
SARA

A Software Reuse Architecture for Building Expert WorkFlow Systems

Einar Dehli, Benedikte Harstad KallAk,
Thomas Bech Pettersen, Jan Erik Ressem, Are Sorli, Geir Waagbe

Computas AS
P.O. Box 444, N-1301 Sandvika, Norway
Phone: +47 67541111, Fax: +47 67541011

E-mail: {Einar.Dehli, Benedikte.Harstad, Thomas.Pettersen, Jan.Erik.Ressem, Are.Soerli, Geir.Waagboe} @computas.no

Abstract
SARA is an advanced Smalltalk architecture for building
product model based work process assistance systems. Since
1996, SARA has been successfully used for building several
mission-critical applications. The largest fielded system to
date is for handling the processes of criminal proceedings in
the Norwegian Police, with 8000 users. The flexibility of the
Smalltalk language and environment has allowed our teams
of experienced object-oriented software developers and
knowledge engineers to prototype and introduce new
solution concepts and AI mechanisms in the context of real
world development projects. SARA supports distributed
transaction handling and server-based execution in a
distributed object-oriented architecture. It comes with a set
of frameworks, components and patterns, and is supported
by tools, methods and training programs. AI mechanisms
include an agent framework, a rule inference engine and a
workflow/work process execution engine.

Introduction

Many early attempts at introducing knowledge-based
technology to support business processes have had little
real impact on the way business is conducted. A reason for
this may be that expert systems developers have had a bias
towards the more challenging and complex decision
problems. Though interesting in its own right, replicating
the competence of experts addresses a small fraction of the
work carried out in most organizations. Much higher
overall payoff can be expected from successful application
of knowledge technology to the plethora of routine work
processes.

Since its foundation in 1985 (as Computas Expert
Systems AS, or CX), Computas has been guided by
motivation to help individuals and organizations apply
knowledge more efficiently and wisely. More specifically,
the goals have been: (1) to free the highly skilled from the
need to do repetitive work and routine application of
knowledge, allowing them to spend more time on the
creative and fun aspects of work; and (2) to allow the less
skilled to carry out more work, at higher quality, and with
higher satisfaction, thus raising their status and self-respect.

To achieve these goals, Computas has primarily recruited
employees skilled in Artificial Intelligence, Object Techno-
logy and User Interaction. Many years of exposure to
diverse domains and project types for these people have
now yielded a family of reuse architectures for building
what we may denote as Product Model Based Work Pro-
cess Assistance, or EXPERT WORKFLOWTM systems. These
architectures are based on a set of frameworks, components
and patterns, supported by tools, project methodologies,
and training programs. All architectures share common
representation formats and design patterns, but are
optimized for different application types and implemen-
tation environments. The focus of this paper is SARA, a
flexible Smalltalk architecture, which has proven an ideal
platform both for experimental prototyping of new solution
concepts and AI mechanisms, and as a solid foundation for
deployment of mission-critical applications. As frame-
works and interfaces stabilize, they are also made available
in BRIXTM, an industry-standard, component-based COM
architecture, and in an emerging JavaBeans/ CORBA
implementation.

The EXPERT WORKFLOWTM Solution

Framework

In an EXPERT WORKFLOWTM application, the user is guided
to system functionality through explicit representations of
business processes and work tasks. This makes the com-
puter system a very good tool for controlling and managing
the flow of work, ensuring correct execution of processes,
and increasing work efficiency by providing just-in-time
access to relevant information and computer functionality.
The power and efficiency of the solution concept come
from the combination of--and tight integration
betweerv--expert systems technology, object technology
and the business process focus that workflow systems have.

To convey an understanding of the EXPERT
WORKFLOWTM solution concept, we will briefly describe
two example applications: HELENE, a dues collection
system, and BL, a police support system for handling

22

From: AAAI Technical Report WS-98-13. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

criminal proceedings.
Among the other systems implemented with the EXPERT

WORKFLOWTM frameworks, we find a payroll and human
resources administration system, a project and contracting
administration system, and a real time system for operator
support in a steam plant.

Helene
The Norwegian National Insurance Institution has
established an office that handles collecting of child
support from divorced parents that do not have custody, but
keep economic obligations towards their children.
Currently, about 65 officials are actively working to collect
dues from child support debtors in Norway. The officers,
who act on behalf of the children as creditors, communicate
with the debtor (and the creditor) and use legal enforce-
ment, if necessary, by taking action such as different kinds
of debt collection by coercion.

