
Distributing Intelligence
Bridging the ’Agent’ - ’Agent’ Divide

Donie O’Sullivan, Richard Evans, David Kerr,
Intelligent Systems Unit,

Broadcom t~ireann Research Ltd.
Kestrel House, Clanwilliam Place,

Dublin 2,
Ireland.

{ do,re,dave } @ broadcom.ie

Abstract

The term ’agent’, which is currently in fashionable use, hides
a schism between network enabled technology as represented
by Java, and dynamic, adaptable software technologies built
upon autonomous, intelligent components. This paper
describes a method of distributing agents through a multi-
agent system, and which aspects of an agent’s functionality
are important when choosing its implementation language.

To date, it appears that most commercially available agent
development toolkits are based on technologies such as Java
(RMI), as opposed to classical AI languages such as Prolog
and Lisp (Lange and Chang, 1996). This set of technologies
(in common with CORBA) are ’network aware’ in that they
have mechanisms to support open and standard distributed
communication implemented at the language level. These
Network aware languages provide the agent toolkit developer
with a ready-made route to the creation of distributed multi-
agent systems. A consequence of embedding network
awareness within the language has been to tie such systems to
procedurally based paradigms and inevitably to result in an
impoverishment of AI capability.

This contrasts with the area of multi agent systems which has
arisen from Distributed AI (Alty et al., 1994) and is built
closely on the capabilities of AI and exhibits adaptability and
’Intelligence’ through the use of rule bases, machine learning,
constraint satisfaction etc. One notable feature of these
capabilities is that they are often enabled through the use of
declarative languages which treat instructions and data in a
similar manner thus allowing programmed behavior to be
dynamically modified. In this context Multi Agent Systems
refers to the dynamic modification of agent abilities and the
ability to reason about and co-operate with other agents in the
common environment thus promoting emergent behavior.

A surprising aspect of the current agent scene is the seeming
unawareness of this fundamental distinction. Perhaps the use
of a common terminology (the term Agent) is responsible.

This paper surveys the characteristics of common agent
development tools and technologies and their applicability to
the development of intelligent multi-agent systems, and
concludes that there is an urgent need to bridge this divide.
The key is the provision of an open communications
architecture based on a strong distributed computing standard
e.g. Common Object Request Broker Architecture (CORBA)
and Internet Inter-ORB Protocol (IIOP) (Mowbray 
Zahav 1995) into which can be slotted a variety of agent
types. This allows the creation of heterogeneous agent
systems with the choice of implementation language and the
level of intelligence appropriate for each component agent
(Kerr et al. 1998). A consequence of this approach is to put
agent communication languages center stage as a technology
to enable the integration of legacy components within multi-
agent systems.

Prolog
LISP
Poplog

JESS
CLIPS
ABE

.~ -- ~ Toolkit support

i i~ava
i ’JAFMAS !

Network awareness

Figure 1: Tradeoff between Intelligence and Network
Awareness for different Agent implementation

technologies

Figure 1 illustrates the strengths and weaknesses of a number
of Agent languages. It shows that a traditional AI

145

From: AAAI Technical Report WS-98-10. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



implementation language such as Prolog is strong for
implementing an Intelligent Agent, but weak at distributing
that agent throughout a network, whereas a language such as
Java is strong at achieving distribution, but a weak choice for
the development of an Intelligent Agent.

This paper also describes work undertaken by the authors and
others towards the realization of a platform for the
development of multi-agent systems, with heterogeneous
agent behaviors and characteristics (various levels of
’intelligence’) within an open communications architecture.
Specifically we describe the Agent Services Layer (Somerset
al. 1997), which is an agent development platform, built on
top of CORBA, which supports the development of multi-
agent systems, composed of heterogeneous agents, i.e. agents
developed for specific purposes in languages tailored to that
purpose. To date there is support for the development of
agents in a number of languages including Prolog, CLIPS,
JESS, C / C++ and Java.

