From: AAAI Technical Report WS-98-12. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Textual CBR
Case Studies of Projects Performed

Mirjam Kunze and André Hiibner*

Abstract

In this article, we present the Textual CBR approach
in three different application areas: The EXPERIENCE-
Book supports technical diagnosis in the field of sys-
tem administration. In the FALLQ project we use our
CBR system to support the hotline staff in an indus-
trial setting. The third project, the SiMATIC KNOWL-
EDGE MANAGER, represents an automatic hotline at
the Automation & Drives department of Siemens.
The objective of these systems is to manage knowledge
stored in semi-structured documents. The internal case
memory is implemented as a Case Retrieval Net. This
allows the handling of large case bases with an efficient
retrieval process. In order to provide multi user access
we chose a client server model combined with a web
interface.

Introduction

Within the field of CBR, a major area of research has
been the development of systems providing knowledge
in well structured domains. However, in many domains
the problem descriptions are given as text documents in
natural language. Usually, it is quite time-consuming
to transform them into a structured case format, and
some time it is even impossible to do so. It would be
useful to have a system that can handle less structured
source documents without lots of effort.

In this paper, we discuss three case-based systems.
At first we give a short description of the application ar-
eas then expose the settings for the systems. The third
section contains an explanation of the system architec-
ture, the used case memory (Case Retrieval Nets) and
its retrieval functionality. In the last section, we state
some open issues.

Application Areas of the Projects

The first project (EzperienceBook) resides in the area
of supporting system administration. System adminis-
trators need very detailed knowledge on a wide area.

The knowledge is changing fast and new knowledge is-

Al Lab, Dept. of Computer Science, Humboldt
University, D-10099 Berlin, kunze,huebner@informatik.hu-
berlin.de

58

added all the time. Their work is time crucial for a lot
of people. Usually a system administrator manages dif-
ferent types of devices and software, which are located
in different places within one building. Hence, our sup-
porting tool has to meet the following requirements:

e it should be usable as a manual

e it should remember knowledge obtained by the sys-
tem administrator

e it should be a black board to exchange knowledge
between system administrators

e it should be accesible from all (or at least from most)
computers

e it should provide multi-user access
¢ it should be easy to use

To build the case base for the system we can use man-
uals, provided by the producer of the soft- and hard-
ware, installation instructions, newsgroup postings and
frequently asked question documents. System adminis-
trators should be able to add new knowledge from their
own experiences.

The second project (FAIlQ) has an industrial setting.

LHS is the leading developer of customer care and

billing software for cellular telephone service providers.

This software-bundle is very complex and exists in dif-

ferent versions. LHS has more than 30 customers world-

wide, and the software will be adapted to fit the dif-
ferent requirements of each customer. The number of

customers is growing considerably. Very important is a

fast reacting support, which solves problems and bugs

in a short time. Therefore, the support staff should
be able to access the knowledge of the company eas-
ily. They have to find answers to problems that have
already been solved before, either for another customer
or by different staff members. Within the company, this
information is stored in documents of various formats,

e.g.:

e descriptions of bugs and problems together with the
solutions are stored in a type of document called de-
fect;

e other documents containing functional specifications
of parts of the software;

o Frequently Asked Question-like documents;

¢ manuals and documentations that are delivered with
the product.

LHS is a rapidly growing company, and new staff is
hired all the time. New employees lack the experience
of the senior ones. Their results depend on the knowl-
edge obtained from documents. Currently, there are
more than 40,000 defect documents, and thousands are
added each year. So, a sytem is required which manages
large document databases and efficiently finds relevant
information.

The Simatic Knowledge Manager (SKM) is used at the
customer support department at Siemens Automation
& Drives.

In the business area of industrial automation systems
Siemens sells a variety of products, e.g. hardware com-
ponents like CPUs and software systems. Most of these
products exist in different versions.