Their work is governed by a very complex set of laws
and regulations set up to ensure the rights of the children
and the parent taking daily care of the children, as well as
the rights of a debtor in case of economic difficulties on his
or her part.

In the HELENE system, different tasks
and procedures in the collecting pro-
ceedings are represented declaratively as
procedures in the computerized workflow
system. Currently there are about 100
different business process definitions in the
system. Lawyers and legal experts are
responsible for creating and maintaining ¯
the procedures and rules in the system, and O
changes of these instantly implies change in
business practice.

Relevant legal rules and regulations are
also represented as rules in a knowledge
base. This results in effective computer
support for the officials in their work, and
ensures that the proceedings always comply
with legally correct procedures.

Figure 1 shows an application view
during procedure execution: A parent has not paid his debt
after repeated reminders, and the executive officer has
started a collection procedure to attach some property of
the debtor.

The top pane in the view shows the process and the
activities/steps in the process. The activities marked "/ are
already executed, and the activities marked ~[~ are
mandatory. To execute the selected activity, the user clicks
the traffic light. The light is green if all preconditions for
the activity are satisfied, or else, it turns red and the activity
cannot be executed.

As an example of the connection between processes and
the rule base, we can have a brief look at the activity
"Make the attachment". The activity has a precondition
named "The attachment can be made". The precondition is
tested when the officer tries to execute the activity, and this

triggers reasoning in the rule system.
The lower pane is used for feedback and questions to the

user. Feedback has two origins. It can come from the
actions in the processes when something must be said about
what an action did. It can also come from the rule system
as information of the reasoning that is taking place.
Questions occur when the rules don’t get sufficient facts
from the domain model to evaluate. In this case, the user
must provide these facts manually. The questions can be
answered with yes (~) or no (X). In the example in figure
1, the question "Is §4-18 reminder sent within the last 12
months?" comes from some rule reasoning originated in
some condition of the first activity, "Check that reminder to
debtor has been sent". The question "Can notice be omitted
according to the Enforcement Act §7-10?" has its origin in
some condition of the second activity.

The actions in the procedure steps (or business process
activities) in HELENE, among other things consist of
creating letters to the involved persons and authorities, such
as a notice to the debtor and judicial registration of the
attachment to the proper authorities. An action that causes
creation of a letter opens the associated word processor and
fills out document fields with data from the domain model
in the relevant template document.

....

On receipt of judicial registration certificate, register date of the judicial registration
End attachment of property

i’’X Can notice be omitted according to the Enforcement Act §7-10.9

] "/’ Is §4-18 reminder sent within the last 12 months,9

I N
Figure I Application view from HELENE, illustrating how SARA assists in the

execution of a debts collection procedure

HELENE is implemented in Smalltalk as a client application
and uses a relational database system on a server for data
storage. It also communicates with a back-end accounting
mainframe system. It interacts with a standard word
processor for handling documents, and with a hypertext
tool for detailed explanation of each step in the processes.
These explanations contain hypertext links to relevant legal
rules and regulations.

HELENE was the first system based on the EXPERT

WORKFLOWTM concepts. The system was put into operation
in May 1995 after a 9-month development period, including
specification, knowledge acquisition, implementation,
testing and education. The users had limited experience
with modern computer systems, and very few of them had
experience with collecting debt procedures. After about a
year in operation, the officials supported by HELENE have

23

reduced the average proceedings time from about 3 months
to less than 3 weeks, and work quality has increased
significantly.

BL
BL is an EXPERT WORKFLOWTM system used by the
Norwegian Police Department and the Public Prosecuting
Authority for handling the processes of criminal pro-
ceedings. Compared to the HELENE system, the domain
model of BL is more complex. In brief, it covers criminal
cases with different kinds of related information, including
involved persons and their roles in the cases, objects that
are missing or stolen or act as evidence, etc.

