
An Approach to Quantifying Tradeoffs in
Testing Intelligent Systems

Deborah Walker and Piotr Gmytrasiewicz

Computer Science and Engineering Department
University of Texas at Arlington

Arlington, TX 76019
dwalker @ metronet.com, piotr@cse.uta.edu

Abstract

The work we are presenting extends the scenario based
testing methodology to make it applicable to the testing of
intelligent software systems. Due to the unpredictability of the
environments in which intelligent systems are deployed, we have
extended the scenario tree concept to include equivalent classes
of events and system states, and the probability with which the
classes of events are expected to occur. Using the notion of
utility, we define the concept of importance of testing an event in
an intelligent system, possibly equipped with a learning module.
Finally, we quantify the degree of confidence achieved by partial
testing of a system. Our approach allows the designer to
determine which test cases should be executed to meet the given
confidence requirements, and to examine the tradeoffs between
further testing and increased confidence in the system.

1. Introduction

As intelligent systems become more and more prevalent in
today’s software applications, the need to ensure their
quality and reliability becomes imperative. Software test
engineers are faced with a unique task when testing
intelligent systems, since traditional software engineering
techniques are not directly suitable for intelligent
applications. Traditional software systems can simply be
tested using any accepted method developed to test
software with static processing capabilities. Intelligent
software, however, has both static and dynamic processing
capabilities--that is, it processes data differently over time.
The need to differentiate these two properties of intelligent
systems has been uncovered before (Preece, Grossner,
Radhakrishnan, 1996). A detailed analysis of the specific
dynamic properties of an intelligent system is beneficial in
white-box testing techniques, as shown by (Chang, Combs,
& Stachowitz 1990; Evertsz 1992; Preece, Shinghal, &
Batarekh 1992). However, it is often the case that a white-
box testing approach is unsuitable for certain situations,
and a black-box testing approach is desired. This involves
merging the static and dynamic portions so the system may
be evaluated as a whole. This is not license to test the
system in a conventional manner; the dynamic aspects of
the system must still be accounted for. However, as noted
previously by (Rushby 1988), the opportunity is available
to adapt conventional testing methods to the realm of

intelligent systems. The concepts illustrated in this paper
take advantage of one such opportunity. We have adapted
the scenario based approach to create a new model for
intelligent systems testing strategy and have extended this
model to quantify the tradeoffs between testing efforts and
the confidence in the intelligent system’s reliability.

2. Scenario Based Testing Approach

One commonly used method to develop test cases for
traditional, repeatable, software systems is to use the
scenario based approach. Scenario testing involves
identifying every possible sequence of events encountered
by a system, then testing each scenario, or sequence,
independently. The scenarios form a tree, as illustrated in
Figure 1. In Figure 1, the root node, Idle, represents the
initial state of the system. Every possible event that can
cause a transition out of this state results in the tree
branching down from this initial state. Every complete
path from root to leaf represents a scenario. Although in
reality any number of cycles may exists between nodes in
the same scenario, such cycles are omitted from the model
since testing the cycles would result in duplicated effort.

In the traditional approach to scenario testing, one
assumes that every leaf node is the same as the root. This is
because in a well-behaved traditional, and repeatable,
system, each sequence of events will inevitably return the
system to its initial state. To apply scenario based testing
to the system represented by this scenario tree, test cases
are chosen so that every scenario is tested--that is, every
edge and node are traversed by the test cases at least once.
This testing method is exhaustive and ensures complete
test coverage.

Intelligent systems and the environments in which
they operate are inherently different from traditional
systems. First, a traditional software system has a finite
number of states, while an intelligent software system may
have an infinite number of states. This is due to the fact
that, unlike traditional software, intelligent systems can
learn, i.e., increase their knowledge over time by adding
information to their knowledge base, and adapt their
behavior to suit the environment they encounter. This

46

From: AAAI Technical Report WS-98-11. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Select Close

Open Invalid

Figure 1: Scenario Tree Model of a Traditional Software System (a simple text editor).

constant adaptive process prevents an intelligent system
from returning to its own previous, less informed states.
Furthermore, the requirements and operating constraints of
a traditional system are generally concrete and enumerated
during the requirements analysis. Thus, the events that can
occur are knowable and can be simulated by test cases. An
intelligent system is usually required to operate in an
environment that is normally not fully known beforehand.
The number and exact nature of some of the events that
may occur are therefore uncertain.