The customer support department already maintains
a web server, where the customers can find information
about the products. There are also around 2,000 FAQs
which describe solutions of problems for different prod-
ucts. All documents exist in different languages, e.g.
German, English, Italian, to support customers from
different countries. Due to the vast amount of docu-
ments, most customers give up on looking through the
documents and call the hotline. A tool is required that
supports the customer to retrieve documents that are
important for his problem. This tool should be inte-
grated into the hotline process. It should also be able
to support different languages.

Textual CBR in Practice

When applying Textual CBR in practice, the following
issues seem to be the most important:

o The system must be easy to use.

o The result must be presented fast after asking the
query.
e The system must be accessible from different kinds

of computers. In the case of SKM it must even be
accessible from all over the world.

o If the case base doesn’t contain satisfying entries to
a query, the user should be informed.

o The retrieval mechanism should be transparent for
the user. For instance, he should be able to recognize
what happens if he adds an attribute to a query.

e The users of the system have to be considered when
deciding how many possibilities an user will have to
change parameters and options of the retrieval.

e Once the system is working the manual effort for
keeping the knowledge up-to-date must be very low.

e Most of the maintenance should be done automati-
cally

59

}

-
H

r——

vig-

SR vl
[World Wide Web]
2 s s
5]
< N
Retrioval Server |CL\ mw/? Case Server |

?&

_.;@

i
:

Precomplier

/

de

(once a day)

Figure 1: Overview of the system

¢ The system must be integrated into an existing envi-
ronment (e.g. call centers).

Design Overview

We chose a client server architecture and implemented
a graphical user interface with HTML pages that are
displayed by a WWW browser to make the system ac-
cesgible.

Figure 1 shows the major components of the imple-
mentation of the systems:

In an offline process the source documents are
scanned and converted into a consistent case structure.
The resulting case documents are semi-structured doc-
uments containing a unique case number, several pas-
sages in natural language and some attributes.

The SKM, for instance, uses the following case for-
mat:

Case = ‘‘[CASE.NUMBER]’’ ‘\n’
case_number ‘\n’.
¢¢[TITLE]”’ ‘\n’
textof-title ‘\n’.
¢ ¢ [RETRIEVAL ATTRIBUTES]’’ ‘\n’
[AVPair { ‘\n’ AV_Pair }] ‘\n’.
¢ ¢ [INFOATTRIBUTES]’’ ‘\n’
(AV.Pair { ‘\n’ AV Pair }] ‘\n’.
¢ ¢ [DESCRIPTION]’’ ‘\n’
text_of.symptoms ‘\n’.

AV_Pair = attribute.name ‘¢ =7’

¢ ¢ gttribute_value ¢ °°’ .

Source documents are obtained from a filesystem or
a database and can occure in a variety of formats, e.g.
html, plain text. The preprocessor also uses simple in-
formation extraction methods to determine attribute
value pairs.

The retrieval server contains the internal case mem-
ory and the retrieval functionality.

The case server is able to receive case numbers and to
return the text of the according cases. This server can
be replaced by a simple database management system.

The dictionaries contain general and domain specific
knowledge.

At the ExperienceBook there also exists a retain
server, which helps to expand the case base. A user
can send a new case, which is put into a file. Later it is
manually prepared for a real update of the case base.

The clients (CGI-scripts) are needed to acces the
servers via the world wide web. They are also used
to build up the HTML-pages.

So the system is very easy to handle. The user only
has to fill HTML forms and can navigate through the
result pages with a few clicks.

The Retrieval Server

The heart of our implementation is the retrieval server.
With the help of several dictionaries, it builds an in-
ternal case memory from the given case documents and
then provides the retrieval process for incoming client
requests.

For providing an efficient retrieval process we chose
as internal case memory the model of Case Retrieval
Nets (CRNs) (Lenz & Burkhard 1996).

In this model, cases are represented as a part of a
graph. This graph is a net with the following nodes
and weighted edges:

e nodes for the identification of cases (case descriptors);
¢ nodes for the information entities;

¢ edges to a case descriptor from all the IEs specify-
ing this case (the weight of them is defined by the
relevance of one IE for a case);

o edges between IE nodes expressing a similarity value
by a weight.

