From: AAAI Technical Report WS-98-11. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Quantitative Performance Prediction for Rule-Based Expert Systems*

Valerie Barr
Department of Computer Science
Hofstra University
Hempstead, NY 11550
vbarr@magic.hofstra.edu

Abstract

Often a rule-based system is tested by checking its
performance on a number of test cases with known
solutions, modifying the system until it gives the cor-
rect results for all or a sufficiently high proportion of
the test cases. However, the performance on the test
cases may not accurately predict performance of the
system in actual use. We present a method for making
a more accurate performance prediction based on the
performance on test cases, coverage of the rule-base
by the test cases, how representative the test data is
of the population on which the rule-base will be used,
and the likelihood of occurrence of different kinds of
test cases in the larger population.

Introduction

Over the last 20 years, during which time there has
been considerable development and use of knowledge-
based systems for medical decision support, there has
been a heavy emphasis on functional analysis, address-
ing, among others, the question: does the system give
the results we expect on the test cases? Generally the
testing process would lead to a statistic indicating the
percentage of the test cases for which the system per-
formed correctly. System performance statistics are
then presented as if they apply to the entire rule-base,
rather than just to the tested sections, which can lead
to false predictions of system performance in actual
use. However, in actuality the system performance
indicated by the comparison of actual and expected
results is relevant only for the tested sections, while
performance in the untested sections cannot be pre-
dicted.

Functional testing does not guarantee that all parts
of the system are actually tested. If some section of
the rule-base is not exercised during the functional test
then we do not have any information about that sec-
tion of the system and whether it is correct or contains

Copyright (©1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

10

C Performance Evaluation

Figure 1: Rule-Base Evaluation with Coverage Analy-
sis.

errors. Furthermore, many performance problems for
rule-bases are the result of unforeseen interactions be-
tween rules (O’Keefe & O’Leary 1993). A test suite
of known cases may never trigger these interactions,
though it is important that they be identified in order
to correct them before a system is put into actual use.

In order to generate a more accurate performance
prediction, we take into account several factors. First,
we need to identify which portions of the rule-base are
actually exercised, or covered, during the testing pro-
cess. This can be accomplished by enhancing the func-
tional analysis of the rule-based system with a rule-base
coverage assessment. In such an approach (Barr 1996)
we consider completeness of the test set and coverage
of the rule-base by the test data, as indicated in Figure
1.

Completeness of the test set refers to the degree to
which the data represents all types of cases which could
be presented to the system under intended conditions
of use. Coverage of the rule-base refers to how exten-
sively possible combinations of inference relations are

exercised during test data evaluation. In the trivial
case, with a correct rule-base and a complete test suite,
the test data would completely cover the rule-base, all
actual results would agree with expected results, and
we could predict completely correct performance of the
rule-base in actual use. In the more usual situation we
may have errors and incompleteness in the rule-base,
as well as inadequacies in the test data. If we judge
the system based only on a comparison of actual and
expected results, we could have a situation in which a
rule-base performs well on the test data, but actually
contains errors which are not identified due to incom-
pleteness of the test data. This could lead to a false
prediction of correct performance in actual use, when
in fact we cannot make any accurate prediction about
performance of the rule-base in those areas for which
there is an absence of test data.

Frequently, when testing classification systems, a
large population of cases is available. However, many
of these cases may represent situations which are easy
to classify and similar to each other. Furthermore,
running all available cases may be extremely time con-
suming for a large classification system. A random
selection of test cases may give statistical confirmation
that the system works properly for the tested situa-
tions, but may not cover all types of situations. Our
approach carries out structural analysis of the rule-
base using five rule-base coverage measures to identify
sections not exercised by the test data.

This testing approach allows for clear identification
of both incompleteness in the test data and potential
errors in the rule-base through identification of sections
of the rule-base that have not been exercised during
functional test. This can indicate either weaknesses
in the test set or sections of the rule-base that may
not be necessary or are incorrect. An incomplete test
set can be supplemented with additional cases chosen
from the available population, guided by a series of
heuristics and the coverage analysis information (Barr
1997). This makes it possible to improve completeness
of the test suite, thereby increasing the kinds of cases
on which the rule-base has been tested. Alternatively,
if there is no test data which covers certain parts of
the system, it is possible that those sections should
not remain a part of the system at all.

Testing with Rule-Base Coverage
Measures

Rule-base testing with coverage measures is based on a
graph representation of the rule-base, using a directed
acyclic graph (DAG) representation. We assume a
generic propositional rule-base language (Barr 1996)
into which other rule-base languages can be translated.

11

During construction of the DAG, pairwise redundant
rules, pairwise simple contradictory rules and poten-
tial contradictions (ambiguities) are identified. After
DAG construction is complete, static analysis (verifi-
cation) of the rule-base reports dangling conditions (an
antecedent component that is not defined as a finding
and is not found as the consequent of another rule),
useless conclusions, and cycles in the rule-base. At
this point the rule-base can be modified to eliminate
or correct any static problems.