It is for these two reasons that traditional software
testing methods are not directly suitable for intelligent
systems. Since the number of events is unknown and
possibly infinite, and the system states are non-repeating,
the scenario tree has infinite breadth and depth. Thus,
exhaustive testing of an intelligent system using the
scenario based approach is not possible because the size of
the scenario tree explodes beyond testable bounds.

In an attempt to fill this void, we have formalized an
approach that modifies scenario based testing to make it
applicable to intelligent systems. We have enriched the
scenario tree model with new features to provide a
systematic and customizable testing strategy that quantifies
the increase of confidence resulting from more extensive
testing. In Section 3 we present a modified scenario tree
modeling technique applicable to intelligent systems. In
Section 4 we outline the procedure required to use this
model for testing purposes, concentrating on the evaluation
of confidence and exploring the tradeoffs between
complete test coverage and required test efforts. We
conclude by listing possible extensions of the conceptual
model we have described.

3. Adapting the Scenario Tree Model

The scenario tree model, with some straightforward
modifications, provides an appropriate representation of an
intelligent system’s interaction with its environment.
Specific adjustments are necessary to account for the
unique nature of an intelligent system. Out modifications
follow the spirit of using Markov models for statistical
based testing (Feinberg & Shwartz, 1991).

First, to compensate for the infinite number of
external events that could potentially arise in an uncertain
domain, we use the concept of an event class. Rather than
enumerating each individual event and allowing it separate
treatment, similar events are grouped into abstract event
classes. Although the most appropriate method used to
identify event classes will vary greatly between specific
applications, we require that all events in an event class be
equivalent in that they invoke similar reactions by the
system, and result in equivalent system states. In other
words, our concept of the event class is based on the
assumption that the resulting states of the system are
indistinguishable from one another for testing purposes.
Thus, validating the system for any one event in a class
ensures that all other member events have also been tested.
To account for the unexpected events, we introduce an
additional class with unknown members. This class can
not be tested, but its inclusion is vital for evaluating the
achieved confidence. The event class concept keeps the
number of events in the scenario tree model within
reasonable limits.

Second, to further specify the nature of our event
class labeled edges, we require that probabilities be
assigned to each. Thus, every event class branching down

47

[5O]

7

[100]

7 (0.2) x (0.05)

(0.05)

[9o1 [201

’, l l ,,

Figure 2: Scenario Tree Model Adapted to an Intelligent System.

from a node in the scenario tree will be assigned the
probability of the occurrence of an event from that event
class. Domain knowledge or statistical data should serve
as a guide when assigning probabilities. We use the
notation Pn, to indicate the probability of an event which
transitions the system into state n.

Before elaborating further, we should present an
abstract representation of an intelligent system state. A
traditional system state can be identified solely by all the
event-next-state pairs that branch down from a state. We
will call this the static portion of the system state. An
intelligent system, in addition to the static portion of its
state, also has a dynamic portion, which is associated with
the system’s evolving knowledge base. When examining
the scenario tree model, although the knowledge base state
of the system is ever changing, we will label the nodes
with the same static portions as related states,
differentiated only by what the system had learned in the
interim. A node with a static portion previously
encountered in the same scenario will be referred to an
intermediate leaf. We introduce the concept of state with
static and dynamic portions to allow our model to provide
further specification for intelligent systems with learning
capabilities. Regardless of the particular learning method,
such systems, when faced with previously encountered
environmental conditions, should be able to perform better
based on what was previously learned. Our method allows
us to incorporate this fact into the confidence measure of
the tested system.

Finally, we introduce into our model the concept of
utility. We follow the utilitarian paradigm of intelligent
system design advocated, for example, by (Russell

Norvig, 1995). According to this paradigm, an intelligent
system is equipped with a measure, called utility,
describing the degree to which the system has fulfilled its
objectives. The behavior of an intelligent system should be
such that utility is maximized. Therefore, we assign a
utility value, Un, to every state, n, in our model, that
represents the degree to which the system’s objectives are
fulfilled in the state resulting from the last state transition.
This value can be computed by using the multiattribute
utility theory (see Russell & Norvig, 1995, and the
references therein).

