
Functional Ontology Artifacts:
Existent and Emergent Knowledge

Daniel E. O’Leary
University of Southern California

3660 Trousdale Parkway
Los Angeles, CA 90089-1421

oleary@rcf.usc.edu

Abstract

Ontologies have primarily been promoted to facilitate inter agent
communication and knowledge reuse. There has not been as
much emphasis on using ontologies to improve system quality.
As a result, typically, ontology development, and verification and
validation are treated as different stages in the life cycle.
However, this paper argues that ontology design should include
emergent knowledge that previously might only have been
considered or generated at the time of verification and validation.

Emergent knowledge differs from the existent knowledge that is
typically included in ontologies. Existent variable knowledge is
knowledge about variables that derives from the model of the
variable being used, e.g., how is a conceptual variable measured.
Emergent variable knowledge is knowledge about variables that
emerges after variables have been named, e.g., cardinality, which
variables interact with each other and how, e.g., independent and
dependent variables. Much emergent knowledge can be used for
verification and validation. Including emergent knowledge can
facilitate the use of ontologies to design and build systems with
fewer anomalies prior to testing.

1. Introduction

Ontologies are a relatively new and emerging area of
research. Where ontologies are often seen as one of the
"first steps" in system development and verification and
validation are typically seen as one of the "last steps."
Ontology is typically seen as a design issue, while
verification and validation are seen as testing issues. As a
result, ontologies have received little attention in the area
of verification and validation, and conversely. In
particular, verification and validation researchers primarily
have focused on treating ontologies as an artifact (e.g.,
O’Leary 1994) that can be verified and validated. Thus,
much of the previous literature has been focused on
designing tests for ontology artifacts, e.g., frame or object
representations.

Ontology specification is not yet a science. There are few
bounds as to what should or should not be included in an
ontology. In part, this is because of the importance of the

domain in ontology development and because of the
recentness of the development of ontologies. Further,
most emphasis on ontologies has focused on multiple
agents and knowledge reuse, not system quality. As a
result, this paper provides one approach to developing an
ontology and elicits some knowledge for inclusion in
ontologies that have not received much attention.

Existent variable knowledge is knowledge about variables
that derives from the model of the variable being used.
For example, how a variable is measured is existent
knowledge. Emergent variable knowledge is knowledge
about variables that emerges after variables have been
named. For example, the number of times a variable name
appears in a model or the tuples of variables that are paired
in order to generate knowledge statements are emergent
knowledge.

The source for the additional ontology information derives
from distinguishing between existent and emergent
knowledge. Typically, ontology definition includes
existent knowledge only. Including emergent knowledge
is important, since as with all computational artifacts, the
more about an ontology that can be structured, specified or
constrained, the more the ontology can be tested to
determine if it meets the needs of that structure or those
specifications and constraints. Further, the more structure
that can be specified in the ontology, the more that the
system can be investigated to ensure that it meets those
specification and constraints. As a result, this paper is
designed to elicit additional knowledge that can be
captured and employed in the ontology.

In particular, this paper argues that ontologies also should
include emergent characteristics, many of which provide a
basis for ensuring artifact quality and for artifact testing.
In so doing this paper addresses the following questions

What can we build into an ontology that facilitates
system quality and correctness, not just reuse and
communication?

3O

From: AAAI Technical Report WS-98-11. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

¯ What properties of ontology artifacts facilitate
verification and validation of that resulting ontology?

This paper extends previous research on ontologies, and
verification and validation with two primary contributions.
First, this paper extends the notion of ontology to include
emergent knowledge. Second, this paper pushes activity
that previously would have occurred with system
verification into the specification of the ontology and
system..