Register time, place, type, and other information about the crime
Register aggrieved party

Register reporting person
i i~] iI. i ~l:~lg. ii lltn i 1~:111 ii ii~.l i i~| i¢1 i-ii i i i¢1 IitTl-~ i iii i1 gtl i1=1 ii lii i dil .H...i i ’i~ ~’

"~ Register witness

Register suspect

¯

Report stolen/missing objects

~ Make a statement document
File report to national crime register

O i-h Printthe statement document

~}

¯

121 Makethe statement documentvalid
End the report and file e follow-up to the investigator team

iiiiii~iiiiiiiiiiiiiii!iii~!iiii~

Figure 2 Work process in BL, showing the steps to perform when someone wants
to report a crime at the police station

Figure 2 shows one of the about 70 work processes in the
initial BL release, the process performed when someone
wants to report a crime at the police station.

There are some differences between how processes
behave in HELENE and in BL. In contrast to HELENE, the
activities in a process in BL do not normally have to be
performed in a strict sequence of order. In
addition, most activities can be performed several
times; e.g. when there is more than one witness in
the example above. In HELENE, each activity can
only be performed once. The workflow com-
ponent in EXPERT WORKFLOWTM takes general
business differences like these into account.

Putting the system into operation in the police
and the Public Prosecuting Authority all over
Norway is a substantial organizational task. After
a 9-month development period, this task was
started in April 1996. At the end of 1997, the
system was in full operation in 30 police districts,
together covering 3500 end users. The remaining
24 districts will be put into operation incremen-
tally until the end of 1998. About 8000 people,
including policemen, prosecution attorneys and
office workers, will then use the BL application.

SARA Architecture Overview
The first SARA-based EXPERT WORKFLOWTM systems
consisted of three interrelated models, each representing
different aspects of business knowledge:
¯ A representation of business processes and a workfiow

engine that manages the execution of these processes.
We call this representation the process model.

¯ A representation of the substance in the business domain
in a traditional object model with services/functionality
operating on this model. We call this representation the
domain model.

¯ A representation of the business rules as a rule base with
an inference engine.

In figure 3, the relationships between these
three knowledge representation models are
illustrated. The three representations work
together in order to provide knowledge-
based computer support for business
processes. Thus, the starting point is the
process model. The representation of an
activity in a business process sends
messages to the domain model to provide
such support. These messages are called
actions. The rules act as execution
conditions for the processes and activities.
A precondition must evaluate to true if a
process or an activity is allowed to start.
An action choice condition is used to
determine which set of actions is
performed in an activity. A postcondition
is evaluated to ensure that the process is in
a legal state before it is marked as
correctly executed.

To evaluate, the rules need facts. They get the facts from
the domain model. They can also ask the processes for
facts. To the rules, the process model in this sense can be
regarded as part of the domain model. Rule reasoning can
produce side effects if the rules are set up to send messages
to the domain model and process model when evaluated.

sends I
mes 2es

has execution
conditions in

gets facts from
sends messages to

(side effects)

state and behavior

constraints in

Figure 3 Relationships between the three knowledge representation
models found in early SARA systems

24

The rules are not only conditions for the processes and
activities, but also act as constraints on the state and
behavior of the domain model.

Figure 4 shows the separation between the SARA reuse
frameworks and the application specific parts of an EXPERT
WORKFLOWTM application. With SARA, most of the
application logic can be specified declaratively. The
elements that must be built are the domain model, the
business processes, the rule base and the application
specific views. In a real world situation, the picture is
somewhat more complex. There will always be situations
where modifications to some elements in the reuse frame-
works are required for proper behavior. In an open
environment like SARA, this can easily be done through
classical object-oriented inheritance at key points in the
frameworks. It is also straightforward to integrate other
components into the application, e.g. for communication
with a mainframe system. The aforementioned HELENE and
BL systems both communicate with mainframe systems,
through different communication components.

As the SARA frameworks have matured, the process of
building EXPERT WORKFLOWTM applications increasingly
has shifted its focus from a traditional object-oriented deve-
lopment effort towards more of a knowledge acquisition
and representation task. (We hold the view that the object-
oriented analysis/design involved in building a domain
model is just one aspect of acquiring and representing
knowledge). With SARA, it is possible to do this process in
an incremental and very rapid manner. As soon as the first
few processes and a part of the domain model are defined,
they are instantly implemented in the system and act as a
basis for discussions and further development. Editing the
processes and rules is done with authoring tools, as
illustrated in figure 4. Object-oriented CASE tools can be
used as authoring tools for the domain model.