Figure 2 depicts the new scenario tree model we
have produced by incorporating these new concepts.
Utility values are shown as [U,] and probabilities are
shown as (P,).

4. Evaluating Testing Strategy

Now that we have a scenario tree model that is manageable
in size and that has identifiable event patterns, we can
present a procedure that evaluates the confidence produced
by a partially tested scenario tree, and that adds new test
cases so as to maximize the incremental increase in
confidence. First, we introduce the concept of an
importance factor that will be crucial to this procedure.
Every node, n, has an importance factor, IF,, which is an
indication of the importance of testing the event class that
causes the transition to this node, given that all of the
preceding events in this scenario have already been tested.
A similar concept has been explored previously by (Miller
1990), who suggested that the most likely faults should be

48

considered the most important to test. In our method, the
importance factor, IF,, is a function of two variables. The
first variable is related to the utility value, U,. Similarly to
(Miller 1990), we postulate that a state transition that
causes a dramatic shift in the utility value warrants testing.
We measure this effect by considering the absolute value
of the difference between the utility of the node and the
utility of the node’s parent. In this way we promote testing
of scenario paths with either disastrous or promising
consequences and discourage testing of event sequences
that are inconsequential and do not affect the system’s
utility.

If the system in question is not provided with a
learning mechanism, then the change in utility alone
determines the node’s importance factor. However, given a
system that does learn, we use the intermediate leaf
concept to determine the path length between nodes with
repeated static states to modify the node’s importance.
Path length gives an estimate of how many events have
occurred since the system was last in the same static state.
We postulate that as the number of intermediate events
increases, i.e., the path length grows, the system’s dynamic
portion is more likely to have drastically changed, and the
importance of testing the intermediate leaf at the end of the
path should increase. If a node, x, is an intermediate leaf,
then the node’s predecessor, y, must be located and the
logical path length, PLxy, between them must be calculated.
Equation 1 provides the formula necessary for this
computation.

E+ 1 ifz= 1
PLxy = (1)

E+ [1- (1 / (C-z+l))] if

Where E is the number of edges between x and y, C is the
number of events in an event class, and z is the number of
times an event class has been encountered along the path
between x and y. The effect of this is to reduce the
importance of testing the system’s reaction to events that
have been previously encountered.

Recall that IF rates the degree of importance to test a
node, i, relative to it’s parent node, j. For an intelligent
system that does not learn, IF can be computed using only
change in the utility values. Equation 2 gives the formula
for the IF for any node, n, in the scenario tree of a non-
learning intelligent system. Equation 3 provides the
calculation given a system that does learn.

(non-learning) IF, = Ui - Uj l (2)

(learning) IF, = IUi - Ujl x [1 - (1 / PLxy)] (3)

We found it convenient to normalize the IF factors. The
normalized importance factor, NIF, represents the
importance of testing a node relative not only to its parent,

but also to its siblings. Equation 4 gives the formula for
calculating NIF,.

NIF. = IF. / [IF. + ,~, IFk] (4)

Where the summation is over all siblings k of the node n.
Figure 3 shows the NIF for each node in the example tree
depicted in Figure 2.

Node # NIF
3 0.338
5 0.122

X1 0.540
8 0.000
2 0.508
X2 0.492
4 0.343

17 0.204
X3 0.453
25 0.478
i9 0.278
9 0.113
X4 0.130

Fig. 3
The Importance Factor

for each Tree Node.

Now that we have explained the information
represented by the NIF and how it is calculated, we can
show how it is used for testing purposes. Recall that due to
the nature of intelligent systems and their operating
environments, one can not exhaustively test the system and
thus can never be guaranteed of complete test coverage.
Rather, we can only have a certain degree of confidence
that our test cases have adequately validated the system.
The concept of a degree of confidence will thus be
incorporated into our model. By applying the NIF and the
probabilities, we can estimate, for each node, our increase
in confidence, IC., achieved by encompassing that node in
a test case scenario. Equation 5 provides the formula for
calculating IC.