The static analysis phase is followed by dynamic
analysis of the rule-base using test cases. As test cases
are processed, one or more of several rule-base coverage
measures (RBCMs) can be reviewed in order to deter-
mine the quality of the test data supplied thus far. Ad-
ditional information about the rule-base and its testing
can also be used by the system tester to guide the se-
lection of additional test data. The tester would start
by providing sufficient test data to satisfy the simplest
functional measure (conclude each class of the system)
and proceed to the more difficult structural measures.
Finally, if the user is not able to provide sufficient data
to attain the desired degree of rule-base coverage (ac-
cording to the selected criterion), the tester can use
the DAG representation to synthesize data, which can
then be reviewed by an expert to determine if the data
represents a valid case in the problem domain.

This testing approach, described more fully in (Barr
1996), has been implemented in the TRUBAC tool
(Testing with RUle-BAse Coverage) (Barr 1996; 1995).

A Metric for Rule-Based Systems

While the coverage measures can be very helpful once
we are actually engaged in the process of testing a rule-
based system, we would also like to have a quantitative
measure of how successful the testing process has been
from a coverage standpoint.

The graph representation we employ serves as a suit-
able foundation for a complexity metric to predict or
measure the complexity of the system and the success
of the testing process. It imposes no particular execu-
tion order on the rules, and it does represent all the
logical relations that are inherent within the rule-base.
The remaining issue to address is that of a suitable
complexity metric over this graph structure. Metrics
such as McCabe’s cyclomatic complexity metric cannot
adequately determine the number of execution paths
in a rule-base. The actual number of execution paths
is based on the logical relationships in the rule-base,
using the following mechanism:

e For each class node, count one path for each edge
into the class node. In Figure 2 there are 2 paths
based on in-edges at class node G.

0P %

G OB

Figure 2: Graph of rule-base with OR and SUB.

e For each OR node, count one additional path. In
Figure 2 we count one more path to G at the OR
node.

e For each SUB node (representing an intermediate
hypothesis or sub-class), consider the number of par-
ent edges. As with an OR node, each parent edge
represents a possible path which concludes the sub-
class. One of these paths will be counted when the
classes are considered, and we count additional paths
for the additional parent edges. In Figure 2 there are
a total of 5 paths to G: 2 at G, 1 more at the OR
node, and 2 more at the SUB node.

e for AND nodes no additional paths are added.

This execution path metric can serve a number of
purposes in rule-base development and analysis. The
total number of execution paths represents the max-
imum number of test cases needed for complete cov-
erage of the rule-base according to the strongest rule-
base coverage measure (All-edges). However, usually
the actual number of data sets needed will be less than
the number of execution paths, since often, particu-
larly in diagnosis systems, one test set may cover a
number of execution paths to different diagnoses. For
prediction of future performance, this metric allows us
to quantify which portion of the system has not been
covered during the testing process.

Performance Prediction

Quantitative performance prediction is based on
e performance of the system on test cases,

o a measure of how well the test data covers the rule-
base,

e a measure of the degree to which the test set is rep-
resentative of the population for which the system is
intended,

e how likely different test cases are in the population.

12

Assumptions

In order to clarify and simplify, we first make some as-
sumptions about the system under test, the test data,
and the general population. We distinguish between

e GP, the general population,

e TP, the pool of data that is available to us as po-
tential test cases

e TC, the set of test cases that are run through the
system under test

Note that 7C C TP, where TP is generally large and
repetitive, so that it is not feasible to run all the cases
in TP through the rule-base. We then assume that

1. it is possible to arrange the cases in TP into equiv-
alence classes, such that each equivalence class con-
tains one kind of test case, and all test cases in an
equivalence class will execute the same path within
the rule-base.

2. TC is created by selecting one test case from each
of the equivalence classes formed in T'P

3. Therefore, each test case in T'C corresponds to pre-
cisely one path in the rule-base.

We note that the third assumption implies that if the
rule-base incorporates logic for all possible scenarios
in the general population, then the degree of represen-
tativeness and the degree of coverage of the rule-base
should be the same.

We also will use the following notation

e R represents the percentage of distinct types of cases
in GP which are represented in TP and TC

e P represents the performance of the rule-base on the
test data (percentage correct)

e Pr represents the performance predicted in actual
use

e C represents the degree of path coverage achieved
by the test data (in percentage of paths covered)

e t; represents the 7t* test case
o I; represents the likelihood of occurrence in GP of a

case that will use the same inference chain as is used
by test case t;

General Problem

Consider the situation in which we run NNV test cases
through a rule-base and performance is 80% correct.
Even if we have complete coverage of the rule-base
(every path is traversed during execution of the test
data), we can not predict 80% performance in actual
use. If we have full path coverage then we presume
that the test data was fully representative of the ac-
tual population. However, we still must consider the
likelihood of occurrence in the population of the cases
that were handled correctly by the rule-base and those
that were handled incorrectly. If 95% of cases in the
actual population will be handled by the part of the
system that works correctly, then we could predict per-
formance which will be better than the 80% accuracy
achieved by the test data. On the other hand, if only
50% of cases in the actual population will be handled
by the part of the system that works correctly, then
we could predict performance that will be much worse
than the 80% accuracy achieved by the test data.

