From: AAAI Technical Report WS-98-10. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

A toolkit for building component based agents

Nikolaos Skarmeas and Keith L. Clark
Department of Computing
Imperial College, London, UK
email: {ns4,klc}@doc.ic.ac.uk

Abstract

A toolkit for configuring agent based applications is
presented. Each agent comprises several components
(some generic, some agent specific). All the compo-
nents run as separate internal processes and communi-
cate via an internal active message board component
This indirect method of communication allows us to
more easility mix and match components. The code
for all the components that can be assembled into an
agent are held on a code server. Standard or often used
configurations of components can be symbolically de-
scribed and stored with a suitable name in an agent
library. Finally, an agent management platform allows
a user to specify that a particular named type of agent
should be launched on a particular machine. The plat-
form will pull down the description for the agent li-
brary, pull down the code for the components for the
code server, and launch the agent as an integrated set
of component processes on the machine.

Introduction

With the advances in Object Oriented technology, the
construction of off-the shelf components that can be
used and re-used for the construction of large software
systems has become fashionable. This leads to a new
style of software construction called component oriented
(Meijler & Nierstrasz 1998), (Buschmann et al 1996).
In parallel, especially for distributed applications, an-
other style of programming is often used, called agent
oriented. In this style of programming the entities of
the application are viewed as agents which are capable
of accomplishing complex tasks.

A number of software architectures have been pro-
posed for building agents. A common approach is the
separation of the agent functionalities into two main
categories: the domain independent and the domain
dependent one. The domain independent part deals
with the communication oriented activities of the agent
and other features such as knowledge base management.
The domain dependent part of the agent deals with the
(possibly local) problem solving activities of the agent.
It usually consists of a number of quasi-independent
modules, different agents comprising different collec-
tions of modules. One way of designing and implement-
ing the domain dependent part is to hardwire into the

151

components the inter-component, hence the intra-agent
communication. However, this has the disadvantage of
creating inflexible architectures, difficult to modify.

This paper describes an open agent architecture and
a platform for constructing and managing agents, that
take into account the above issues. Agents consist of a
collection of components, which can be integrated using
a generic agent architecture. The components are pre-
compiled code segments which are stored as byte code
in a code server. The components making up the initial
configuration of an agent are retrieved from the code
server when the agent is launched. They can also be
retrieved if a new functionality is to be sunsequently
added to the agent, or if an old functionality is to be
updated. In addition to the above two servers we have
an extra manangement platform. This can be sent a
request to launch a new agent on a particular machine.

When building components the April/April++ (Mc-
Cabe & Clark 1994}, (Clark et al. 1996), (Clark &
Skarmeas 1997). language is normally used. How-
ever, other languages can be used, for example, Java
or C. This agent toolkit has been used during the de-
velopment of two agent based applications (Skarmeas
& Clark 1996),(Boman et al. 1998).

ALFA: The agent architecture

An agent comprises a set of interrelated components
whose functionality contributes to the overall agent be-
haviour. Some of the components are common to all
the agents and some are domain dependent, different
for each agent. All the components run as separate
April processes. This architecture, which is more fully
described in (Skarmeas 1997), is depicted in figure 1.

Agent Shell

Metn

Component

Figure 1: The agent architecture

The agent head deals with incoming messages from
other agents. It is also a security wall to the outside



world. Incoming messages arrive first at it, and are then
put on the the message board in order to be forwarded
to the appropriate agent components, based on their
content. Outside agents do not have direct access to the
message board, which is the internal agent backbone.

The behaviour that the agent exhibits is implemented
by a number of behavioural (domain dependent) com-
ponents. The behavioural components will gen-
erally differ from agent to agent. Ideally, these be-
havioural components are changeable over the lifetime
of the agent. This allows the agent to be reconfigured
and gives it the ability to adapt to new requirements
that its environment imposes. A behavioural compo-
nent can be composite, indeed it can itself be another
agent. So agents can have a recursive structure.