This paper

In order to elicit those contributions, this paper proceeds as
follows. Section 2 provides some background on
ontologies, briefly reviewing what information is in an
ontology, when ontologies are required and how they are
represented. Section 3 provides a review of the previous
verification and validation ontology literature and an
overview of the example used as a case study to illustrate
the analysis and types of knowledge that can be captured
in the ontology. Section 4 investigates ontological
specification of variable components, while section 5
analyzes ontological specification of variables. Section 6
discusses specification of variable roles that can be used to
facilitate ontology structuring. Section 7 develops
ontological specification of variable relationships. Section
8 analyzes the use of cardinality as part of an ontology.
Section 9 investigates the role of "emergent knowledge" in
ontologies. Section 10 briefly summarizes the paper.

2. Background: Ontologies

An ontology is an explicit specification of a
conceptualization (Gruber, 1993). It is a knowledge-based
specification that typically describes a taxonomy of the
tasks that def’me the knowledge. Ontologies typically are
explicit specifications of discourse between multiple
agents in the form of a shared vocabulary. However,
ontologies can be used in single agent systems as a means
of specifying system characteristics.

Ontologies are Necessary in Multiple Agent
Systems

Ontologies are critical for the development of multiple
agent systems so that the agents can engage in meaningful
dialogues. One example of that approach was given with a
discussion of the development of the Palo Alto
Collaborative Testbed (PACT) system by Cutkosky et al.
(1993) who noted

... the agents involved in any transaction must agree
on a common ontology, which defines a standard
vocabulary for describing time-varying behavior
under each view of time that is needed. What went on
behind the scenes in PACT, and is not represented in
computational form at all, was a careful negotiation
among system developers to devise the specific
pairwise ontology that enabled their systems to
cooperate. The developers met and emulated how
their respective systems might discuss, say, the
ramifications of increasing motor size. In this
fashion, they ascertained and agreed upon what
information had to be exchanged, and how it would
be represented.

Knowledge Reuse

Ontologies provide a basis for reusing knowledge, which
has a number of advantages. Previously used knowledge
may not require verification and validation. Previously
used knowledge does not have to be rediscovered, saving
both time and effort. Previously used knowledge can be
shared with others, in multiple agent systems.

A Priori Formal Specification of Ontologies?

It is tempting to suggest that ontology development is a
"formal specification" task, largely occurring before
system development. However, in real world settings,
ontologies often seem to emerge as the system is
developed, oftentimes using relatively informal processes.
For example, Cutkosky et al. (1993) found that

... what PACT actually demonstrates is a mechanism
for distributing reasoning, not a mechanism for
automatically building and sharing a design model.
The model sharing in PACT, as in other efforts, is
still implicit - not given in a formal specification
enforced in software. The ontology for PACT was
documented informally in email messages among
developers of the interacting tools.

That is not to say that there is not benefit to formally
specifying the ontology. However, it does suggest that
ontology knowledge, in part, emerges as the system is
developed and as parts of the ontology become better
understood.

With formal specification of the ontology either as an a
priori specification or as part of the system development,
comes an increased ability to use the ontology for
verification purposes: the more constraints on the system
the more ways to tell if it is correct.

31

What information or knowledge is
contained in an ontology?

What information is contained in an ontology? Typically,
an ontology contains measurement specification and
representation standards. Further, ontologies contain
detailed variable expressions and relationships between
variables. In particular, as noted by Cutkosky et al. (1993)
there is a wide range of information that depends heavily
on the nature of the task being modeled.

Agreements must be reached about concepts in the
natural world, such as position, time, shape,
behavior, sensors, and motors. For each concept,
agreement is required on many levels, ranging from
what it means to how it is represented. For instance,
how should two agents exchange information about
the voltage on a wire (what units, what granularity of
time?); how should manipulator dynamics be
modeled (as simultaneous equations or functions? in
what coordinate frame?). The four systems
comprising PACT used various coordinate systems
and several distinct representations of time (e.g.,
discrete events, points in continuous time, intervals
of continuous time, piecewise approximations).
These representations were chosen for valid task and
context - dependent reasons. They cannot simply be
replaced by one standard product model (e.g.,
representation of time).

