Redesigning Software Procurement through Intelligent Agents

From: AAAI Technical Report WS-98-13. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Mark Nissen, Naval Postgraduate School, 555 Dyer Rd. Code SM/Ni, Monterey, CA 93943; e-mail:
MNissen@nps.navy.mil.

Anshu Mehra, Gensym Corporation, 125 Cambridge Park Dr., Cambridge, MA 02140; e-mail:
AMehra@gensym.com.

Abstract

Software procurement represents a process of vital
importance to most enterprises in the public and private

sectors, but particularly in the U.S. government, the software -

procurement process is highly pathological. Intelligent agent
technology offers the potential to remedy this process
pathology and an agent-based redesign transformation is
recommended to dramatically improve the performance of the
software procurement process. This paper outlines a number
of contemporary agent applications and presents the results of
a measurement-driven redesign analysis of the government
software procurement process. We discuss intelligent
software procurement agents that are developed to automate
and support this process using a novel tool called the Agent
Development Environment (ADE). The paper highlights the
behavior and utility of intelligent software procurement
agents and presents some preliminary results associated with
their application to an operational government organization.
We show how this agent-based process redesign offers
excellent potential for improvement in both cost and cycle
time for the process and offer an agenda for continued
research along these lines.

Redesigning Software Procurement

With the passage of each product lifecycle, software becomes
increasingly important to efficiency and effectiveness in the
public and private sectors alike. Many major corporations rely
on the power of information technology (IT) to compete
effectively in this fast-paced, hypercompetitive, global business
environment of today, and the military has long invested in
software-intensive weapon and communication systems. With
an expanding mission but declining budget, the U.S.
government is fast becoming software-dependent as well, as it
represents the largest single buyer in the world with an
estimated $40B worth of annual software procurement (STSC
1996).

However, U.S. government procurement lead times
are notoriously long and the time required for software
purchases often exceeds the product lifecycles themselves. It
widely employs linear, bureaucratic, paper-based, regulation-
laden procurement processes, even when buying the same
commercial off-the-shelf =~ (COTS) software used by
consumers, for example. Although the government has made
considerable progress in terms of procurement over the last
few years (e.g., acquisition streamlining, using EDI, electronic
bulletin boards, emphasizing COTS software, establishing a
preference for commercial specifications and standards), its
procurement process will always be disadvantaged with
respect to those found in the corporate sector. The immense
size of the government organization, requirements for public
trust and accountability, socio-economic legislation and other
attributes all contribute to this result. In fact, the government
must develop superior processes just to achieve parity with the
private sector in terms of process efficiency and effectiveness.

In this paper, we employ measurement-driven
inference to diagnose a number of pathologies associated with
the government procurement process and use the results to
redesign software procurement through an intelligent agent
application. This agent technology serves to enforce process
integration between buyer and seller, takes advantage of global
connectivity, satisfies regulatory requirements with even
greater consistency than is possible today, and automates most
of the software procurement process with attendant savings in
terms of cost and cycle time. When implemented to. augment
the govemnment's suite of legacy, current and emerging IT
tools, this agent application can effect the kinds of quantum
performance improvements sought through process redesign
(Davenport 1993). We provide a brief overview of some
exemplary intelligent agent applications in the following
section and then outline the key steps and results associated
with redesign of the software procurement process. The
architecture for our intelligent agent application is discussed
subsequently, followed by the case of its initial application in

the government acquisition domain. We close the paper with
an agenda for continued research along these lines.

Intelligent Agent Applications

Work in the area of software agents has been ongoing for some
time and it addresses a broad array of applications. Indeed, one
need not research too far back in the literature to identify a
plethora of agent examples—so many that any attempt to
review them, even briefly, would constitute a journal-length
paper in and of itself. In this section we provide a high-level
overview of extant agent applications, with particular emphasis
on a framework to relate them with this present work.

It is informative to group extant agent applications
into four classes: 1) information filtering agents, 2) information
retrieval agents, 3) advisory agents, and 4) performative agents.
Briefly, most information filtering agents are focused on tasks
such as filtering user-input preferences for e-mail (e.g., Maes
1994, Malone et al. 1987), network news groups (Sycara and
Zeng 1996), frequently asked questions (Whitehead 1994) and
arbitrary text (Verity 1997). Information retrieval agents
address problems associated with collecting information
pertaining to commodities such as compact disks (Krulwich
n.d.) and computer equipment (uVision 1997), in addition to
services such as advertising (PriceWatch 1997) and insurance
(Insurance 1997). We also include the ubiquitous Web
indexing robots in this class (see Etzioni and Weld 1995) along
with Web-based agents for report writing (Amulet 1997),
publishing (InterAp 1995) and assisted browsing (Burke et al.
1997). Agents for technical information delivery (Bradshaw et

al. 1997) and information gathering (Knobloch and Ambite

1997) are not Web-based per se, but they perform a similar
function.

