From: AAAI Technical Report WS-98-14. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

The WHIRL Approach to Integration: An Overview

William W. Cohen
AT&T Labs—Research .
180 Park Avenue Florham Park, NJ 07932

wcohen@research.att.com

Abstract

We describe a new integration system, in which infor-
mation sources are converted into a highly structured
collection of small fragments of text. Database-like
queries to this structured collection of text fragments
are approximated using a novel logic called WHIRL,
which combines inference in the style of deductive
databases with ranked retrieval methods from infor-
mation retrieval. WHIRL allows queries that integrate
information from information sources, without requir-
ing the extraction and normalization of object identi-
fiers that can be used as keys; instead, operations that
in conventional databases require equality tests on keys
are approximated using IR similarity metrics for text.
This leads to a reduction in the amount of human en-
gineering required to field an integration system.

Introduction

Knowledge integration systems like the Information
Manifold (Levy, Rajaraman, & Ordille 1996), TSIM-
MIS (Garcia-Molina et al. 1995), and others (Arens,
Knoblock, & Hsu 1996; Atzeni, Mecca, & Merialdo
1997) allow complex database-like queries to be posed;
in particular queries that integrate information from
multiple Web sites can be formulated and answered.
However, current knowledge integration systems require
extraction of database-like information from the Web,
a relatively expensive process in terms of human engi-
neering. The amount of human effort involved in in-

tegrating a new information source is far greater than.

the corresponding effort required by search engines like
Lycos and Altavista; these systems allow a large por-
tion of the Web to be queried, but the query language
is limited to keyword searches on single documents.
The system described in this paper investigates an
intermediate point between these two models. A set
of Web information sources is converted into a highly
structured collection of small fragments of text. We
then approximate database-like queries to this struc-
tured collection of text fragments using a novel logic
called WHIRL, which combines inference in the style
of deductive databases with ranked retrieval methods
from information retrieval. WHIRL allows queries that
integrate information from multiple Web sites, without

requiring the extraction and normalization of object
identifiers that can be used as keys. Instead, operations
that in conventional databases require equality tests on
keys are approximated using IR similarity metrics for
text.

In the remainder of the paper, we will first describe
and motivate this text-oriented data model, and sum-
marize the the WHIRL logic. We will then briefly re-
view the technical results we have obtained to date us-
ing WHIRL.

An Overview of WHIRL

The underlying representation and ideas

In our system, all information is represented internally
using a relational model in which every element of every
tuple is assumed to contain free text. We call this data
model STIR, for Simple Texts in Relations—“simple”
emphasizing that the free text is assumed to have no
additional structure. As an example, Figure 1 shows
two STIR relations, one containing movie listings, and
one containing a list of movie reviews.

The idea of incorporating free text in a relational
model is, of course, not new. We carry the idea further,
however, by assuming that all data is stored as free text.
Furthermore, we do not assume that two text descrip-
tions of the same object will necessarily be identical.
Instead we believe that situations of the sort shown in
the figure are more typical; here a movie object is de-
scribed in one relation by its title, and in another by its
title and year of release.

These assumptions imply that many traditional
database operations cannot be performed—for in-
stance, two relations r and ¢ can no longer be joined by
selecting tuples that have identical keys from the Carte-
sian product » x g. However, many traditional database
operations can be approximated if one assumes an ac-
curate similarity metric on fragments of text. For in-
stance, if the relations r and ¢ both contain a field d
that corresponds to a free-text object description, then
the join of » and ¢ can be approximated by sorting
the tuples in r X ¢ in decreasing order according to the
similarity of 7.d and ¢.d. If the similarity metric is ac-
curate, then early tuples in this ranking will correspond

| Cinema | Movie | Show Times]
Roberts Theaters Chatham | Brassed Off 7:15- 9:10
Berkeley Cinema Hercules 2:00 - 4:15- 7:30

Sony Mountainside Theater

Men In Black | 7:40 - 8:40 - 9:30 - 10:10

Movie Review

N

Men in Black, 1997 | (* * x) One of the summer’s biggest hits, this . ..

Face/Off, 1997

(* *) After a somewhat slow start, Cage and Travolta . ..

Space Balls, 1987

(*3) While not one of Mel Brooks’ better efforts,

this Star Wars spoof. . .

Figure 1: Data represented as simple texts in relations

to “correct” pairings (i.e., pairings for which r.d and ¢.d
describe the same object), and the “incorrect” pairings
will appear later in the ranking.

For example, using the cosine distance metric (de-
scribed below) the two descriptions of “Men in Black”
in Figure 1 would have high similarity, since they
have many words in common; the two descriptions of
“Face/Off” and “Brassed Off” will have low, but non-
zero similarity, since they share the word “Off”; and
the other pairings will have zero similarity. Thus of the
nine possible pairings of the tuples shown in the figure,
the ranking procedure described above would present a
pairing of the two “Men in Black” entries first, followed
by a pairing of “Face/Off” and “Brassed Off”. The end
user can easily find items that would be in the conven-
tional join by examining the proposed tuples in rank
order.

A remarkable fact is that robust, general methods
for measuring the similarity of passages of free text do
exist. In fact, virtually all modern IR systems that
perform ranked retrieval rely on such metrics to order
their responses. Generally, the response of such an IR
system to a query is a listing of the documents that are
most similar to the query, interpreting the query as a
short document.