EXPERT WORKFLOWTM is conceived from a knowledge
engineering tradition. An essential strength of SARA

compared to other object-oriented application frameworks,
is that the application specific business processes and rules
are declaratively represented as data (i.e. object instances)
and not code. This means that business processes and rules
are defined and maintained separately from application
code. For the systems developed with SARA, this quality
has been one of the most valuable, especially over time
when the system is in operation and continuous
maintenance. To some extent, the definition of the domain
model is also represented as data in a meta model.
However, objects with application specific behavior require
classes and methods, i.e. code, to be added. In fact, even
the definitions of some of the simpler user interface views
are separated out as data, and the contents and layout of
these views are built dynamically from that data at runtime.

SARA is an evolving architecture. The latest release of
SARA is based on a 3-tier client-server architecture, as
illustrated in figure 5. The three tiers are:
¯ The client tier is the part running on the end user’s

computer. The client tier can be a Smalltalk application,
a Java application, a Java applet running in a Web
browser, or pure HTML-pages accessible from any Web
browser. In one system, there could be one or more of
these client types.

¯ The application server tier is built with a high
performance, object-oriented, transactional/ multi-user
application server and database.

¯ The enterprise and data storage tier consists of the object
storage facilities, a relational database for backend data
storage (can be omitted), and other systems and data
sources in the enterprise.

Even if this architecture is called 3-tier, it fits well into an
n-tier architecture when taking into account a total
enterprise architecture consisting of many different systems
and applications.

¯
IWorkflow/Process

Engine

Domain Model
Work Processes

Knowledge Bases
Application Specific Views Rule Inference

Engine

Agent Organisation
Framework Framework

View Components

Architecture Integration

Figure 4 Illustration of how authoring tools are used to build application specific
knowledge bases bz the context of the SARA architecture and reuse frameworks

25

S/U~P. Client S J~FLP. Client SARA Client Other clien~

Cfie~: ~ier

~ppb’~io~

~

SARA J~r~r r~r

~

Applica~on Server
Shared Business Objeo:s
Persist:ence, Transa~:ions, SecuriW
Knowledge Ba~s and Engines

E~,~,,’pr/s’e ~,,’,d Workflow Enaa:rnent: Environment

Mainfl’ames S.n.o

Olher object
S erver~

Figure 5 SARA multi-tier architecture

AI Mechanisms in SARA

In addition to the knowledge representation and reasoning
mechanisms described above, we have incorporated
forward-chaining rule inference and an agent framework
into the latest release of SARA. Further plans include case-
based reasoning and constraint satisfaction techniques.

Rule Inference Framework
The rule inference framework contains the means to store a
rule base, as well as mechanisms for evaluating logical
sentences using the rules (the rule engine). A typical rule
of the form:

if premise then consequent

Both the premise and the consequent are predicates. The
rule expresses that if the premise is true, then so is the
consequent. A more concrete example is:

if I (?Case.hasInvolved(?Person),
?Case.hasInvolvedAmong(?Person.relatives)

then §DisqualifiedAsWitness(?Person, ?Case)

In this example, ?Case.hasInvolved(?Person) is an atomic
predicate, whereas §DisqualifiedAsWitness (?Person,
?Case) is a consequent predicate.

Predicates can be thought of as syntactic entities
expressing something about the world; as Owns-a-Car, Is-
Red, Has-Gone-Fishing, Is-Married-To, etc. If predicates

are to be useful, we need variables as well: i.e. Owns-a-
Car(?Person), Is-Married-To(?Personl,?Person2). Question
marks indicate variables. Given a certain binding of the
variables to objects in the domain model, a predicate is
always true or false.

Our rule language is more or less the language of
ordinary first order predicate logic with the quantifiers
removed. This can also be called the language of
quantifier-free predicate logic. In predicate logic the basic
building blocks in the language are predicate letters and
terms. Atomic formulas are built up from predicate letters
and terms, and these again can be combined with the
connectives to build more complex formulas. In our object
representation of rules, both the formulas and the predicates
are represented by the same objects, and we have chosen to
call these objects predicates. Thus we have ended up using
the term predicate as synonymous with the term formula.
The set of terms of our rule language consists of variables
and object paths, i.e. declarative object expressions that can
be stored persistently, and are dynamically bound and
invoked at runtime, providing a means of referring to or
altering the state of domain objects.