A third class of agents is oriented toward providing
intelligent advice. Examples include recommendations for
CDs (Maes 1997), an electronic concierge (Efzioni and Weld
1995), an agent "host" for college campus visits (Zeng and
Sycara 1995) and planning support for manufacturing systems
(Maturana and Norrie 1997). Agents for strategic planning
support (Pinson et al. 1997), software project coordination
(Johar 1997) and computer interface assistance (Ball et al.
1997) are also grouped in this class, along with support for
military reconnaissance (Bui et al. n.d.) and financial portfolio
management (Sycara et al. 1996). Performative agents in the

fourth class are generally oriented toward functions such as

business transactions and work performance. Examples
include a marketplace for agent-to-agent transactions (Chavez
and Maes n.d.) and an agent system for negotiation (Bui n.d.),

in addition to the performance of knowledge work such as
automated scheduling (Sen 1997, Walsh et al. 1997),
cooperative learning (Boy 1997) and automated digital
services (Mullen and Wellman 1996).

The intelligent software procurement agents
developed through this present research are probably best
categorized in the fourth group above (ie., performative
agents), but they have been designed to also exhibit behaviors
such as information filtering and retrieval, and their use can be
accomplished through simulation (i.e., in an advisory role) as
well as enactment (i.e., the performative role). Thus, intelligent
software procurement agents have similarities with examples
from each of the four classes above. To further describe and
differentiate intelligent supply chain agents, we have integrated
the agent-taxonomy work of Franklin and Graesser (1996)
with a three-dimensional structure from Gilbert et al. (1995) to
develop the analytical framework presented in Figure 1.

Collaboration
Parallel processing

ISCA

Expert systems

Intelligence

Remote programming
Mobility

Figure 1 Agent Framework

In this framework we use the same intelligence and
mobility dimensions noted in the three~dimensional structure
above, but with the substitution of the new dimension
collaboration in lieu of autonomy/agency. This follows the
presumption of agent autonomy stressed by Franklin and
Graesser. For purpose of discussion, we have annotated this
three-dimensional space with one, relatively "pure" exemplar
from each dimension. For example, many expert system
applications are quite extensive in terms of formalized, expert-
level intelligence, but they traditionally are not designed to
operate on foreign hosts nor do they generally collaborate with
other expert systems to jointly solve problems. Similarly,
remote programming of the sort enabled by Java and
Telescript equip programs to execute on foreign machines, but
these procedural applications are not generally endowed with
the capability for intelligent inference nor are they usually
thought of in terms of collaborative processing. Likewise,

parallel processing has an explicit focus on collaborative
problem solving between multiple, parallel processors, but this
problem solving is usually focused more on procedural
processing than intelligent reasoning and execution on foreign
hosts is rarely envisioned. Clearly exceptions exist for each
class (e.g., distributed Al intelligent Java agents, etc.), but these
three exemplars should convey the basic concepts associated
with each dimension.

Notice the annotation for intelligent software
procurement agents (labeled "ISCA" in the figure). Although
this class of systems is not as extreme as any of the three
exemplars from above along any particular dimension, it
occupies a position roughly in the middle of this three-
dimensional agent space; all three of the exemplars from above
are situated along only a single axis. This adds to the challenge
of our agent development work, but it serves to enable a new
set of capabilities that prove to be quite effective and useful for
operational processes such as software supply chain
management, With this in mind, we tum now to the software
procurement process redesign.

Software Procurement Process Redesign

The government procurement process is costly and time-
consuming, particularly with respect to IT. There are many
instances of procurements taking so long that purchased
software becomes obsolete before it is received by the
government user and put into place in the organization, for
example. Because the set of processes associated with software
procurement appear to be so pathological for the government,
we focus our initial redesign activities on this area, and we
include the corresponding order-fulfillment processes
associated with commercial software vendors to analyze a two-
segment supply chain process in this section. We first introduce
the integrated supply chain process and then step through the
measurement-driven inference associated with its redesign.

Integrated Supply Chain Process

As noted above, two primary processes are involved with this
supply chain—government software purchasing and
commercial software order fulfillment—and we present and
discuss two process instances in terms of a single, integrated
whole; that is, both purchasing and order fulfillment are

modeled as a single process that spans organizational-

boundaries. Specifically, the government software purchasing
process examined through this investigation pertains to work
done by the Supply Department at the Naval Postgraduate

School (NPS). Although a leading, accredited university like
most schools that offer graduate management, engineering and
like degrees, NPS is also a government institution. Therefore it
is subject to all the same procurement laws and regulations that
govemn the purchasing activities of any military unit or federal
agency.

