
WHERE DO WE GO FROM HERE?
Applying KBS V&V Technology

R.F. Gamble
A.V. Pai

University of Tulsa
Tulsa, OK, USA

R.T. Plant
University of Miami

Miami, FL, USA

Introduction

As the field of verification and validation for knowledge-
based systems (KBSs) has matured, much information,
technology, and theory has become available. Though not
all of the problems with respect to KBSs have been
solved, many have been identified with solutions that can
be used in an analogous manner in situations where the
application is not necessarily a traditional KBS. The
value of the research that the V&V community has
conducted increases substantially as it is shown to be
wider reaching than traditional KBSs. In this research
note, we apply KBS V&V research to active databases
where we show that similar anomalies can occur.

The "active" component in an active database (ADB)
consists of rules that execute as a result of database
accesses and updates. These rules and their inference
mechanism can be abstracted from the database to form
the rule processing component. We show how the rule
structures of various ADB rule processing components
can be isolated and converted into a consistent
intermediate form similar to a KBS rule. We borrow from
verification research in KBSs to detect anomalies that
may be present in ADBs. Because the incorporation of
active components in databases is becoming standard, this
work illustrates the danger these anomalies can pose.
Fortunately, tools from KBS verification already exist to
aid ADB verification.

Active Databases

The dynamic properties of an active database, that cause
specified actions to occur automatically when certain
conditions in the database arise, can be extremely useful
to programmers. For example, consider an inventory
database with a large number of products where each
contains a quantity on hand, threshold, and reorder flag.
In a traditional database, as products are sold, the quantity
on hand is continually updated. An ADB goes one step
further by monitoring the quantity on hand such that if it

falls below the threshold, the reorder flag is set. A trigger
or rule, containing an event, condition, and action (E-C-
A) is placed in the "quantity on hand" field. When its
associated event (an update to the quantity on hand)
occurs, the condition of the trigger is evaluated. If the
condition evaluates to true, the action is executed and the
reorder flag is set accordingly. The ability to detect events
and evaluate/execute rules over a large amount of data
make active databases more flexible than traditional
database systems [1, 2, 3]. The ability to manipulate data
with rules indicates the need for a sound rule processing
component to ensure the overall integrity.

A database trigger in Oracle is implicitly executed when
an INSERT, DELETE, or UPDATE event is issued
against the table for which the trigger is defined. A trigger
is able to fire only when it is enabled, at which time it can
also fire other enabled triggers, producing a cascading
effect. The basic format of a database trigger consists of a
triggering event, a trigger restriction, and a trigger action
and is depicted in Figure I. A complete formal definition
is provided in [4, 5]. A triggering event in Oracle is the
SQL statement that causes the trigger to fire. A trigger
restriction specifies a Boolean expression that must be
TRUE for the trigger to fire. A trigger action is the
procedure that contains the code to be executed when the
trigger restriction evaluates to true.

Triggering AFTER UPDATE OF column name
Statement: ON table name
Trigger WHEN
Restriction (new.column nameA 
(Optional): new.column nameB)
Trigger FOR EACH ROW
Action: DECLARE variable and variable

data type
BEGIN IF... THEN...END IF...

END.

Figure 1: Abstracted Oracle Trigger
[151

25

From: AAAI Technical Report WS-98-11. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



As many as twelve triggers can be associated with a
single table. Multiple triggers can be fired. Conflict
resolution strategies have been defmed to manage
multiple trigger firings [5].

KBS Verification and Validation
Applications

Potential KBS Anomalies

KBS verification includes examining the structure and
semantics of a knowledge base. Primary verification tools
generally analyze the knowledge base for anomalies,
which may be logical, epistemological, or semantic, and
often fall into the following categories [6, 7]: redundancy,
conflicting rules, circularity, and errors of omission.
These categories of anomalies and methods of their
detection have already been widely researched for various
types of K.BSs, including role-based and hybrid (object-
oriented and rule-based) systems [6, 8, 9, 10, 11, 13,
14,15, 16].

Structural Similarities with ADBs

The logical form of a knowledge-based system rule and
an active database rule are somewhat similar. However,
the rule processing within ADBs differs from the rule
processing in KBSs. A KBS typically uses a match-select-
execute cycle in which the knowledge base holds the
rules, the working memory holds the available facts, and
the inference engine deduces new information by
comparing the contents of working memory to the rules
and executing some subset of matching rules. An ADB,
on the other hand, uses coupling mode information that
indicates when the conditions and actions of rules are to
be evaluated and executed relative to a database event.

