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Abstract

A production system (PS) is a forward chaining rule-
based system used to build large expert systems. Testing
a PS must involve the construction of a covering set of
test data but it is not clear what the meaning of cov-
ering a PS is and how a test data set can be measured
according to coverage. We propose a test data coverage
measure for a subset for PS with well defined semantics.
We use a correspondence between PS and function free
first order Horn logic programs to define the declarative
coverage notion and measure. We found that the cov-
erage measure can be used to determine the coverage of
the program logic of a PS as well as to automate test
data generation. Unification theory is utilised to measure
test data coverage and constrained inductive generation
is used for test data construction.

1 Introduction

A production system is a forward chaining rule-
based system [5]. Such systems are used to build
large expert systems for diverse domains, includ-
ing troubleshooting in telecommunication networks,
computer configuration systems. These expert sys-
tem reason with large quantities of data. Hence such
systems are implemented using database technology,
the use extensional databases [4, 12].

Production systems have been implemented with
integrating first order logic programs and function-
free first order relational databases [3]. Testing a pro-
duction system program (PS program) involves tech-

niques developed for testing logic programs [7]. We
consider a implementation-oriented testing approach.
The aim is to thoroughly test the program which re-
quires a test adequacy criterion [13]. A PS program
has a declarative semantics defined via a correspond-
ing logic program as defined by Raschid et al. [10],
and testing can be performed on this logic program
instead of the PS program. The corresponding logic
program describes the logic of the PS program. A
implementation-oriented test should then cover the
program logic. This is considered the test adequacy
criterion. To apply the criterion, the coverage of a
test input set for a program must be defined and
measure has to be provided to determine test cov-
erage. The implementation-oriented test involves a
two-step approach depicted in Figure 3.

1. The first step is the transformation of the PS
program into its corresponding logic program to
obtain the program logic. This can be done
mechanically using the method described by
Raschid et al. [10]

2. The second step is to apply test inputs to the
logic program and measure the test coverage.
This is described in the following sections.

We propose a declarative test coverage measure that
can be utilised for automated test input generation.
Test coverage is measured using a dual of the oper-
ational execution model for logic programs [8]. This
provides guidelines for test input generation.

We refer to a test adequacy criterion based on the
structure of the program logic. Ruggieri [11] devel-
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oped a testing method for logic programsbased on the
formal semantics of a logic program. The approach
is to identify a subset of logic programs with decid-
able semantics, such that it can be tested whether
a program entails a given finite set of atoms. This
is a specification-oriented testing approach, but it is
restricted to a certain class of logic programs. The
corresponding logic program to a PS program can be
outside this class of programs.

The present paper is part of ongoing work on the
verification and validation of knowledge-based sys-
tems, which has attracted recent attention (for exam-
ple, see [1]); it is organised as follows. Section 2 de-
scribes PS programs and the conditions for providing
declarative semantics defined by corresponding logic
programs. Section 3 presents our implementation-
oriented testing measure, and section 4 contains our
method for automated coverage-driven test input
generation. Section 5 summarises the results and con-
tains concluding remarks. Figure 3 and Tables 1 and
2 are found at the end of the paper.

2 Production System Pro-
grams

A production rule consists of a antecedent on the
left hand side (the body) of the rule, the symbol --+
and a consequent on the right hand side (the head).
The body is a conjunction of first order positive lit-
erals of the form p(fi) or negative literals of the form
--q(~). The heads (also called actions) are of the
form assert(r(~2)) or retract(s(~)), p, q, 
s are predicates corresponding to database relations
of the same arity, and fi and ~ are vectors of terms
from a nonempty set of constants a set a variables.
All variables are range-restricted, i.e., for each pro-
duction rule, each variable occurring in a literal must
also occur in a positive literal in the body.