The commercial software order fulfillment process
examined through this investigation pertains to work done by
the Product and Licensing Department at Gensym
Corporation. Gensym is a leader in software for developing
intelligent real-time applications and maintains an active
research and development activity that drives frequent product
introductions, updates and releases. Therefore it represents the
kind of rapid product evolution that has been problematic for
government procurement. The high-level process delineated in
Figure 2 depicts the integration of the User, NPS Supply

Department and software Contractor.
User Supply Dept Contractor

1D rqgpts
Marivt survey
PR (O y———— Verify form

Research sources

Issue RFQ—-> Prep quotes
Source selaction «===Analyze quotes

N
\lssua ONdae—— Fuifil order
7
S8 g00dS “fmm—tee ReCoive goOds - Send Invoice
Make payman£-> Deposit funds

Figure 2 Integrated Supply Chain Process

The process begins with a user in the organization
identifying a need and determining his or her preliminary
software requirements. A market survey follows with the
market information (e.g., products, capabilities, companies,
prices, etc.) used to complete a (paper-based) procurement
request form. This form is submitted to the Supply Department
for processing, in which a Buyer verifies the form (e.g., in
terms of completeness, required documentation such as sole-
source justification, adequate budget, etc.) and then researches
some potential sources for procurement (e.g, existing
contracts, approved-vendor lists, small/disadvantaged-business
lists, etc.) in addition to the sources identified through the
market survey. An RFQ is generally issued and quotations are
analyzed by the Buyer, who then summarizes the information
for review and source selection by the user. A purchase order is
then issued and the transaction is completed as the software is
delivered to the user and payment is made.

Not shown in the figure is the underlying
knowledge, expertise and information that is required for
people to perform the software purchasing and order
fulfillment processes depicted above. For example, the user
must know how to conduct a market survey and have access to
alternative sources of software supply, as well as an
understanding of the basic procedures for govemment
procurement and information pertaining to the specific
purchase request form used. Similarly, the Buyer must possess
thorough knowledge of the Federal Acquisition Regulation
and know how to review the purchase request (e.g., what
constitutes completeness, when to request additional
information, etc.) and have current information pertaining to
alternative sources of supply. The Buyer must also have access
to one or more suppliers’ systems to be able to post the RFQ
and requires knowledge of the procedures required for
quotation analysis and source selection. Access to and
understanding of the receiving and payment systems and
procedures is also necessary to complete the transaction, and of
course vendor personnel must understand the policies,
procedures and systems associated with software product and
licensing. These kinds of knowledge, expertise and
information suggest that an intelligent system may offer good
potential to support this integrated process.

Process Redesign

To redesign this integrated process, we employ the
measurement-driven method described in Nissen (1996,
1997a, 1997b), which obtains measurements from a graph-
based process representation to ‘diagnose pathologies and
recommend redesign transformations. The knowledge-based
method and technology have been successfully employed to
redesign a number of government procurement processes (e.g.,
see Nissen 1997c), and we highlight each of the key steps
below. .

Step 1. Model baseline process. In terms of process redesign,
the baseline (i.e., "as is" process that exists before redesign)
process is the one diagrammed in Figure 2 above.
Measurement-driven inference requires a representation that
supports automated measurement, so we convert the informal
model from above into an attributed directed graph (A-
digraph) as shown in Figure 3. With this model, each process
activity is represented as a node linked to predecessors and
successors by directed edges in the graph. To avoid clutter,
only the first seven activities are shown in the figure for this
baseline process. For reference, we also list a representative set
of attributes associated with the "Research Sources" step.
These include, for example, role and cardinality of the agent
responsible for performing the activity, along with the

corresponding department and organization, inputs to and
outputs from the activity, and classes of tools. and
communications used to support the process and its products.
As an A-digraph representation, this model supports automatic
process measurement using our graph-based measurement
scheme.

ID Mkt PR Verify Rsch Issue Prep
r?mts survey form form sources RFP ?uote
- Level (1)
- Type (A)
- Agent (SupO)
- Cardinality (1)
- Dept (Supply)
- Org (NPS)
- Inputs (verified_PR_form)
- Outputs (vendor_list)
- Tools (DBMS)
- Communication (paper)

Figure 3 Baseline A-Digraph Representation

Step 2. Measure baseline process. Measurements are obtained
by counting certain nodes, edges and attributes that possess
heuristic value in terms of process diagnosis. Some of the
relevant measures and baseline process values are presented in -
Table 1 for discussion. Details associated with the measures
and measurement process are provided in the references above.
From the table, we see that the process is comprised of twelve
activities (i.e., size = 12) and, as a sequential process flow, it is
twelve steps in length. The parallelism measurement (1.00 is a
theoretical minimum for this measure) is calculated as the ratio
of size divided by length and quantifies the sequential nature of
this baseline process instance. The other measures are
expressed in terms of normalized attribute counts. For
example, the handoff fraction (0.67) indicates that roughly two
thirds of the process activities are associated with time-
consuming handoffs from one organizational role to another.
Such handoffs are often associated with work sitting in in-
boxes and out-boxes, awaiting agent assignment, managerial
approval, couriers, mail service and like activities that are well
known contributors to cycle time. The three IT fractions are
used to quantify the extent to which the process involves IT-
based support, communication and automation, respectively.
Zero represents a theoretical minimum for these measures.