Representation of Ontology Knowledge

Ultimately, ontology specification of variables and their
relationships can be specified in a wide range of traditional
knowledge representations forms, including rules, frames
(e.g., Waterman and Preece 1997), and networks (e.g.,
Gomez-Perez 1995). In addition, database representations
including, simple vector/table databases, trees, relational
databases, or other approaches can be used. For example,
in the expert system shell M.4, variable values can be
listed as part of a "legalvals" statement. In the following
example, the variable "industry" can take two values
"insurance" and "chemical."

legalvals(industry) = [insurance, chemical]

Alternatively, knowledge could be represented as a tree or
equivalent database representation, as in the following
example that describes characteristics of "movement,"
discussed later in the paper.

Tree Definition of "movement"

3. Previous Research on Verification and
Ontologies

There has been limited research joining notions of
ontologies and verification and validation research. In
part, the research to-date, is probably limited for two
primary reasons. First, the formal notion of ontology in
knowledge-based systems is relatively recent (e.g., Gruber
1993 and Cutkosky et al. 1993). Second, ontologies might
just be viewed as another artifact or form of knowledge
representation, such as rules. As another form of
knowledge representation, verification and validation
would exploit the structure of ontologies in order to satisfy
classic concerns of consistency, completeness and
correctness (e.g., Adrion et al. 1983). In addition, since
ontologies can be structured as traditional knowledge
representations, e.g., rules, frames, semantic nets, or
objects, much verification and validation of ontologies
would be similar to the verification and validation of those
forms of knowledge representation previously explored in
the verification and validation literature at the systems
level.

Previous Research

Gomez-Perez (1995) was one of the first to address the
issues of ontologies and verification, jointly. Gomez-Perez
(1995) provides an investigation of evaluating an ontology
in which she addresses the following questions:

¯ What does evaluation mean? (judge technically
features)

¯ What does assessment mean? (judge usability and
utility of features)

¯ What can be evaluated? (definitions, documentation
and software)

¯ Why evaluate? (guarantee correctness and
completeness of definitions, documentation and
software)

¯ What to evaluate against? (competency questions,
requirements and real world)

¯ When to evaluate? (iteratively ... as soon as possible)

32

¯ How to evaluate? (avoid ad hoc)
¯ Who evaluates? (various)
¯ Where to evaluate? (anywhere)

Gomez-Perez (1995) then illustrated the verification of
ontology with an example drawn from Gruber’s (1994)
"biblio text" example. In analysis of that example,
Gomez-Perez pays particular attention to verification of
definitions.

Waterman and Preece (1997) describe use of a tool
"DISCOVER" that verifies knowledge represented in
COVER (Preece et al. 1992) rule language (CRL)
Meta Ontology for verification of expert systems
(MOVES). MOVES is a hierarchical frame based system
with multiple inheritance and constraints. DISCOVER
uses a translation program to convert frame-based
ontologies in MOVES into rule-based CRL. Once this has
been done, mapping rules define the relationship between
the terminology and the knowledge base. DISCOVER
uses a slightly different anomaly checker than COVER.

Example Used in this Paper

Throughout this paper, an example is used to illustrate
selected ontology issues. The example, drawn from
Lawler and Williams (1988), has also been discussed
Landauer (1990) to illustrate rule-based system principles
of correctness. This paper uses some of the work
generated by Landauer (1990) as the basis of analysis
presented here. However, the use of the example here is
for illustration of ontology-based issues. As a result, parts
of the example are slightly altered to accommodate
particular interests.

The example concerns a CLIPS knowledge base for fault
diagnosis, isolation and recovery of the Manned
Maneuvering Unit (MMU). The MMU is designed
move a human astronaut around in space. The system has
104 "if ... then ..." rules. Although the example is drawn
from a rule-based system, no rules are analyzed. Instead
the focus is on the ontological structure underlying the
semantic expression of the model.