So, the semi-structured case documents have to be
represented by sets of information entities (IEs). The
structure of the cases allows to distinguish different text
sections and the attributes section. The relevant text
sections and the attributes section have to be mapped
to IEs.

For mapping plain text, a parsing algorithm uses one
of the dictionaries containing the set of all known IEs:

index term: a concept representing a set of strings
describing the same semantic content like grammati-
cal forms, abbreviations or different kinds of spelling
(e.g. “PostScript-Drucker” : “PS-Drucker”, “Post-
script printer”).

index vocabulary: the set of all strings known within
a case based system that can be mapped to index
terms.

Every index term has an IE as representant. The
set of index terms (resp. textual IEs) is divided into
different categories, e.g. the category “domain specific
term”, “computer term” or “general term” .

60

category of an IE: a subset of the set of IEs contain-
ing all textual IEs semantically belonging to the same
class of concepts.

index dictionary: contains the set of all index terms,
the rules of mapping the index vocabulary unique to
index terms and an unique mapping of each index
term to an IE category.

For representing a text with a set of textual IEs the
parsing algorithm

e reads the text word for word from left to right,

e looks for the first occuring word or sequence of words
matching with a string of the index vocabulary (if a
shorter and a longer one start with the same word,
the longer one is preferred),

e maps this string to the according index term of the
index dictionary and

e adds the according textual IE to the set of IEs rep-
resenting the case.

Beyond this technique we use all attribute-value pairs
occuring in any attributes section directly as IEs.

We apply a composite similarity measure: The more
IEs are shared by two cases the more similar are these
cases. A local similarity function is defined, which com-
pares any two IEs. Doing so, two cases may also be sim-
ilar if they are expressed in completly different words
which, however, can be mapped to similar IEs. The
values of the local similarity function is represented by
a similaity edge of the CRN.

The retrieval is done by a spreading activation mech-
anism: The incoming query activates IEs. They propa-
gate their activation along the similarity and relevance
edges. The result is a preference ordering of cases based
on the achieved activations.

Open Issues

Evaluation is not yet addressed sufficiently. However,
measures like precision and recall are not directly ap-
plicable for our purposes (Lenz 1998). For example a
satisfying result is already achieved if only one match-
ing case is presented to the user.

A major topic of our future work is improving the
data maintenance. The expansion of the set of IEs
should become more easy. In both projects, most of
the IEs have been gained manually by extracting them
from the cases or from general sources like dictionaries
or glossaries. In future, a suggestion should be gener-
ated automatically.

To improve the performance of the system we are
currently testing further Information Extraction meth-
ods. With these methods we can extract attributes and
IEs more effectivly. Also the maintenance of the local
similarities should be more user-friendly. Perhaps some
kind of similarity assistant might be useful.

Another topic is developing the similarity measure.
We think about including shallow Natural Language
Processing or using more Information Retrieval meth-
ods.

References

Gierl, L., and Lenz, M., eds. 1998. 6th German Work-
shop on CBR, Rostock: University of Rostock.

Gérz, G., and Hoélldobler, S., eds. 1996. KI-96: Ad-
vances in Artificial Intelligence, Lecture Notes in Ar-
tificial Intelligence, 1137. Springer Verlag.

Kunze, M.
The ExperienceBook. http://informatik.hu-berlin.de/
~kunze/ studienarbeit.ps.

Leake, D. B., and Plaza, E., eds. 1997. Case-
Based Reasoning Research and Development, Proc.
ICCBR-97, Lecture Notes in Artificial Intelligence,
1266. Springer Verlag.

Lenz, M., and Burkhard, H.-D. 1996. Case Re-
trieval Nets: Basic ideas and extensions. In Gérz and
Hélldobler (1996), 227-239.

Lenz, M. 1998. Textual CBR and Information Re-
trieval — A Comparison —. In Gierl and Lenz (1998),
59-66.

61