Here are function-free production rules considered.
A function-free production rule program consists of

* a set of a-productions, which have a single
assert action in the head

¯ a set of r-productions which have a single
retract action in the head

* an initial extensional database of ground atoms

The operational semantics of a production rule pro-
gram is the following:

The body of each production rule is interpreted as a
query against the database relations. First, the pos-
itive literals are queried and the variables occurring
in them are instantiated by matching atoms of the
database. Then the negative literals, which are now
ground due to range restriction of the variables, are
queried against the database. The body of a produc-
tion rule is satisfied if the relation contains instan-
tiated tuples corresponding to each of the positive
literals and if the relations do not contain tuples cor-
responding to the negative literMs.

A production system program may not terminate
and the relations may be updated infinitely. For ex-
ample consider an initial database with two facts,
P(a), Q(a), and the production rules

P(X), Q(X) assert(R(X))
R(x) assert(S(X) 
P(X), S(X) assert(T(X))
R( X ) , T ( X ) ret ract(R(X))

The first three production rules will execute and the
facts R(a), S(a), T(a) will be added to the database.
Then, by the fourth production rule, R(a) is deleted
and the first and fourth production rules will execute
infinitely. To prevent this cycling effect, a produc-
tion system program must possess a certain property,
called stratified.

A function-free production system program PS
with productions rules of the form

(A1,..., Aa, -~B1, ̄  ¯., -~Bl -+ assert(P)),

(A1,..., Aa, -,B1, ¯ ¯., --Bt --+ assort(P))

is stratified [10], if there exists a partition PS =
PSo U PS1 U ... U PSn, where PSi are pairwise dis-
joint, such that for i -- 0,..., n the following holds:

1. For every predicate Aa occurring positively in
the body of a production rule in PSi, all a-
productions where Aa occurs in the assert ac-
tion, must be included in Uj_<i PSi.



2. For every predicate Ak occurring positively in
the body of a production rule in PSi, all r-
productions where Ak occurs in the retract ac-
tion must be included in Uj<i PSi.

3. For every predicate Bk occurring negatively in
the body of a production rule in PSi, all a-
productions where Bk occurs in the assert ac-
tion must be included in Uj<i PSi.

4. For every predicate Bk occurring negatively in
the body of a production rule in PSi, all r-
productions where Bk occurs in the retract-
action must be included in Uj<i PSi.

5. For the predicate P of the retract-action of an
r-production rule in PSi, all production rules
with P occurring in the head must be included
in Uj<~ PSi.

The partition PSo comprises the initial database and
contains no production rules.

A function-free stratified PS program possesses a
corresponding logic program [10], hence it is seman-
tically equivalent to its corresponding logic program.
The corresponding logic program defines the formal
semantics of a PS program. The testing approach
presented in this paper relates to the formal seman-
tics of PS programs. In the subsequent sections we
assume that the program to be tested is stratified.

An example expert system domain of a classifica-
tion of different fire types and means to extinguish
them is given in Table 1. An excerpt of the PS pro-
gram for the fire type classification and extinguishing
is given in Table 2. The relevant part of the pro-
gram comprises the classification of fire types. The
guidelines for extinguishing are presented for some
examples. The corresponding logic program looks as
follows: almost every production rule is essentially a
logic program rule. For example, the first production
rule is translated into the logic program rule

OrdinaryCombustible(X) +-- Paper(X).

The only exception has to do with the production
rule involving retract. Its meaning is that in case
it can be concluded that X is both type A and type
B, we retract type A to treat the fire as type B. This

is achieved by adding a new precondition to the logic
program rule corresponding to the fourth production
rule in the system given in Table 2 (it is the only rule
which can assert that a fire is of type A). The logic
program rule looks as follows:

typeA(X) 
Burning(X), OrdinaryCombustible(X), -~typeB 

A formal description of constructing the correspond-
ing logic program is given by Raschid [10].

3 Declarative Testing Measure

Systematic testing of a PS programs must involve
the measurement of the test. Measurement means
test coverage determination, which is a quantification
of the test method. Quantification is necessary to
obtain test data adequacy [13]. Test data adequacy
criteria are used to derive or define stopping rules
for testing. There are two categories of test data
adequacy criteria

1. specification-based testing, which specifies the
required testing from the specification

2. implementation-based testing, which specifies
the required testing from the program

With the first criterion, a test data set is adequate,
if all the identified features of the specification have
been fully exercised. In the second criterion, a test
data set is adequate, if the program in its internal
structure has been thoroughly exercised.