4. Ontology Specification of Variable Name
Components

For the discussion in this paper, at the lowest level of an
ontology are variable name components, not variables.
Variable components will be used to create variables.

When assembled, these variable components define the
individual objects and their functional capabilities.

Assume that the ontology is concerned with an ordered set
of objects O = (a, [3, Z, 6). Let Ft(a) indicate the
representation of the object cx at the root of the tree a. Let
F0 (Fl(a)) = {a0,1 cqjj}represent the jth ordered set
the object a at the first level of the tree, which takes at
most one of the mutually exclusive values a~j,~ a0j.
Let Fli k (F0 (Fl(c0) be an ordered set at the second level
the tree, etc. for each functionally related property,
defining a tree as in figure 2.

Example

The MMU knowledge has a number of objects, including,
gyroscope and automatic attitude hold that are not used as
variable names, but only as components of the variable
names that also include their functions. Those objects
could be represented as in the original system, NAME SET
1.

Objects
O = (gyroscope, automatic attitude hold)

Fl(gyroscope) = gyro
Fl(automatic attitude hold) = aah

Functional Relationships
FH(gyro) = {on, off}
F12(gyro) = {movement}
Fro(movement) = {none, pitch, roll, yaw}
Fret(none) = {none}
Fm2(pitch) = {neg, pos}
Fm3(yaw) = {neg, pos}
Fm4(roll) = {neg, pos}
FH(aah) = {on, off}

Desirable Properties

In order that the functional ontology be verifiable
(complete, consistent and correcO there are a number of
properties that are desirable, some resulting from the
functional structure and definition.

1. Each object is defined (otherwise the ontology is not
complete)

2. Each object has a finite set of unique functional
relationships (otherwise the system is not well-
defined).

3. Each functional relationship is defined in the ontology
(otherwise the ontology is not complete)

33

.
Each object has a unique representation (otherwise
there will be redundancy in the ontology). This
property is guaranteed by the representation.

Discussion

Variable naming approaches are not unique. As a result,
the resultant set of trees also is not unique. In the case of
the above example, an alternative set of names could be
developed as follows in what is referred to as NAME SET
2. In this set the number of objects increases by one and
the number of functional relationships decreases by one.

Objects
Fl(gyroscope) = gyro
Fl(gyroscope movement) = gyro-movement
Fl(automatic attitude hold) = aah

Functional Relationships
Fll(gyro) = {on, off}
Fll(gyro-movement) = {none, pitch, roll, yaw}
Fill(none) = {none}
Fl12(pitch) = {neg, pos}
Fll3(yaw) = {neg, pos}
Fll4(roll) = {neg, pos}
F1 l(aah) = {on, off}

Alternatively, the names could be represented as in NAME
SET 3, which is the most parsimonious representation of
the three. However, it is also the only one of the three
where for some set (Fll(gyro) = {on, off, movement}),
some, but not all values have other branches in the tree.

Objects
Fl(gyroscope) = gyro
Fl(automatic attitude hold) = aah

Functional Relationships
Fll(gyro) = {on, off, movement}
Fill(movement) = {none, pitch, roll, yaw}
Fllll(none) = {none}
Flllz(pitch) = {neg, pos}
Flll3(yaw) = {neg, pos}
FlH4(roll) = {neg, pos}
Fll(aah) = {on, off}

Alternatively, rather than components of a single variable,
these components could be assembled as two or more
variables. For example, "gyro movement" could be a
variable independent of the types of movement, e.g., "pitch
neg." This wide range of representations suggests that
whichever is chosen will have some structure that can be
exploited to ensure system quality.

5. Ontology Specification of Individual
Variables

A variable will defined as an n-tuple of objects and
functional relationships, for n > 1 where there is a tuple for
each object and related function. Tuples form the
variables of interest that are used in the system, where each
variable is a tuple formed from the related sets of ordered
variables resulting from all paths from the root to the end
of each branch in the tree.