In general we expect that, while we will not achieve
complete coverage of the system, the section that is
covered will correspond to the most likely situations in
the population. The portions of the system that are
not covered during testing will generally correspond to
the least likely situations in the population precisely
because it is much more difficult to find test data for
cases which are rare in the general population.

Next we consider a somewhat more complicated
case. Assume we still have 80% correct performance
of the system on the test data. However this time the
test data covers only 75% of the paths in the rule-base,
and the test data is representative of only 75% of the
possible cases that can occur in the general popula-
tion. However, those cases are likely to occur 90% of
the time in the general population. (That is to say, if
we listed the distinct kinds of possible situations, 75%
of them are represented in our test cases. However, if
you selected 100 random cases from the general popu-
lation, 90% of them would correspond to the test cases
we have). This implies that in actual use, 10% of the
cases that will be presented to the system are from the
pool of possible cases (25% of the possible cases) that
were not represented by our test data. If we want to
generate a safe lower bound on performance, then we
have to assume that these cases will operate incorrectly
in actual use of the system, since the system was never
tested on them. We would like to be able to gener-
ate an actual performance prediction for this kind of
situation, which we expect to be some function of the
performance on the test data, the coverage of the rule-
base, the representativeness of the test data and the
likelihood of the cases represented by the test data.

13

Total Path Coverage

We return to the simple situation, with P = 80% cor-
rect performance, C' = 100% coverage of the rule-base,
and R = 100% of the kinds of cases in G P represented
by the test data. Let us further assume, for this sce-
nario, that each test case has the same likelihood of
occurrence in GP. In this situation we would predict
performance in actual use that was the same as the
performance on the test data.

If we leave all other conditions the same but assume
that the test cases do not have the same likelihood,
then the performance prediction changes somewhat.
Assume that we have 10 test cases (f1 .. .t10) , of which
8 are handled correctly by the system, for P=80%.
Further assume that t; and t; have likelihood of 15%
each, t9 and %30 have likelihood of 5% each, and all
other cases have likelihood of 10%. We can compute
the performance prediction by simply computing the

sum
10
E li * Cj
=1

where [; is the likelihood of the sth test case and ¢; is
1 if the actual result agreed with the expected result
for the ith test case and is 0 otherwise. We can easily
see that if the system performs incorrectly on ty and
tio then we can predict performance that is 90% cor-
rect although only 80% of the test cases were handled
correctly. Similarly, if the system performs correctly
on all cases but ¢; and 3 then we predict performance
that is 70% correct in actual use of the system, lower
than the 80% performance on the test data.

By assuming a one-to-one correspondence between
test cases and paths in the rule-base, we can shift the
likelihood figures onto the paths. Then, in the simple
scenario in which all paths are executed, we can simply
sum the likelihood values for all paths for which the
answer given by the system was correct and use the
resulting value as the performance prediction. Usually,
however, we expect that not all paths will be executed.

Incomplete path coverage

If not all paths are executed by the test data, then the
maximum safe performance prediction is based on the
assumption that any path not executed during testing
will give an incorrect result in actual use of the system.

Consider a scenario in which T'C represents 75% of
the kinds of cases possible in GP (R = 75%). Given our
assumptions above, we then expect coverage of 75% of
the paths in the rule-base during testing of the system
(C=75%). Let us further assume, as before, that the
actual answers generated during testing are correct for
80% of the test cases (P=80%). If all cases in TC

are equally likely then, in actual use of the system, we
predict 60% correct performance. This is based on the
fact that out of 100 random cases selected from G P, 25
of them will be wrong because they use the untested
portion of the rule-base, and an additional 15 will be
wrong because they utilize the tested portion of the
rule-base which gave incorrect results during testing.

Next we consider that not all cases are equally likely.
Assume, with no loss of generality, that there are 100
equivalence classes (types of cases) in GP, and a cor-
responding 100 paths in the rule-base. Further assume
we have only 75 test cases representing 75 of these
100 equivalence classes, and that these 75 cases are
more likely and are found in the population 95% of
the time. That is, out of 100 random cases from GP,
95 of them will fall into the 75 equivalence classes rep-
resented by our test cases, with multiple cases falling
into some equivalence classes. Examples of the remain-
ing 25 equivalence classes are found in only 5 out of 100
random cases.