Thoroughly exercising a program requires the
quantification of testing. Such a quantification is a
test coverage measure that quantifies the amount to
which a program is exercised by a set of test data.

We use a PS program as the only source for defining
the test, hence implementation-based testing takes
place. A PS program is a predicate logic-based de-
scription. The declarative semantics of a PS program
is defined by a corresponding logic program [10]. We
will build our test coverage measure upon this logic
program. With procedural programming, the pro-
gram logic is implicit, while with logic programming
the program comprises the program logic itself. Here,
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Figure 1: Test coverage

covering the program means covering the program
logic. Conventional test coverage measures such as
statement coverage, branch coverage and path cover-
age are not applicable to both PS programs and logic
programs, since they rely on control flow which is not
explicitly expressed.

The test coverage measure is defined on the basis
of the following observation [7, 2]: A logic program
specifies a problem solution in form of a set of gen-
eral facts and rules. A test input (query) to a logic
program generates a specialisation of the facts and
rules. It generates an instance of the program by
providing an answer to a specific query, using the
general facts and rules. Generalising the instances
generated by the test inputs reconstructs partly the
facts and rules of the program. The generalisation is
itself an instance of the program. A program is then

covered by a set of test inputs if the generalisation of
the instances reconstructs the whole program. The
concept of test coverage is depicted in Figure 1. The
above given informal description of our test coverage
approach is formally presented in the following.

A logic program consists of a finite set of rules (also
called program clauses) of the form

H ~- L1,...,Lm,

where H is an atom called the head and L1,..., Lm
is called the body. i= 1,...,m. In case m= 0 the
rule a fact. The head is a positive literal of the form
p(t-) and the body is a conjunction of positive liter-
als (also called atoms) of the form q(g) or negative
literals of the form -~q(g). The symbols p and q are
predicates, and the arguments t, respectively g, are
terms tl, ¯ ̄ ., tn, respectively sl, ¯ ¯., sn. Since terms,
atoms and clauses share the same syntactical the are
addressed as expressions. An expression is a term,
an atom or a clause.

The expression E is an instance of the expression
F, denoted by E < F, if E is obtained by F through
substitution of variables vt,..., vk occurring in F by
terms tl,... ,tk. This is denoted by E = For, where
c~ = {vl/tl,...,vk/t~}. Two expressions E and F
are equivalent, denoted E = F, if E < F and F < E.
Equivalent expressions differ only in the naming of
the variables occurring in them. The expression E
is a strict instance of the expression F, denoted by
E < F, if E < F but not E = F. The set of expres-
sions is augmented by two elements, T and _1_. The
element T is the greatest element (E < -I- for every
expression E) and _1_ is the least element (.1_ < 
for every expression E). The set of expressions with
the instance relation forms a complete lattice, which
means that for every subset S of expressions there
exists a greatest lower bound US and a least upper
bound NS. Computing the greatest lower bound of
a set of expressions is called unification and comput-
ing the least upper bound is called anti-unification.
There exist efficient algorithms for computing great-
est lower bounds [9] and least upper bounds [6] of
finite sets of expressions. If for a set S of expressions
_k < I-1S, then S is called unifiable. For a unifiable set
S = {El .... , Ek) of expressions there exists a sub-



stitution # such that [7S = Ei# for i = 1,..., k. The
substitution # is called the most general unifier of S.

Testing a logic program involves as test input a goal
which is an atom to be unified with the head of pro-
gram clauses. A goal is an input to a logic program
P. It represents a query Q which is answered by the
set of instances of Q that P entails. A goal is denoted
by (+- Q), where Q is an atom. The goal G = (+-- 
generates a set C $ G of instances of program clauses
in the following way. If Q and the head H of the
program clause C = (H +-- L1 .... , Lm) are unifiable
then Cp = (H# <-- LI# .... ,Lk#), where # is the
most general unifier of {H, Q), is contained in the set
C ~. G. The notion of goal-generated clause instances
extends to sets of goals. For a set T = {G1,...,Gn}
of goals and a program clause C,

CST:= U CSGi
i=l,...,n

is called the instantiation set of C by T. It represents
specialisations of C given by the test input goals T
and contains information about the way which the
test inputs access the clause C.