Example

Using the variable components described in the previous
section, there are three different types of tuples that are
defined, in order to ultimately generate the variable names.
For NAME SET 1, we have the following variables.

Fl(gyroscope) = gyro, FH(gyro) yields the two variables

gyro on
gyro off

aah, F,(aah)
(aah off)
(aah on)

gyro, Fle(gyro), F121(movemenO, {gl211(none), Fl212(pitch),

F..(yaw), F1214(roll)}
(gyro movement none none)
(gyro movement pitch neg)
(gyro movement pitch pos)
(gyro movement roll neg)
(gyro movement roll pos)
(gyro movement yaw neg)
(gyro movement yaw pos)

Desired properties:

In order that the functional ontology be verifiable
(complete, consistent and correct) there are a number
properties that are desirable.

1. Each variable in the ontology is unique (otherwise
there is redundancy)

2. Each variable tuple defined by object and functional
relationships is included in the ontology (otherwise the
ontology is not complete).

34

6. Ontology Specification of the Role of
Variables

Variables can have different roles in the ontology. One
category of existent information is whether or not a
variable is an independent or dependent variable. Let A be
the set of independent variables and Z be the set of
dependent variables. For all o~, each variable represented
as a tuple, (F1 (a), Flj (Fl(cx))) ~ either A or Z,
both. In terms of rule-based systems this roughly maps
into conditions and consequences, respectively. To the
extent that those roles can be specified as unique
occurrences the ontology provides additional structure.
Additional categories can also be generated to reflect other
types of categories of variables, if they exist.

Example

One set of definitions for categories would put "gyro on"
as an independent variable and "gyro movement ..." as a
variable dependent on "gyro on." However, if we assume
that "gyro movement" and movement type (e.g., "pitch
neg") are treated as variables, then movement type is
dependent on "gyro movement". In addition, we see that
"gyro movement" and "gyro on" are parallel structures.

Desirable Property

Ontology structures of roles of variables have a number of
desirable characteristics that facilitate verification and
validation.

.
Variable roles are can be uniquely specified for all
variables, given a particular set of variable
components.

7. Ontology Specification of Sets of Variables

Using individual variables and their type categorization,
tuple relationships between variables can be specified as
sets of variables. For example, sets of independent
variables could appear together or sets of independent and
dependent variables could appear together as part of the
causation phenomena being modeled by the system. In the
case of a rule-based systems this would translate to
establishing categories for sets of variables, such as
feasible sets of variables that can be independent variables
together, or sets of variables that can be dependent
variables together or variables that can be dependent-
independent sets. Such knowledge could emerge as
understanding increases through system development.

Further, in some settings, relationships between sets of
variables can be established as part of the ontology. For
example, McBride and O’Leary (1997) used the Cartesian
product (®) to relate all pairs of certain sets of variables.
The operator ® defines all pairs between specified
variables, e.g., (Fl(ct), F1j (Fl(CX))) ® (FI(13), Fnk
...). The advantage of being able to specify Cartesian
product relationships is that systems can be made to easily
generate those relationships, rather than have humans
intervene to generate them.

Example

Continuing with the above example, pairs of variables can
be specified. The ® operator is illustrated in the following
examples of variable pairs.

[aah, Fll(aah)]®[gyro , Fle(gyro), F121(movemenO,
{Free(pitch), F m 3(yaw), F m 4(roll)

(aah on) (gyro movement pitch neg)
(aah on) (gyro movement pitch pos)
(aah on) (gyro movement roll neg)
(aah on) (gyro movement roll pos)
(aah on) (gyro movement yaw neg)
(aah on) (gyro movement yaw pos)

[gyro, Fl2(gyro), Fm(movemenO, {F1211(none),
Fl212(pitch), F1213(yaw), F1214(roll)}] ~ (gyro On)

(gyro movement none none) (gyro
(gyro movement pitch neg) (gyro
(gyro movement pitch pos) (gyro
(gyro movement roll neg) (gyro
(gyro movement roll pos) (gyro
(gyro movement yaw neg) (gyro
(gyro movement yaw pos) (gyro

In addition, these sets of variables can also exploit whether
they are drawn from a dependent or independent variable
set or one from each.