Step 3. Diagnose process pathologies. The measurements
presented in Table 1 offer heuristic value in terms of process
diagnosis, and the diagnostic implications of these measures
are also shown in the table as they pertain to process
pathologies. For example, we noted above that process friction

has a well known impact on process cycle time, as do
sequential process flows and paper-based communications.
Likewise, manual, labor-intensive processes are also well
known to suffer from relatively high cost. These diagnosed
pathologies are used in turn to match redesign transformations.

Table 1 Baseline Process Measurements

Measure Value Diagnosis

Process size 12

Process length 12

Parallelism 1.00* Sequential process
Handoffs fraction 0.67 Process friction
IT-Support fraction 0.25 Manual process
IT-Communication fr. 0.00* Paper-based process

IT-Automation fi. 0.00* Labor-intensive

process

Step 4. Match redesign transformations. Several redesign
transformations are matched with the pathologies diagnosed in
the preceding step. For example, the sequential process flow
matches with a de-linearize transformation (ie,, performing
some process steps in parallel as opposed to serially), but a
check of inputs and outputs for each step precludes the
activities of this process from being performed with greater
concurrency; that is, the output from each step is required as an
input to the next, so de-linearization is infeasible. Alternatively,
the combination of process friction with a manual, paper-based
process flow matches with a workflow-system transformation
to support the process activities. Further, the labor-intensive
process (ie, absence of automation) matches with the
diagnoses above to suggest that an intelligent agent
transformation may augment the workflow system to further
enhance process performance. Clearly many other redesign
recommendations can be made from these measurements and
diagnoses, but these are directly applicable to the present
discussion (ie., intelligent agent transformation of software
procurement). We now discuss the architecture associated with
our intelligent procurement agent transformation.

Agent Development Environment and
Architecture

Agent Development Environment (ADE) is the integrated
development environment to design, develop, debug, simulate

and deploy agents. ADE is built on G2, an object-oriented
graphical environment that offers a robust platform for the
development of intelligent real time systems. ADE supports
the development of multi-agent applications capable of
running on a single machine or on a distributed network. The
main ADE components are Agent, Message, Activity, Host and
Environment. In this section we briefly outline each in tum,
followed by a discussion of agent simulation. We begin with a
high-level architectural schema that inter-relates each of these
ADE components. This is diagrammed in Figure 4.

EfVIHOBLL:

‘Enivironment1=

Sofiware Process 2

B Message

Figure 4 ADE Architectural Schema

&

l Agent. In ADE, agents communicate through

messages or events (a subclass of message). ADE provides a
basic direct addressing message service, with some optional
functionality (e.g., guaranteed delivery, message broadcast,
subject-based addressing). ADE uses delegation based event
handling similar to the JavaBeans model in which agents use
messages to generate and listen for events. Each agent has a
network-wide unique name. This enables communication
among agents distributed across a network to be independent
from an agent' s location. Agents refer to each other by their
name and the name of an agent cannot be changed during its
entire “life.” ADE provides a "Yellow Pages" lookup
capability; that is, specific properties can be defined for agents,
enabling other agents to send messages qualified by their
properties. Each agent can query the yellow pages to find the
names of agents matching a specific Boolean set of properties.
Agents can be dynamically created, deleted, cloned and moved
across the network. ADE provides a base agent class called
AdeAgent. AdeAgent can be specialized and augmented by
application-specific agent types. Example agents include
ResourceMonitoringAgent, ManufacturingCellAgent and
JobBrokerAgent.

Agents in ADE are autonomous, multi-threaded
objects with their own state. Each thread of control of an agent
is represented by an activity instance. An agent can
concurrently perform multiple activities. For example, a
MachineToolAgent can be concurrently performing two

activities: monitoring a machine job and negotiating future jobs
with other agents. Messages and other events are sent, and
listened for, within the context of a specific activity of an
agent. Agent activities are defined either using the Grafcet
graphical language (discussed below) or directly with methods
for activity subclasses.