The most specific generalisation of the instanti-
ation set is said to be the coverage of C by T.
The most specific generalisation is the least clause

(with respect to the instantiation relation) such
that each element of C $ T is an instance of C; thus,
C -- U(C $ T). The coverage U(C $ T) is always 
instance of the program clause C since C $ T con-
tains only instances of C. If C $ T _-- C, then the
program clause C can be reconstructed form the in-
stances given by the test inputs T. In this case the
test input set T is said to cover C, and T is called a
cover for C.

The program clause coverage provides the basis for
the definition of program coverage. A set T of test
input goals generates instantiation sets of all program
clauses C1,..., C,~ of the tested program P, and the
most specific generalisations of these instantiation
sets are instances of the program clauses. Hence, the
test input goals T generate an instance

PST:= {C15T .... ,C,~$T)

of P. The coverage of a test input set T for a program
P = {C1,...,Cm) is

U(P $ T) := {U(Ci J.. T),..., U(Cm J, T)).

Note that ifCi iT= 0 for an i 6 {1,...,m}, then
i-I(Ci $ T) = .1_, which means that none of the test
inputs from T matched a clause of the program. The
coverage identifies

1. untested program clauses (U(Ci $ T) = _l_)

2. tested but not covered program clauses (.l_ 
U(Ci 4. T) < Ci)

3. covered program clauses (u(C T) =

4 Test Input Generation

The coverage notion can be used to automate test
input generation. This is achieved by analysing the
coverage C of a program clause C. For a tested but
not covered program clause C, its coverage C is called
the covered instance of C. The covered instance can
be used to construct new test inputs in order to in-
crease the coverage. The covered instance is an at-
tempt to reconstruct the tested program clause from
the test outputs. The reconstruction through most
specific generalisation provides a "part" of the pro-
gram clause, i.e. an instance of the program clause.
The differences between the program clause and its
covered instance can then be used to guide the gen-
eration of the next test input. For example let

C = (P(X, Y, Z) +- Q(X), R(Y, 

with a coverage

= (P(W, W, a) <--- Q(W), R(W, 

This coverage is obtained by the test inputs

T = {(+-- P(a, a, a)), (+-- P(b, a))

The coverage C means that C is tested for identi-
cal first two arguments and the third argument a.
Selecting a test input with the first two arguments
being different will increase the coverage. For a test
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input t = (+-- P(a, b, a)) the coverage of T tA {t} for
C is C = (P(W, V, a) +-- Q(W), R(V, a)), and, since

< C, the coverage increases. The construction of a
test input to increase the actual coverage is depicted
in Figure 2.

The coverage C of C is an instance of C, and
there exists a substitution c~ = {V1/tl,...,Vk/tk}
such that C = C#, where ~ are variables occurring

in C for i = 1,...,k. If C is not covered, then
is not a variable renaming. Then at least one of the
following properties holds for ~:

Difference type 1 There exists a pair Vi/tl such
that ti is not a variable

Difference type 2 For Vi/t~ and ~/tj with i,j E
{1,...,k} and i 5~ j, the terms ti and tj are
identical variables.

The substitution for the coverage C in the exam-
ple above is c~ = {X/W,Y/W,Z/a}. We can se-
lect one of the differences from ~r and construct a
new substitution. For example, we select the differ-
ence (X/W,Y/W). Then two different constants, a

and b, are chosen to substitute these for X and Y.
This new substitution ~ = {X/a,Y/b,Z/a} is ap-
plied to the head of C to obtain the new test input
tl = (.~- P(a, b, a)). The new coverage of TtJ {tl } for
C is C1 = (P(W, V, a) +-- Q(W), R(V, 

Now, there is only one difference, Z/a. We choose a
constant b, different from a, and select some arbitrary
terms a and b to be substituted for X and Y. Then
the resulting substitution (71 "-- {X/a, Y/b, Z/b} is
applied to the head of C to obtain the next test input

t2 = (~-- P~a, b, b)). The coverage of T O {tl, t2} 
C is now C2 -- (P(W, V, U) Q(W), R(V, V)), and
clause C is covered.