The FIPA standard for Agent Management (Chiariglione et
al. 1997) presents an opportunity to achieve the desired
result as it mandates the use of the Inter-ORB Interoperability
Protocol (IIOP) as the baseline1 for interoperability between
different agent systems. The need to develop Intelligent
Agents which exploit the FIPA Agent Communication
Language (ACL) in a sophisticated way and which comply
with the FIPA standard for agent management should act as a
key motivation for integrating suitable Intelligent Agent
development technologies within an open communications
architecture, in this case IIOP.

The choice of implementation language is often least thought
about when implementing an agent system. A choice is either
not available to the programmer (in the case where the multi-
agent system does not use any sort of middleware) or else the
programmer’s habits or current trends dictate the language. A
more ideal scenario is where there is no constraint on the
implementation language, and each agent in a multi-agent
system in analysed at design time, to determine the services it
is to provide to the multi-agent system. This analysis will
lead to some indication of appropriate implementation
language (albeit declarative versus procedural).

As an example, consider an application (Chiariglione et al.
1997b) where the following agents have been identified as
forming the backbone of the multi-agent system. (i) User
profiling agent (ii) Legacy database agent (iii) travel booking
agent. One of the first tasks in the implementation of such a
system (after selection of an appropriate agent architecture,
which is platform and language independent) is to select the
implementation language for each of these agents. The User
profiling agent has to handle adaptivity (to profile the user) 
well as storing user profiles. The legacy database agent is
responsible for providing access to an external data through
the use of the ACL. The travel booking agent is responsible
for communicating booking requests to the appropriate travel
booking platform (which is not under the developers control).

1 This does not preclude the use of other interoperability

protocols, it simply means that IIOP must be supported.

Several key facets of these agent types govern the
implementation selection process. Firstly the User profiling
agent requires adaptivity, potentially learning, and the ability
to provide recommendations to the user. The choice of
language should therefore easily allow for these traits,
therefore, a suitable language would be declarative (e.g.
Prolog or LISP). The choice of implementation language for
the legacy database agent should be governed by the API
which the legacy database provides to external programs.
There is no ’intelligence’ necessary, therefore, a suitable
language could be Java or C++. Finally the travel booking
agent will not necessarily require intelligence, but will require
the ability to communicate with other multi-agent systems, so
support for a protocol such as IIOP, in addition to a
procedural language will be suitable.

The ability to choose the appropriate implementation
language for each agent allows the agent programmer to
develop the agent in such a manner that its characteristics
closely match those of the chosen language. This ability is
largely a function of the platform within which the agents
reside and therefore the agent platform is possibly the key
decision the developer of a multi-agent system should make.

References

Lange, D. B. and Chang, D. T. 1996. IBM Aglets
Workbench, Programming Mobile Agents in Java, A White
Paper. International Business Machines Inc.

Alty J. L. et al., 1994. ADEPT - Advanced Decision
Environment for Process Tasks: Overview and
Architecture, Internal Report, QMW College London.

Mowbray, T. J. and Zahavi, R. 1995. The Essential
CORBA: Systems Integration Using Distributed Objects,
Framingham, Mass.: Object Management Group.

Kerr, D.; O’Sullivan, D.; Evans, R.; Richardson, R. and
Somers, F. 1998. Experiences using Intelligent Agent
Technologies as a Unifying Approach to Network and
Service Management, In Proceedings of IS&N ’98,
Antwerp, Belgium.

Somers, F.; Evans, R.; Kerr, D. and O’Sullivan, D. 1997.
Scalable Low-Latency Network Management Using
Intelligent Agents, in Proceedings of ISS ’97, Toronto,
Canada.

Chiariglione L. et al. 1997. FIPA 97 Specification Part 1:
Agent Management. Turin, Italy: Foundation for Intelligent
Physical Agents.

Chiariglione L. et al. 1997b. FIPA 97 Specification Part 4:
Personal Travel Assistance. Turin, Italy: Foundation for
Intelligent Physical Agents.

146




