind of network
through which information flows in the agent. In this
way, functional modules create dynamic affinity links in
the agent. This results in a flexible architecture because
the agent’s architecture is determined not only by the
functional modules that compose the agent, but also by
the affinities between them.

High-level mechanisms for coordination, cooperation
and conflict resolution among modules will be imple-
mented on top of the asynchronous messaging system.
In fact, if one considers agent functional modules as
agents with limited capability, the proposed architec-
ture advocates to structure a single agent as a ’multi-
agent system’. Like a multi-agent system, the behavior
of the agent ’emerges’ as the result of its functional
modules. And like a multi-agent system, our architec-
ture must address the issues of coordination between
functional modules. Dealing with these issues at the
agent level will result in more insight and more experi-
ence which will be valuable when we will address multi-
agent issues. The architecture may therefore be used
as a common and unified framework for designing both
agents and multi-agent systems.

Implementation Environment
The best way to implement concurrency among func-
tional modules is to implement an agent as a multi-
threaded process with each functional module being
a separate thread. The multi-threaded approach al-
lows concurrency while providing efficient communica-
tion mechanisms between threads.

The development of a complex agent application con-
sists of two related tasks, namely, knowledge engineer-
ing and the design and implementation of different pro-
cesses such as modelling, learning, planning and rea-
soning, that use the knowledge to achieve rational be-
havior. The way these processes are implemented de-
pends on the type of knowledge and its representation.
Thus, the environment must support different knowl-
edge representation schemes. Furthermore, the envi-
ronment should allow the agent implementor to engi-

neer the agent knowledge in a modular and step-wise
approach similar to that used for the agent’s functional
modules. Additionally, to support modularity and soft-
ware reuse, an object-oriented approach is highly desir-
able.

Finally, support for mobility is interesting due to the
foreseen kinds of applications. This requires effective
solutions to security issues inherent to agent mobility.

References
Brooks, R. A. 1986. A Robust Layered Control System
for a Mobile Robot. IEEE Journal of Robotics and
Automation 2(1):14-23.
Brooks, R. A. 1991a. Intelligence Without Reason. In
Proceedings of the Twelfth International Joint Confer-
ence on Artificial Intelligence (IJCAI-91), 569-595.

Brooks, R. A. 1991b. Intelligence Without Represen-
tation. Artificial Intelligence (47):139-159.
Finin, T.; Fritzon, R.; McKay, D.; and McEntire,
R. 1994. KQML as an Agent Communication Lan-
guage. In Proceedings of the Third International Con-
ference on Information and Knowledge Management
(CIKM’94). ACM Press.
Kinny, D.; Georgeff, M. P.; and Rao, A. S. 1996. A
Methodology and Modelling Technique for Systems of
BDI Agents. In van der Velde, W., and Perram, J. W.,
eds., Proceedings of the Seventh European Workshop
on Modelling Autonomous Agents in a Multi-Agent
World, MAAMAW’96, volume 1038 of Lecture Notes
in AI (LNAI), 56-71. Springer Verlag.

Rao, A. S., and Georgeff, M. P. 1992. Modelling
Rational Agents within a BDI-architecture. In Allen,
J.; Fikes, R.; and Sandewall, E., eds., Proceedings of
the Second International Conference on Principles of
Knowledge Representation and Reasoning. San Mateo,
CA: Morgan Kaufmann.

Rao, A. S., and Georgeff, M. P. 1995. BDI Agents:
From Theory to Practice. In Proceedings of the
First International Conference on Multi-Agent Sys-
tems (ICMAS-95). San Francisco, CA: AAAI Press
/ The MIT Press.

Smith, R. G. 1977. The contract net: A formalism
for the control of distributed problem solving. In Pro-
ceedings of the Fifth International Joint Conference on
Artificial Intelligence (IJCAI- 77).

Smith, R. G. 1980. The Contract Net Protocol. IEEE
Transactions on Computers C-29(12).

Tidhar, G., and Rosenschein, J. 1992. A Contract
Net with Consultants. In Proceedings of the Tenth
European Conference on Artificial Intelligence (ECAI-
92), 219-223.

142