The generation of test inputs is coverage-driven
and constrained by the differences analysed from the
substitution ~ which describes the "distance" of the
actual coverage to the tested clause.

5 Summary

Testing of rule-based declarative programs, such as
production systems programs, involves test adequacy
criteria based on declarative programming concepts.
Since production systems are strongly related to first
order logic programs, testing concepts for logic pro-
gramming are applicable to testing of production sys-
tems. A production system program, as well as a
logic program, expresses directly the program logic.
We propose an implementation-oriented testing ap-
proach and define a test adequacy criterion through
a test coverage measure that relates to covering the
program logic. The test coverage measure is the dual
to the execution model of logic programming. It de-
fines the coverage as the generalisation of the test
outputs. This generalisation might end up in a rule
that is equivalent to the tested program rule, which
means that the program rule is covered.

Our test coverage adequacy criterion enables au-
tomated test input generation. The test inputs are
generated incrementally form the actual test cover-
age. This is achieved by reconstructing partly the
tested program rules from the actual test outputs.
The differences between the reconstructed rules and
the corresponding program rules guide the test input
generation.



The testing method relates to the formal semantics
of production system programs. Not every produc-
tion system program possesses a well-defined formal
semantics. The class of production system program
with well-defined formal semantics is restricted to
stratified programs. Hence our testing method is only
applicable to this class of programs. The programs
outside the class of stratified programs include non-
terminating programs and programs with ambiguous
outputs to the same inputs. It is a future task to ex-
tend the presented testing approach to general pro-
duction system programs.
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Fire Classification
Type Material Extinguish

A involve ordinary com- with heat-absorbing or combustion-retarding extinguishers
bustibles such as paper, such as water or water-based liquids and dry chemicals
wood and cloth

B flammable and com- by excluding air, inhibiting the release of combustible va-
bustible liquids (such as pors, or interrupting the combustion chain reaction. Extin-
oils and gas), greases, and guishers include dry chemicals, carbon dioxide, foam, and
similar material bromotrifluoromethane

C energized electrical equip- should be extinguished with a non-conducting agent to pre-
ment vent short circuits. If possible the poser should be cut.

Extinguishers include dry chemicals, carbon dioxide, and
bromotrifluoromethane

D combustible metals such as with smothering and heat-absorbing chemicals that do not
magnesium and sodium react with the burning metals. Such chemicals include

trimethoxyboroxine and screened graphitized coke
If the fire could be either Type A or Type B, treat as Type B

Table 1: Example expert system domain of fire clas-
sification and extinguishing



Paper(X) --+ assert(OrdinaryCombustible(X)))
Wood(X) --+ assert(OrdinaryCombustible(X))
Cloth(X) --+ assert(OrdinaryCombustible(X))
Burning(X), OrdinaryCombustible(X) -+ asserg(typeA(X))
Oil(X) --+ assert(Flammable(X))
Oil(X) --+ asserg(CombustibleLiquid(X))
Gas(X) --+ assert(Flammable(X))
Gas(X) --+ assert(CombustibleLiquid(X))
Burning(X), flammable(X), CombustibleLiquid(X) --+ asserg(typeB(X))
Burning(X), Grease(X) --+ assert(typeB(X))
Burning(X), EleetricalEquipment(X), Energized (X) --+ assert(typeC(X))
Magnesium(X) --+ assert(CombustibleMetal(X))
Sodium(X) --+ assert(CombustibleMetal(X))
Burning(X), CombustibleMetal(X) -+ assert(typeD(X))
typeB(X) -+ retract(typeA(X))
typeA(X) 

typeB(X) 

typeC(X) --+

typeD(X) 

as s err (UseHeat Absorbing (X))

assert(ExcludeAir(X))

assert(NonconductingAgent (X))

assert(Smothering(X))

Table 2: An example PS program