The knowledge base component keeps information
shared by all the other components. It is the global
memory for all the components of the agent (each
of which may also have private memory) and can be
used to store information such as the beliefs, intentions
and plans of the agent as well as meta-level informa-
tion about other agents and the capabilities of the be-
havioural components. This knowledge base can be ac-
cessed and updated by all the other agent components.

The agent components interact with each other in
two ways. They store and retrieve information from
the shared knowledge base. They also interact via mes-
sages. The message interaction is supported by the ac-
tive message board (Skarmeas ). Any agent compo-
nent can place messages intended for one or more other
components on the message board. Components can
join and withdraw without disrupting the functionality
of the rest of the agent. When a new component is
added to the agent it registers itself with the message
board using a symbolic name and then sends advertise-
ment messages to the board giving it a set of active
message patterns. Because of the advertisements the
component may be sent messages in the futute. The
direction of messages is either based on the symbolic
name of the component or it is content based using the
active patterns. Once the message has been forwarded
the receiver can reply directly to the component that
placed the message on the board.

Code server

An agent can be constructed in the spirit of a com-
ponent oriented approach by implementing its domain
dependent components independently and dynamically
attaching them to its message board. The components
implement functionalities that are recurring to several
agents. Therefore, a mechanism is required, where we
can store the code that implements such components.
This code could be retrieved later and executed.

In our framework, components are represented as
April closures that are stored in a specially implemented
process called the code server. This process maintains
a database table where the closures are stored. Clients
can store new component to the code server and can
also contact it in order to retrieve the code they need.

152

The agent library

The agent is constructed by attaching a set of pre-
defined components to its message board (which are
stored in the code server). An agent description basi-
cally consists of the list of agent components. A new
agent can be launched by getting hold of such a de-
scription and feeding it to a specially defined macro
call, launch_agent, which will create a new agent. It
will automatically launch the domain independent com-
ponents of the agent (head etc.) and the domain de-
pendent agent components by going through the list of
component descriptions. For each component the code
server will be contacted.

We have developed a server and we call it agent li-
brary. It is an April server which maintains a table of
agent descriptions. It can be dynamically added new
description, deleted old ones, and provide descriptions
based on some symbolic name.

The management platform

All the server and libraries described up to now offer a
collection of tools that when used in combination can
provide quite a powerful and open platform for building
agents. The glue for putting all these together is an
agent managemnet platform that is placed on top make
use of all these servers and offer a high level, easy to
use interface to external clients to create and manage
agents. An external client, instead of having to know all
the details of how to retrieve agent descriptions, fetch
the component code and launch the agent can simply
send the message: (launch_agent,telecom.agent) to
the Management Platform. This will take care of all
the steps for constructing and launching the agent.

References
Boman et al. 1998. Energy Saving and Added Cus-
tomer Value in Intelligent Buildings. PAAM’98.
Buschmann et al. 1996. A System of Patterns: Pattern
Oriented Software Architecture. Wiley and Sons.
Clark, K. L., and Skarmeas, N. 1997. A Harness
Language for Coooperative Information Systems. In
Mike Papazoglou., ed., Cooperative Information Sys-
tems. Academic Press.
Clark et al. 1996. Agents as Clonable Objects with
Knowledge Base State. ICMAS’96.
McCabe, F., and Clark, K. L. 1994. April — Agent
PRocess Interaction Language. Intelligent Agents.
Meijler, T. D., and Nierstrasz, O. 1998. Beyond Ob-
jects: Components. In Papazoglou, M., ed., Coopera-
tive Information Systems. Academinc Press.
Skarmeas, N. April++, ALFA documentation.
http://users.otenet.gr/ ™ nik.
Skarmeas, N., and Clark, K. L. 1996. Intelligent
Agents for Telecoms Applications. IATA’96.
Skarmeas, N. 1997. Agents as Objects with Knowl-
edge Based State. Ph.D. Dissertation, Imperial Col-
lege, Dept. of Computing, London.