Message. ADE provides a base level message class

of type AdeMessage. Agents communicate with each other by
sending objects of type AdeMessage or its subclass. A
message contains the destination agent name. Messages are
handled by agent activities. A message can be sent to a specific
activity of an agent. In ADE, no acknowledgment is required
for messages. Exchange of messages between agents may be
synchronous or asynchronous. A synchronous message blocks
the activity of the agent until the reply is received from the
agent to which the message was sent. Altematively, an agent
may continue to perform its activity without blocking. It is
assumed that messages take a finite amount of time to be
delivered. Thus, it is possible for messages to get delayed or
lost, and for messages sent in opposite directions by different
agents to cross one another (i.e., both be in transit at the same
time). ADE supports two major subclasses of AdeMessage: (i)
AdeSolication is a message for which the sending agent
expects a reply; and, (i) AdeAssertion is a message for which
the sending agent expects no reply. Messages are used for the
communication between agents and between the different
activities of the same agent. Communication between agents
and external devices or processes is also accomplished through
messages. A subclass of AdeMessage called AdeEvent is
provided in ADE for discrete event simulation.

Activity. An activity defines a specific behavior of an

agent. AdeActivity class provided in ADE facilitates the
development of a multi-thread capability without dealing with
threads, stacks and priorities. An agent may be concurrently
performing multiple activities of the same type or of different
types. Within an activity, multiple threads may be active at the
same time. Messages sent to an agent may either initiate a new
activity or may continue a dialog with an ongoing activity. In
the first case, the agent starts a new thread of activity. During
execution of an activity the agent can send and receive
synchronous and asynchronous messages. Once an activity is
started, the message can be sent directly to it. An activity
maintains a queue of received messages. Within an agent, the
AgentHandller defines the destination activity for each message
received. This handler is called when a message does not

identify its destination activity, which usually occurs when an
agent is initiating communication with other agents,

Activities are defined either as methods or using
Grafcets. AdeGrafcet is a graphical language that shows both
parallel and sequential control structures in easy-to-understand
pictorial form. AdeGrafcet is an extension of Grafcet, or
Sequential Function Charts (SFC), a graphical language that
has been accepted as an industrial standard (IEC 848 and IEC
1131-3) for local, PLC-level sequential logic control (David
and Alla 1992). A Grafcet Chart contains Nodes and the Links
among them define the flow of control of the activity of an
agent. The main types of nodes are Steps, Tramsitions,
MacroSteps, IterativeSteps and ProcessSteps. The main types
of links are Branches and Joins.

A Step represents a state, phase or mode. Associated
with a step are actions.that are performed when a step is
activated. In standard Grafcet the actions that can be done in a
step are of a Boolean nature, whereas AdeGrafcet actions in
steps are more general; they can be compared with statements
of a conventional programming language. Message statements
to other agents may be embedded in the action of a step, and
actions are internally represented as procedures. The transitions
act as gates on the flow of control through the Grafcet Chart.
Each transition is associated with a condition that determines
whether or not control can pass through the transition. In ADE
Grafcet transition conditions are expressed as Boolean
expressions written as procedures. Control can pass through a
transition when its Boolean control expression evaluates to
TRUE. Wait statements for specific messages from other
agents may be embedded in condition procedures.

AdeGrafcet also provides MacroStep as a way to
embed one Grafcet chart in another. lterativeStep enables the
definition of embedded Grafcet Charts whose process is
repeated a number of times. ProcessStep is a MacroStep
executed in more than one Grafcet Chart. They are equivalent
to subroutines in standard programming languages. A Link
connects steps to transitions. Grafcet allows a single step to be
followed by more than one transition, and a single transition to
be followed by more than one step. Thus, Grafcet allows
control to fan-in and fan-out, and Grafcet provides for a choice
between synchronous and asynchronous operations through a
variety of fan-in and fan-out links. There are five types of links:
Asynchronous Branch, SynchronousBranch, First-True
Branch, Asynchronous Join and Synchronous Join;

1Host. In ADE, every agent registers itself to

AdeHost. There is one AdeHost for every software process on

which a multi-agent application is running. An AdeHost is
responsible for delivering messages, as well as dynamically
initializing, moving, cloning and destroying agents. When an
agent is created, it is assigned to a specific host. The host then
installs the agent, registers the agent properties and, if
requested, connects the agent to databases, on-line control
systems, etc. The "Locator Service" of ‘a host enables each
agent to locate all the other agents in the application. When an
agent moves (e.g., from one machine to another), AdeHost
forwards all the future messages to the new address.

Environment. ADE supports agent clusters by

providing a special agent called AdeEnvironment, As depicted
in the figure above, agents belonging to an environment may
reside on different hosts. AdeEnvironment enables
hierarchical grouping and encapsulation of agents and provides
local "Yellow Pages" services. Although agents can move to
different hosts across a network, an agent may belong to only
one environment. Agents within an environment may be
disallowed to communicate with outside agents, and an
environment can be a cluster of other environments.