Agent Framework
The agent framework can be seen as architectural glue for a
distributed, knowledge-based system. It serves two main
purposes:

1) It is a skeleton framework ("white box") for con-
structing system components that handle knowledge. An

26

agent in SARA can be seen as an object that is responsible
for obtaining, acting on, and distributing knowledge about
other objects in the system. Agents are connected to an
environment (e.g. some domain objects), typically have
knowledge base, and communicate and collaborate with
other agents via a well-defined agent communication
language. In this way, the agent framework allows new
knowledge representation and reasoning mechanisms to be
added to an application in a principled manner.

2) It serves as the principal layer ("black box") for
handling distribution of, and communication between,
existing knowledge representation and reasoning
mechanisms in the SARA framework. Distribution of
knowledge bases is crucial for handling scale, complexity
and distributed control of continuously evolving knowledge
in an enterprise-wide system. When we want to distribute
rules over many different rule bases, or when a process
needs to evaluate a rule, or when a rule is dependent upon
some object in the business model, it will be the task of
some agent to handle knowledge interchange between these
different knowledge components.

The agent framework in SARA consists of:
¯ Basic agent substrate, which can be extended ("white

box").
¯ Agent facilitators, for co-ordinating agent communi-

cation.
¯ Currently three types of reusable agents ("black box"):

rule agents, which manage rule bases, process agents,
which manage work processes, and business model
censoring agents, which monitor changes in the business
model.

¯ An implementation of a standard agent communication
language, KQML, for querying and manipulating agent
knowledge.

Conclusions
Our experiences with building intelligent workflow systems
show that:
¯ A dynamic, flexible and mature object-oriented language

like SmaUtalk is very well suited as a tool for building
knowledge-based systems.

¯ Knowledge-based systems technology can benefit
significantly from being tightly integrated in a general-
purpose object-oriented programming language.

¯ Combination of these two technologies can be used
efficiently to develop intelligent workflow systems that
apply well to a large range of real-world problems.

Smalltalk has proved to be very well suited for imple-
menting the desired mechanisms, including the workflow
and rule inference engines. The level of abstraction and the
dynamic capabilities of the language are two important
reasons for making this efficient and relatively straight-
forward. Other dynamic high level object-oriented
languages, such as CLOS, Self or Dylan, could also have

been used, but they lack Smalltalk’s level of maturity in
client/server commercial tools, professional development
environments, extensive libraries for integrating with other
systems, etc.

Authors
Einar Dehli is co-founder of Computas AS in 1985, and is
currently Vice President and Process Owner, Technology. He has
a M.Sc. degree in Computer Science from the Norwegian
University of Science and Technology (NTNU) in Trondheim.
addition to being a seasoned Lisp and Smalltalk developer, with
experience from both research and commercial projects, he has
held various company management positions He recently served
as Project Manager for the latest SaRa release.

Benedikte Harstad Kallgtk has a M.Sc. degree from the
University of Colorado. She has worked with expert system
technology for 5 years, and has 4 years experience with SaRa
development. She has also been responsible for incorporating the
techniques from EXPERT WORKFLOWTM into Microsoft’s COM"rM-

technology.
Jan Erik Ressem has a M.Sc. degree from the University of

Oslo. He has studied and worked with object-oriented methodo-
logies and databases for 4 years, and has 3 years of experience
with SaRA development and expert systems. He is currently
responsible for the multi-tier and distributed aspects of the SaRa
architecture.

Thomas Bech Pettersen has a M.Sc. degree from NTNU in
Trondheim. He has more than 12 years of experience with
knowledge engineering. He has worked with implementation tools
like Gensym’s G2TM, Neuron Data’s Smart ElementsTM, CLOS,
Smalltalk, KEETM, etc, and has participated in European research
projects working on methodologies for knowledge acquisition. He
is one of the most influential architects behind the EXPERT
WORKFLOWTM solution concept.

Are SCrli has a M.Sc. degree from the University of Oslo. He
has studied and worked with AI and object-oriented
methodologies for 4 years, and has 2 years of experience with
SaRa development. He is the primary architect behind the agent
framework in SARA.

Geir Waagb¢ has a Ph.D. degree in Mathematical Logic from
the University of Oslo, and a M.Sc. degree in Computer Science
from NTNU in Trondheim. He is the primary architect behind the
new rule inference engine in Sara.

27