Desired Properties

In order to assure verifiability, there are a number of
desirable properties.

1. Each feasible n-tuple is unique (otherwise there is
redundancy)

2. Each feasible n-tuple is included (otherwise the
ontology is not complete)

3. Each n-tuple generated is feasible (otherwise,
ontology is not correct)

35

.
Each Cartesian product can be specified at the
definition level without having to elicit each pair
(otherwise there is an opportunity for an error)

Ontologies can be used to specify a wide range of
relationships, including specification of n-tuples of
variables (not just n tuples of components that make up
variables), symmetric relationships between n-tuples, and
or other types of functional relationships.

8. Ontology Specification of Cardinality

Let Itxl indicate the cardinality of a, where cardinality
refers to the number of something. Cardinality
relationships can also be specified as part of the ontology
definition. Cardinality naturally appears as a part of many
real world phenomena. Ontology specification of
cardinality can relate to specification of the number of
times an object, a variable pair, or any other aspect should
appear in a system.

Example

Continuing the example from above, the sample system
has certain emergent specifiable cardinalities.

Cardinality Pair

49
4
4
4
4
4
4

(gyro movement none none) (gyro
(gyro movement pitch neg) (gyro
(gyro movement pitch pos) (gyro
(gyro movement roll neg) (gyro
(gyro movement roll pos) (gyro
(gyro movement yaw neg) (gyro
(gyro movement yaw pos) (gyro

However, different naming conventions and different
variable sets can result in different cardinalities. For
example, as noted above, we might treat "gyro movement"
as a separate variable and the type of movement (e.g.,
"pitch neg") also as a variable. In this case there are
different sets of variable cardinalifies.

49
4
4
4
4
4
4

(gyro movement) (none none) (gyro
(gyro movement) (pitch neg) (gyro
(gyro movement) (pitch pos) (gyro
(gyro movement) (roll neg) (gyro
(gyro movement) (roll pos) (gyro
(gyro movement) (yaw neg) (gyro
(gyro movement) (yaw pos) (gyro

In addition, we can derive additional cardinality pairs, such
as

73 (gyro movement) (gyro on).

This later eardinality measure is a looser constraint than
the detailed set of 49, 4, etc.

Desirable Property

1. Cardinality can be specified for all variables and n-
tuples of variables.

9. Emergent Knowledge

With different NAME SETS and when different variables
are used to model the same phenomena, then there is
different emergent behavior. When the variables "(gyro
movement) (pitch neg) (gyro on)" or "(gyro
movement pitch neg) (gyro on)" are used there
differences in what variables are independent or dependent
variables, what variables appear as tuples, what are the
cardinalities of tuples, etc.

What is emergent knowledge?

When a variable representation is generated and
implemented there are certain characteristics that emerge
because of the choice of the name and what is included in
that name, this is emergent knowledge. That emergent
knowledge can be used for facilitating system quality.

Emergent knowledge does not depend on the form of
knowledge representation being used. This paper has
argued that emergent knowledge should be included in
ontology specifications. Its inclusion can link system
specification through ontology with what has been seen
primarily as one of the final tasks, verification and
validation.

In general emergent knowledge is knowledge about the
variables that can constrain the behavior of the system, but
that ties directly to the concepts in the ontology. However,
if the knowledge representation is well-established then
emergent knowledge can include constraints resulting from
implementation of the variables in the particular
knowledge representation.