In this situation we can think of the rule-base as
being unevenly divided as follows:

o RBpnc represents the portion of the rule-base that
was not covered during testing, and would presum-
ably handle the 25 kinds of cases that were not in-
cluded in the test set. We expect this portion of the
rule-base to fail in actual use

e RB(represents the portion of the rule-base that
handles the 75 kinds of cases that are included in
the test set. This section is further divided into

— RB¢e represents the portion of the rule-base that
correctly handles a subset of the 75 kinds of cases
included in the test set

— RBcy represents the portion of the rule-base that
incorrectly handles a subset of the 75 kinds of
cases included in the test set

Out of 100 cases drawn from GP, 5 would be han-
dled by RBn¢, and we expect incorrect answers for
those, while 95 would be handled by RBy. We assume
the existence of an oracle that determines if the result
given by the rule-base for a test case is correct or that
we have a priori knowledge of the expected result for
each test case. We also assume that we know the like-
lihood value for each of the paths in RB¢o. Given our
earlier assumption of a one-to-one correspondence be-
tween test cases and paths, this is really a likelihood
that each path will be executed.

Let P, be the number of paths in RB¢. Each path
in RB¢ has a likelihood /; based on how popular the
corresponding case is in GP. Therefore our perfor-
mance prediction for RB¢ (and prediction of correct

14

performance overall by the system) is

Pc
Z li * C;
=1

where, as before, ¢; is 1 if the actual result equals the
expected result along that path and is 0 otherwise.

To demonstrate how this computes a performance
prediction, we consider two scenarios.

Scenario 1 We first consider a situation in which
R=T75%, C=75% and P=80%. Furthermore, we let the
total likelihood that a case will be handled by RBy¢
be 5%, with 95% likelihood that a case will be handled
by RB¢. Assume that P,=100 (there are 100 paths
total in the rule-base) and that one path represents an
extremely popular case, say 10% of the entire popula-
tion. That is, 10% of all cases run through the system
will execute this particular path. We also assume that
the system does give the correct answer for the popular
case (it is in RBg¢).

Out of 100 random cases from the population at
large, GP, 5 run through RBny¢ (which contains 25
paths) and, presumably, give a wrong answer. The re-
maining 95 cases run through RBc (made up of 75
paths). The test cases gave 80% correct answers and
were run only through RB¢. Given our assumption of
a one-to-one correspondence of test cases and paths,
this means that, of all paths in RB¢, 60 will give a
correct answer (80% of 75 paths). Therefore, of the 95
random cases handled by RB¢, 77.85 will actually be
handled correctly, or we predict 77.85% correct perfor-
mance of the rule-base in actual use.

We can see this as follows: The 75 paths in RB¢
have a total likelihood of execution of 95% out of 100
test cases, of which 10% belongs to one path and 85%
is divided equally among the 74 remaining paths. So
the likelihood of execution of each of the 74 paths is
1.15%. Another way of viewing this is that of the 60
paths that give a correct result during testing, during
actual use one path will handle 10% of cases and each
of the remaining 59 paths will handle 1.15% of cases.
Therefore, in actual use we expect a correct result in

1.15% 59 +10* 1

cases, or 77.85 out of 100 cases, or 77.85% correct per-
formance.

Scenario 2 In this case we leave the above scenario
unchanged except that we assume that the popular
case is tested but is handled incorrectly by the rule-
base (the path for the popular case is in RB¢y). There-
fore we predict correct performance along 60 paths,
each of which has a likelihood of execution of 1.15%,

for a performance prediction of approximately 69%,
significantly lower than the 80% that might be inferred
if we simply looked at the 80% correct performance on
the test cases.

Conclusions

It is clear from this work that the actual performance
we can expect from a rule-based system in real use can
be significantly different than its performance on a set
of test data. A benefit of the method discussed is that
we can get the performance prediction without running
repetitive test cases. We avoid the approach of running
similar cases in order to get statistical confirmation. If
a case executes correctly, then we use its likelihood of
occurrence in the general population to generate the
performance prediction figure. Using the information
about coverage, number of paths, and representative-
ness in the fashion described allows us to use limited
data about the population and the system under test
to compute a safe performance prediction figure.

References

Barr, V. 1995. TRUBAC: A tool for testing expert
systems with rule-base coverage measures. In Pro-
ceedings of the Thirteenth Annual Pacific Northwest
Software Quality Conference.

Barr, V. 1996. Applications of Rule-Base Coverage
Measures to Expert System Evaluation. Ph.D. Disser-
tation, Rutgers University.

Barr, V. 1997. Rule-base coverage analysis applied to
test case selection. Annals of Software Engineering 4.

O’Keefe, R., and O’Leary, D. 1993. Expert system
verification and validation: a survey and tutorial. Ar-
tificial Intelligence Review 7:3-42.

15