In order to analyze the ADB rules such that verification is
facilitated, we must transform them to a consistent
generic representation as follows:

Given the Oracle rule:

Rule 5

CREATE TRIGGER rchainl
AFTER UPDATE OF quantity
ON inv

FOR EACH ROW
WHEN (((new.QUANTITY 

old.DEFECTED_QTY) <=
old.THRESHOLD)

AND (old.status 
’UNPREPARED’))

BEGIN

END

UPDATE stock

SET status = ’MIN’
WHERE itemNo = :old.itemNo;

we identify the Event, Condition and Action (E-C-A)
parts as:

Event: UPDATE OF quantity ON inv

Condition: ((new.QUANTITY-
old.DEFECTED_QTY) <=

old.THRESHOLD)
AND (old.status 

’UNPREPARED’)
Action: UPDATE stock SET status = ’MIN’

WHERE itemNo = :old.itemNo;

These parts are converted into predicates and represented
in a generic E-C-A format where E1 and E7 represent
events.

Event: E1
Condition: P(x, y, z) AND Q(w)

Action: E7 AND T(v)

The next transformation is to a knowledge base
Condition-Action format.

Condition: E1 AND P(x, y, z) AND Q(w)

Action: E7 AND T(v)

The intermediate representation given above serves as a
generic language in which to convert different ADB
representations of rules into a consistent format for
analysis. By abstracting away the particular syntax of an
ADB rule set we can efficiently isolate potential
anomalies.

26



Identifying Potential ADB Rule Anomalies

In this section, we briefly show how the generic
representation allows for direct anomaly detection using
KBS verification techniques. For example, one method
involves the construction of an event dependency tree. In

order to illustrate potential anomalies, a rule set in Oracle
7 ADB rule syntax was created that contains anomalies
for redundancy, incompleteness, and inconsistency [12].
The portion of the Oracle and KBS rule sets that contain
redundancies are described in Table 1.

ORACLE ADB RULE SET KBS RULE SET

RULE 1 CREATE TRIGGER rulel RI: E1,P(x,y,z), Q(w) --+ 
AFTER UPDATE OF quantity ON inv
FOR EACH ROW WHEN

(((new.QUANTITY - old.DEFECTED QTY) <= old.THRESHOLD)
AND (old.status = ’UNPREPARED’))

BEGIN reorder(:old.itemNo); END;
RULE 2 CREATE TRIGGER subsumption R2: E1,P(x,y,z),Q(w), R(v) 

AFTER UPDATE OF quantity ON inv
FOR EACH ROW WHEN

(((new.QUANTITY - old.DEFECTED_QTY) <= old.THRESHOLD)
AND (old.status = ’UNPREPARED’)
AND (old.ONRECALL_LIST = ’TRUE’))

BEGIN reorder(:old.itemNo); END,

RULE 3 CREATE TRIGGER duplication R3: E1,P(x,y,z), Q(w) 
AFTER UPDATE OF quantity ON inv
FOR EACH ROW WHEN

(((new.QUANTITY - old.DEFECTED_QTY) <= old.THRESHOLD)
AND (old.status = ’UNPREPARED’))

BEGIN reorder(:old.itemNo), END;

RULE 4 CREATE TRIGGER unnec if R4: E1,P(x,y,z), ~Q(w) 
AFTER UPDATE OF quantity ON inv
FOR EACH ROW WHEN

(((new.QUANTITY - old.DEFECTED QTY) <= old.THRESHOLD)
AND (old.status = ’PREPARED’))

BEGIN reorder(:old.itemNo); END;

RULE 5 CREATE TRIGGER rchain 1 R5: EI,P(x,y,z), Q(w) ---> E7, 
AFTER UPDATE OF quantity ON inv
FOR EACH ROW WHEN

(((new.QUANTITY - old.DEFECTED_QTY) <= old.THRESHOLD)
AND (old.status = ’UNPREPARED’))

BEGIN UPDATE stock
SET status = ’MIN’
WHERE itemNo = :old.itemNo; END;

RULE 6 CREATE TRIGGER rchain2 R6: E7,T(x),S(y) ---> 
AFTER UPDATE OF status ON stock
FOR EACH ROW WHEN (new.status = ’MIN’)
BEGIN reorder(:old.itemNo); END,

Table 1: An Example Rule Set

27



The different types of redundancy can be better seen
when the KBS rules are grouped together in their
redundant configurations as in Table 2. The results of
actually testing the Oracle rules are described in the last

column. As the reader can see, there are no built-in
database safeguards for the anomalies already known to
V&V community.