Advantage and Disadvantage of Emergent
Knowledge

36

The primary advantage of using emergent knowledge is
that it allows development of a tighter ontology
specification, with more structure and constraints. That
structure and those constraints can facilitate development
of systems that are consistent, complete and correct.
Perhaps the primary disadvantage of using emergent
knowledge is that it can make it more difficult to make
changes to the system. Adding new knowledge to the
system likely would change the specification of the
ontology, forcing changes in both the system and the
ontology. However, if the knowledge did change then the
ontology would likely change also.

What Kinds of Emergent Knowledge Probably
Should Not be Used?

Certain types of emergent knowledge probably should not
be embedded in the ontology. First, knowledge
representation-specific knowledge probably should not be
embedded in the ontology. Such knowledge would limit
reuse to similar knowledge representation structures.
Second, emergent knowledge that changes frequently or is
likely to change should not be used in the ontology.

How Much Emergent Knowledge Should be Used
in the Ontology?

An ontology can be overspecified using too much
emergent knowledge or underspecified, using too little
emergent knowledge. How much emergent knowledge
that should be used depends on the developer and the
developer’s commitment to the ontology and need for
flexibility at the system level. In any case, cost benefit
analysis can be used to decide which structures provide the
greatest benefit.

I0. Summary

This paper differentiated between emergent and existent
types of knowledge for use in ontologies. Emergent
knowledge is dependent on the implementation of naming
variables and what concepts are made into different
variables. Emergent knowledge can include the role of the
variable, cardinality of the variable, appearance of the
variable with other variables, and a range of other
knowledge. Emergent knowledge can be used to establish
expectations about a system from its ontology,
constraining the system. Accordingly, emergent
knowledge can be used to improve system quality through
facilitation of identification of anomalies. Building
emergent knowledge into ontologies provides a means to
shift what has been traditionally testing activity into what
is commonly viewed as design.

References

Adrion, W., Branstad, M., and Chemiavsky, J. "Validation,
Verification and Testing of Computer Software," ACM
Computing Surveys, 14, 2, pp. 159-192, 1983.

Cutkosky, M., Engelmore, R., Fikes, R., Genesereth, M,
Gruber, T, Mark, W., Tenenbaum, J., Weber, J. "PACT:
An Experiment in Integrating Concurrent Engineering
Systems," Computer, January, 1993, pp. 28-37.

Gomez-Perez, A., "Some Ideas and Examples to Evaluate
Ontologies," Proceedings of the Eleventh Conference on
Artificial Intelligence, Los Angeles, CA, February 1995,
pp. 299-305

Gruber, T., A Translational Approach to Portable
Ontologies, Knowledge Acquisition 5, 2, 1993 pp.199-
220.

Gruber, T., "Bibliographic Data Ontology,"
ftp://hpp.stanford.edu/pub/knowledge-
sharing/ontologies/htmlfoibliographic-data/

1994,

Landauer, C., "Correctness Principles for Rule-based
Expert Systems," Expert Systems with Applications,
Volume 1, Number 3, 1990, pp. 290-316.

Lawler, D., and Williams, L., "MMU FDIR Automation
Task," Final Report, Contract NAS9-17650, Task Order
EC87044, Houston, Tx, McDonnel - Douglas, Astronautics
Company, 1988.

McBride, R. and O’Leary, D., "A Generalized Network
Modeling System for Scheduling," Annals of Operations
Research, Volume 75, pp. 355-372, 1997.

O’Leary, D., "Artifacts: Toward a Theory of Verification
and Validation," International Journal of Intelligent
Systems, Volume 9, Number 9, 1994, pp. 853-866.

Preece, A., Shinghal, R., and Batarekh, A., "Verifying
Expert Systems: A Logical Framework and a Practical
Tool," Expert Systems with Applications, Volume 5, 1992,
pp. 421-436.

Waterman, A. and Preece, A., "Knowledge Reuse and
Knowledge Validation," Verification and Validation of
Knowledge-based Systems, - Papers from the 1997 AAAI
Workshop, pp. 33-39.

37