IC. = NIFn * H P. (5)

The product in Equation 5 includes all probabilities along
the path from the root to the node n. product of all
probabilities on the path leading to the node. Figure 4
shows the IC values for each node in Figure 2.

Test cases can be chosen that test a scenario to a
terminating node that produces an acceptable degree of

49

confidence for the given application. To estimate the
overall confidence, OCN, achieved by a given partial

Node # confidence increase
3 0.0676
5 0.0915

X1 0.0270
8 0.0000
2 0.0051

X2 0.0049
4 0.1286

17 0.0689
X3 0.0170
25 0.0538
19 0.0104
9 0.0233

X4 0.0024

Fig.4
The Increased Confidence

for each Tree Node.

coverage of the scenario tree, by including a set of nodes
N, we first compute the IC of each node already
encompassed by the test set. Here, we set the confidence
of the root node to 0, since testing does not apply to the
initial state of the system. Then, overall confidence is
calculated as indicated in Equation 6.

OCN = ~ICn, where n e N (6)

Overall confidence is the percentage of a software system
that has been tested, and is known to be functioning
properly. Working with our example tree and assuming we
choose terminating nodes 2, 19 and 9, we find that N = {3,
5, 2, 4, 19, 9}. This produces an overall confidence of
32.65%.

Conclusion and Future Work

As the software world attempts to assign more
and more complex tasks to computers, the need to
effectively employ intelligent systems technology is
increasing. The possible results of allowing an intelligent
system to operate without having any indication of how
well it will perform could be disastrous. We have
presented a model to represent the unique characteristics of
intelligent systems by adapting the widely used scenario
tree model. Our model quantifies the confidence achieved
by partial testing of the scenario tree. Conversely, given
the desired confidence to be achieved by testing, the tree

can be used to generate the minimum test cases that will
achieve this confidence. The algorithm to generate the
minimum test cases requires some type of look-ahead
mechanism or heuristic search, and is currently being
developed.

The precise steps and calculations needed to
evaluate the overall confidence of a test strategy are
outlined and related to our scenario tree model. The
methodology is both intuitive and systematic. It is general
enough to apply to a wide variety of intelligent systems,
yet specific enough to ensure validity.

It is our intention to expand our analysis of this
model to include algorithms that will search the scenario
tree and produce an optimal testing depth value for every
scenario to assure the required confidence level and
minimize the number of test cases needed to achieve this
confidence. We are also developing a formal proof
showing that the Overall Confidence converges to 1
(100%) if the tree is tested to infinite depth along all paths.

References

Chang C. L., Combs J. B., & Stachowitz R., 1990. A
report on the Expert Systems Validation Associate (EVA).
Expert Systems with Applications 1(3):217-230.

Evertsz R., 1991. The Automatic Analysis of Rule-based
System Based on their Procedural Semantics. In
Proceedings of the 12th International Joint Conference on
Artificial Intelligence (IJCAI 91), 22-27.: International
Joint Conferences on Artificial Intelligence, Inc.

Feinberg E. A. & Shwartz A., 1991. Markov Decision
Models with Weighted Discounted Criteria. Technical
Report, TR 91-43, The University of Maryland.

Hsia P., Samuel J., Gao J., Kung D., Toyoshima Y., &
Chen C.. 1994. Formal Approach to Scenario Analysis.
IEEE Software 11(2):33-41.

Miller L. A., 1990. Dynamic Testing of Knowledge Bases
Using the Heuristic Testing Approach. Expert Systems with
Applications. 1(3):249-269.

Preece A. D., Shinghal R., & Batarekh A., 1992. Verifying
expert systems: a logical framework and a practical tool.
Expert Systems with Applications. 5(2):421-436.

Preece A. D., Grossner C., & Radhakrishnan T., 1996.
Validating Dynamic Properties of Rule-Based Systems.
International Journal of Human-Computer Studies. 44:145-
169.

Rushby J., 1988. Quality Measures and Assurance for AI
Software. Project, SRI-CSL-88-7R, SRI Project 4616.

5O

Russell S. and Norvig P. 1995. Artificial Intelligence: A
Modern Approach. Upper Saddle River, NJ.:Prentice Hall.

51