Agent Simulation. Because agent-based systems can exhibit
complex emergent dynamics, simulation is an essential
component of a multi-agent development environment. ADE
supports simulation during development through a
SimulationAgent that emulates the behavior of external devices
or processes. In this way, the interaction of agents with the
external physical environment can be simulated during the
development phase. When the multi-agent application is
deployed, the interface with the Simulation-agents is replaced
by the actual interface with the physical devices.

Summary. In summary, ADE provides: (i) a predefined class
hierarchy of agents and agent components; (ii) an agent
communications "middleware"; (iii) a graphical programming
language to design and develop agents' behavior based on the
Grafcet standard; (iv) a distributed simulation environment to
test multi-agent applications built with ADE; (v) a complete
debugging and tracing environment; and, (vi) a deployment
center to deploy agents in the G2 environment or as
"JavaBeans" in Java Virtual Machines,

Redesign Agents and Results

In this section we present the preliminary results from our use
of ADE and application of intelligent sofiware procurement
agents to redesign the government software procurement
process. We briefly describe the structure and behavior of the

intelligent software procurement agents developed to perform
in this environment and discuss the performance implications
of this agent-based process transformation.

= (Identify need &
detemnine prelimery
woftware requirements

m Uniat #otivity

send mewage {o ‘market-agant’
to conduot market survery

L]

rﬂnnpplcr or|

timeout

walt for survery reauli.

‘atlamst one supplier

Inform the vaer -

“ho supplier or timeou

craaie POR form.
wend POR to "supply dept'

N\ 4

XS] empty "source selaction” or

wait for "source selection”
mezeage from “supply dapt’

E send "issue orde’” to
"supply dept’

"ho source “l{dlon or tmaout
7

M timacut 4
wait for "user goods"

mexsage from "supply dept’

N infom the user -

"timecut’
/ =

Figlire 5 Grafcet for User Behavior

Agent Structure and Behavior

In order to describe the structure and behavior of the intelligent
software procurement agents developed to perform in this
environment, we draw from the ADE discussion in previous
sections and begin with the Grafcets developed to support the
NPS-Gensym software supply chain. The first Grafeet,
presented in Figure 5, depicts the user behavior and maps
homomorphically to the integrated process flow from Figures
2 and 3. For example, the Grafcet flow begins with the user

“identifying his or her need and determining the preliminary

software requirements. The next step involves the market
survey. Notice the “market agent” that is identified as the
recipient of a task message here. The supply chain agent does
not care whether this task is accomplished by a human or
machine agent, so long as the market survey is completed.
Upon receipt of acceptable market survey results, the agent
uses its knowledge of NPS purchasing procedures to create the
purchase request form which is sent to the Supply Department
for processing.

The comesponding Grafcet for the Supply
Department is presented in Figure 6, where the supply agent is
“listening” for a purchase request. Recall that the agents are
multi-threaded, so they can be performing a host of other
activities while waiting for such requests. As depicted in Figure
2 above, the supply agent verifies the purchase request, which
is either retuned for additional information or processed
through the subsequent steps (e.g., researching sources, issuing
RFQ, etc.) depicted in the figure.

e % wait for "POR" from "user"

arity POR form

#fom not OK

/

zearch souroes

zand 'RFQ" meszaga to all
'oontmotore” of the produot
7/ N

4

E walt for "guotes” ;
no "quotes” or B3

analyze quote timaout

atleast one "quote" OK no "quote" OK

Procas: Quote

Figure 6 Grafeet for Supply Department Behavior

The software contractor behavior is specified
through the Grafcet presented in Figure 7. As above, the

contractor agent is multi-threaded, so it can do more than just

wait for an incoming order from the NPS Supply Department,
Upon receipt of such an order, however, it prepares a quotation
and sends it to the requesting agent (i.e., supply). If an order is
received, the agent’s tasks branch to fulfill the order (i.e., send
the software “goods”) and invoice the customer.

The agents' activity behaviors are implemented via
the Grafcet Charts shown in Figures 5-7. Specific behavior for
each step and node of the Grafcet chart is described through a
method. The distributed nature of the ADE enables agents to
inter-operate on different hosts (ie, agents can be
simultaneously at the customer’s and supplier’s sites). The
distributed agents can communicate with each other via
AdeHost. The supply chain application described in this paper
involves multiple instances of only a single agent type for the
user, supply department and software contractor. A
marketspace of multiple agent types can be created by

subclassing AdeAgent and describing the agents' behavior
using Grafcets.

e @ wait for "RFQ" mesage

y2
%@ walt for an "order”

E {ulfill order. send "gooda"

prapare "quote”. zand "quote” to
customer (wupply department of govemment)
AN

‘ho order” or timeout &

send "nvolos” N

walt for "payment* |

daepoait funda b !