Redundancy Type Rule Groups Result

Subsumption RI: E1,P(x,y,z), Q(w) Both rules execute

R2: E1,P(x,y,z), Q(w), R(v) The qty_reorder attribute of the On_Reorder
table updated twice

Reduceable RI: E1,P(x,y,z), Q(w) --~ Both rules execute

R4: E1,P(x,y,z), ~Q(w) The qtyreorder attribute of the On_Reorder
table updated twice

Duplication RI: E1,P(x,y,z), Q(w) --~ Both rules execute

R3: E1,P(x,y,z), Q(w) The qty reorder attribute of the On_Reorder
table updated for all attributes regardless of
the restricting conditions on the status of the
Inv table

Indirect RI: E1,P(x,y,z), Q(w) -~ All three rules execute

R5: E1,P(x,y,z), Q(w) ~ E7, The qty_reorder attribute of the On_Reorder
table updated twice.

R6: E7,T(x),S(y) 

Table 2: Anomaly Rule Groups

While a simple event dependency graph can isolate
redundancy anomalies, further analysis of the rules is
usually required prior to confirming a problem. For
example, if the rule R0, shown in Figure 2, were a part of
the rule set in Table 1, it would be seen as potentially
redundant with respect to events E1 and E2. However,
upon comparing this rule with the other rules that are
triggered by E1 and reach E2, it is concluded that this rule
is not redundant with the others since the LHSs of R0 and
the other rules leading to event E2 are not problematic.

5. Conclusion

KBS verification and validation techniques have greatly
matured to the point where they can be applied to
analogous types of computation in different domains. We
have shown that these techniques are valuable for
detecting anomalies within the rule processing component
of active databases, where no safeguards against such
anomalies were considered as part of including an
"active" component in a database.

RULE 0

CREATE TRIGGER notRedundant
AFTER UPDATE OF quantity

ON inv
FOR EACH ROW

WHEN (new.ItemNo = ’ 10A’)
BEGIN reorder(:old.itemNo); END;

Figure 2: Rule illustrating additional
analysis after anomaly detection

References

1. Hanson, E.N. (1991), The Design and Implementation
of the Ariel Active Database Rule System, Technical
Report UF-CIS-018-92, Department of Computer and
Information Sciences, University of Florida.

2. Stonebraker, M., Hanson, E., and Potaminos. S. (1988),
The POSTGRES Rule Manager, IEEE Transactions on
Software Engineering, 14(7):897-907.

28



3. Dayal, U. (1988), Active Database Management
Systems, Proc. of Conf. of Data and Knowledge Bases.
Jerusalem.

4. Hanson, E.N., and Widom.J. (1993), Rule processing 
active database systems, International Journal of Expert
Systems, 6(1):83-119.

5. Oracle (1992), Oracle Corporation, Redwood Shores,
CA 94065. Oracle 7 Server Manuals, Release 7.1.

6. Gamble, R.F. and Shaft T.M. (1996), Eliminating
Redundancy, inconsistency, and incompleteness in role-
based systems, International Journal of Software
Engineering and Knowledge Engineering, Vol. 7, No. 4.

7. Murrell, S., and Plant, R.T. (1995), Decision Tables:
Formalisation, Validation and Verification, The Journal
of Software Testing, Verification and Reliability, Vol 5,
(107-132).

8. Murrell, S. and Plant, R.T. (1997), A Survey of Tools
for the Verification and Validation of KBS: 1985-95,
Decision Support Systems, 21:4.

9. Plant, R.T. (1994), Validation and Verification 
Knowledge-Based Systems. Workshop Notes AAAI.
1994, Seattle, WA.

10. Gamble, R. and Landauer, C. (1995), Validation and
Verification of Knowledge-Based Systems. Workshop
Notes IJCAI-95, Montreal, Quebec. Canada.

I 1. Mukherjee, R., Gamble, R.F., and Parkinson. J.A.,
(1997), Classifying and Detecting Anomalies in Hybrid
Knowledge Based Systems, Decision Support Systems,
21:4.

12. Pai, A.V. (1995), Verifying the rule processing
components of active databases, M.S. Thesis, Dept. of
Mathematical and Computer Sciences, University of
Tulsa.

13. O’Leary. D.E. (1989), Verification of frame and
semantic network knowledge bases, AAAI-89 Workshop
on Knowledge Acquisition for KBSs.

14. Preece,A.D., Shinghal, R., and Batarek, A. (1992),
Verifying expert systems: A logical framework and
practical tool, Expert Systems with Applications, 5:421-
436.

15. O’Keefe, R. and O’Leary, D.E. (1993), Expert system
verification and validation: A survey and tutorial,
Artificial Intelligence Review, 7:3 - 42.

16. Schmolze, J. and Vermesan, A. (1996), Validation and
Verification of Knowledge-Based Systems. Workshop
Notes AAAI-96, Portland, OR.

29