Figure 7 Grafcet for Software Contractor Behavior

Preliminary Redesign Results

We note the preliminary nature of these redesign results, for the
work to date has taken us only through a proof-of-concept
demonstration of the integrated supply chain agents. Although
we have obtained measurements from this agent-based, post-
redesign process configuration, we have yet to simulate the
process performance or measure the implemented redesign
through pilot or like testing. Nonetheless, even these
preliminary results are very encouraging and suggest continued
work along these lines. The post-redesign measurements are
presented in Table 2, along with the corresponding baseline
process measurements from above for reference.

From the table one can observe the agent-based
redesign transformation has no effect on process size, length or
parallelism, nor did we predict that it would. Thus, we see no
performance implications with respect to these measures. In
contrast, the redesign has a tremendous effect on the remaining
four measures—handoffs, IT-Support, IT-Communication and
IT-Automation fractions—which are associated with reduced
cost and cycle time as shown in the table. Although we have
yet to simulate or pilot this agent-based redesign, results such
as these (e.g., eliminating process handoffs and dramatically
increasing the density of IT employed in the process) offer
excellent potential to generate the kinds of performance effects
noted in the table. With this, we feel confident that the

intelligent agents developed through this research can be
employed to dramatically improve performance, not only of
this software procurement process, but many software and
other procurement processes in like organizations across a
wide range of industries and sectors. This leads to our agenda
for continued research along these lines.

Table 2 Redesign Process Measurements

Measure Baseline Redesign Performance
Implication

Process size 12 12

Process length 12 12

Parallelism 1.00* 1.00*

Handoffs fraction ~ 0.67 0.00* - cycle time

IT-Support fraction 025 092 - cost

IT-Comm. ft. 0.00* 0.83 - cycle time

IT-Automation fr. ~ 0.00* 0.67 - cost

Continued Research

In this paper, we redesigned a software procurement
process and described the Agent Development
Environment for developing distributed multi-agent
applications. We then presented a supply chain
management application developed for the government
software procurement process. The application is
extremely important because the U.S. government
“procurement lead times are notoriously long and the
time required for software purchases often exceeds the
product lifecycles themselves. Although the proof-of-
concept implementation is far from an “industrial
strength" application, it satisfies our feasibility goals
and suggests the agent-based approach and ADE
technology have potential to scale well across multiple
users, customers and vendors. And our measurements
suggest excellent potential for dramatic performance
gains through reduced process cost and cycle time. This
satisfies our primary objective for this early research
stage.

We are now constructing a simulation model
for the integrated supply chain process that is used at
the Naval Postgraduate School and Gensym Corp. We
plan to use simulation to analyze and compare
procurement costs and lead times for the paper-based
"as is" process and the agent-based '"redesigned"

process. The simulation results will also be used to
adapt and tailor the supply chain agents. Also, since
software as a product is comprised of digital
information, the exchange of software-product
information and the goods themselves can be
performed electronically. Future work in this area can
utilize EDI and the Web to exchange products and
product information via intelligent autonomous agents,
thus further reducing procurement lead times. The
agent-based commercial transactions between buyers
and sellers can supplant the traditional EDI for
business-to-business commerce and can potentially
increase speed and responsiveness in today's
hypercompetitive business environment.

References

Amulet. Amulet online description. Inteet address:
http://www.amulet.com (1997).

Ball, G,, Ling, D., Kurlander, D., Miller, J., Pugh, D., Skelly,
T., Stankosky, A., Thiel, D,, Van Dantzich, M. and Wax T.
“"Lifelike Computer Characters: The Persona Project at
Microsoft,” in J. Bradshaw (Ed.). Software Agents. AAAI
Press: Menlo Park, CA (1997).

Boy, G.A. "Software Agents for Cooperative Leaming," in J.
Bradshaw (Ed.). Software Agents. AAAI Press: Menlo Park,
CA (1997).

Bradshaw, JM., Dutfield. S. Benoit, P. and Woolley, J.D.
"KAoS: Toward an Industrial-Strength Open Agent
Architecture," in J. Bradshaw (Ed.), Software Agents. AAAI
Press: Menlo Park, CA (1997).

Bui, T. “Intelligent Negotiation Agents for Supporting Internet-
based Competitive Procurement," working paper (n.d.).

Bui, T., Jones, C., Sridar, S. and Ludlow, N. "Decision Support
for Reconnaissance Using Intelligent Software Agents,” Naval
Postgraduate School research proposal (n.d.).

Burke, R.D., Hammond, K.J. and Young, B.C. "The FindMe
Approach to Assisted Browsing," IEEE Expert (July/August
1997), pp. 32-49.

Chavez, A. and Maes, P. "Kasbah: An Agent Marketplace for
Buying and Selling Goods," working paper (n.d.).

David, R. and Alla, H. Petri Nets and Grafcet: Tools for
Modeling Discrete Events Systems. Prentice-Hall International:
UK (1992).

David, R. “Grafcet: A Powerful Toll for Specification of Logic
Controllers,” IEEE Transactions on Control Systems
Technology 3:3 (September 1995), pp. 253-268.

Etzioni, O. and Weld, D.S. "Intelligent Agents on the Internet:
Fact, Fiction, and Forecast," [EEE Expert (August 1995), pp.
44-49,

Franklin, S. and Graesser, A. “Is It an Agent or Just a
Program? A Taxonomy for Autonomous Agents” in
Proceedings of the Third International Workshop on Agent
Theories, Architectures, and Languages Springer-Verlag: New
York, NY (1996).

Gilbert, D., Aparicio, M., Atkinson, B., Brady, S., Ciccarino, J.,
Grosof, B., O’Connor, P., Osisek, D., Pritko, S., Spagna, R.,
and Wilson, L. “IBM Intelligent Agent Strategy,” working
paper, IBM Corporation (1995).

Insurance. Insurance online description. Internet address:
http://www.dmatters.co.uk (1997).

InterAp. "InterAp Assigns Intelligent Agents to the Web,"
PCWeek (12 June 1995).

Johar, H.V. "SoftCord: an Intelligent Agent for Coordination
in Software Development Projects,”" Decision Support Systems
20 (1997), pp. 65-81.

Knobloch, C.A. and Ambite, L.L. "Agents for Information
Gathering," in J. Bradshaw (Ed.), Software Agents. AAAI
Press: Menlo Park, CA (1997).

Krulwich, D. An Agent of Change. Andersen Consulting
Center for Strategic Technology Research (n.d.).

Maes, P. "Agents that. Reduce Work and Information
Overload," Communications of the ACM 377 (July 1994), pp.
30-40. :

Maes, P. "Pattie Maes on Software Agents: Humanizing the
Global Computer," Internet Computing (July-August 1997).

Malone, T.W., Grant, KR., Turbak, F.A., Brobst, S.A and
Cohen, M.D. "Intelligent Information-Sharing Systems,"
Communications of the ACM 30:5 (1987), pp. 390-402.

Maturana, F.P. and Norrie, D.H. "Distributed Decision-making
Using the Contract Net Within a Mediator Architecture,"
Decision Support Systems 20 (1997), pp. 53-64.

Mullen, T. and Wellman, M.P. “Market-based negotiation for
digital library services,” Second USENIX Workshop on
Electronic Commerce (November 1996).

Nissen, M.E. "Measurement-Driven Inference for
Reengineering Support"; appeared in the Workshop of Al in
Business Working Notes from the AAAI 96 Conference
(1996).

Nissen, M.E. "Toward Intelligent Web-based Redesign
Support," AAAI Technical Report WS-97-02 (1997a).

10

Nissen, M.E. "Reengineering Support through Measurement-
Driven Inference," Intelligent Systems in Accounting,
Finance and Management Vol 6 (1997b).

Nissen, M.E. "Reengineering the RFP Process through
Knowledge-Based Systems," Acquisition Review Quarterly
(Winter 1997); also published in the Acquisition Review
Quarterly World Wide Web electronic library:
http://www.dsme.dsm.mil/pubs/arg/97arg/nissen.pdf (1997c).

Pinson, S., Louca, JA. and Moraitis, P. "A Distributed
Decision Support System for Strategic Planning," Decision
Support Systems 20 (1997), pp. 35-51.

Porter, M. and Millar. V. 1985.

PriceWatch. PriceWatch online description. Internet address:
http://www.pricewatch.com (1997).

Sen, S. "Developing an Automated Distributed Meeting
Scheduler," IEEE Expert (July/August 1997), pp. 41-45.

Sokol, P. From EDI to Electronic Commerce: A Business
Initiative McGraw-Hill: New York, NY (1996).

STSC. Guidelines for Successful Acquisition and Management
of Software Intensive Systems Software Technology Support
Center: Hill AFB, UT (1996).

Sycara, K., Pannu, A., Williamson, M. and Zeng, D.
"Distributed Intelligent Agents," IEEE Expert (December
1996), pp. 36-46.

Sycara, K. and Zeng, D. "Coordination of Multiple Intelligent
Software Agents," to appear in International Jowrnal of
Cooperative Information Systems (1996).

Verity. Verity online description. Internet address:

http:/Awww.verity.com (1997).

Walsh, W.E.,, Wellman, M.P., Wurman, P.R. and MacKie-
Mason, JK. “Some Economics of Market-based Distributed
Scheduling, Submitted for publication (1997).

Whitehead, S.D. "Auto-faq: An Experiment in Cyberspace
Leveraging,: Proceedings of the Second International WWW
Conference 1 (1994), pp. 25-38.

Zeng, D. and Sycara, K. "Cooperative Intelligent
Software Agents," Carnegie Mellon University
technical report no. CMU-RI-TR-95-14 (March 1995).