As a consequence, “soft joins” based on IR-style sim-

ilarity metrics can be quite accurate in practice. Else-
where we report experimental results with “soft joirs”
on actual movie listing and movie review data extracted
from the Web (Cohen 1998a). We checked each pro-
posed pairing using the hand-coded normalization and
extraction procedures used in a working demonstration
of the Information Manifold (Levy, Rajaraman, & Or-
dille 1996). We discovered that every pairing considered
“correct” by the hand-coded procedures was ranked
ahead of every “incorrect” pairing—the best possible
result for such a ranking system. This corresponds to
a non-interpolated average precision! of 100%.

!The non-interpolated average precision a standard mea-

To summarize, the STIR representation has an im-
portant advantages over a traditional database repre-
sentation: it is not necessary to normalize the fields
that are to be used as keys in a join, a step which usu-
ally requires manual engineering. In the example above,
for instance, it is not necessary to normalize the movie
names by removing years from the review relation. To
our knowledge, STIR is unique among database and
knowledge base systems in being able to handle this
type of heterogeneity.

A more detailed description of the
representation

In the remainder of this section, we will explain how the
idea behind “soft joins” can be extended into a logic ca-
pable of supporting more complex queries. First, how-
ever, we will describe the STIR representation more
precisely.

A STIR database is a set of relations R =
{p1,...,pn}. Associated with each relation p is a tuple
set TUPLES(p). All the tuples in TUPLES(p) have
the same number of components. A tuple is written
(v1,...,va) € TUPLES(p), and each tuple component
v; corresponds to a fragment of free text, represented
as a document vector.

A document vector is a represention for text that is
commonly used in the information retrieval community
(Salton 1989). We will summarize this representation
below, for the sake of completeness. We assume a vo-
cabulary T of terms, which will be treated as atomic.
In the current implementation of WHIRL, the terms
are “word stems” (morphologically inspired prefixes)
produced by the Porter stemming algorithm (Porter
1980). A simple text is then represented as a vector

of real numbers v € RITI, each component of which

sure of the quality of a ra.nking'. In this case is computed by
averaging, over all ranks k containing a correct pairing, the
ratio rx /k, where rx is the number of correct pairings in the
first k£ proposed pairings.

corresponds to a term ¢ € T. We will denote the com-
ponent of v which corresponds to t € T by v;.

The general idea behind the vector representation is
that the magnitude of the component v, is related to
the “importance” of the term ¢ in the document rep-
resented by v. Two generally useful heuristics are to
assign higher weights to terms that are frequent in the
document, and to terms that are infrequent in the col-
lection as a whole; the latter terms often correspond to
proper names and other particularly informative terms.
We use the TF-IDF weighting scheme (Salton 1989) and
define v; to be zero if the term ¢ does not occur in text
represented by v, and otherwise

(log(TFv) + 1) - log(IDFy)

In this formula, TF,; is the number of times that
term t occurs in the document represented by v, and
IDF, = ;I:'T, where N is the total number of documents
in the same column as v, and n; is the total number of
documents in this column that contain the term ¢.

One advantage of this “vector space” representation
is that the similarity of two documents can be easily
computed. The similarity of two document vectors v
and w is given by the formula

SIM (v, %) = 3 T i

teT

This is usually interpreted as the cosine of the angle
between v and w. It will be large if the two vectors
share many “important” terms. Notice that SIM (v, w)
is always between zero and one.

Conjunctive WHIRL queries

Access to a STIR database is via an extension of
Datalog? called WHIRL (for Word-based Heteroge-
neous Information Retrieval Logic). Due to space limi-
tations, we will describe only a subset of the full logic—
the language of conjunctive queries over the database.

In WHIRL, as in Datalog, a conjunctive query is writ-
ten By A...A By where each B; is a literal. Two types
of literals are allowed. The first type, database literals,
correspond to the literals in Datalog, and are written
p(X1,...,X,), where p is the name of a STIR relation,

and the X;’s are variables. WHIRL also includes simi-

larity literals, which are written X ~ Y, where X and
Y are variables. Intuitively, a similarity literal can be
interpreted as a requirement that documents X and Y
be similar.

The semantics of WHIRL are best described in terms
of substitutions.® The answer to a Datalog query is

*Datalog refers to Prolog with no function symbols,
other than constants appearing in ground literal (Ullman
& Widom 1997).

3A substitution 8 is a mapping from variables to docu-
ment vectors. We will write a substitution as § = {X; =
Vi,...,Xn = Vn}, where each X; is mapped to the vector
v;. The variables X; in the substitution are said to be bound
by 8. If W is a WHIRL query (or a literal or variable) then

_database literal p(Xy,...,
- if Bf is a fact in the database (i.e., if {X16,..., X,0) is

typically the set of ground substitutions that make the
query “true” (i.e., provable against the database). In
WHIRL, the notion of provability will be replaced with
a “soft” notion of score: substitutions with a higher
score will be ranked higher in the list of answers shown
to the user.

Given a database, we define the score of a ground
substitution # for a literal B as follows. If B is a
X.), then SCORE(B,) =

in TUPLES(p)), and SCORE(B,) = 0 otherwise. If
B is a similarity literal X ~ Y, then SCORE(B,) =
SIM (x,y), where x = X6 and y = Y. In other words,
SCORE(W ,6) is the cosine similarity between the doc-
uments represented by X6 and Y 8. The score of a sub-
stitution for a conjunctive query W = By A...A B is
defined to be the product of the scores of the conjuncts:

k
=[] scorE(B;,0)

i=1

SCORE(W ,6)

Note that all scores must be between 0 and 1.

Finally, an answer to a WHIRL query W is an or-
dered list of all substitutions § with positive score,
presented in non-increasing order by score. In other
words, the answer includes all substitutions that make
the database literals true, and result in a non-zero score
for all the similarity literals, with the highest-scoring
substitutions given first.

For example, the “soft join” of the relations in Fig-
ure 1 might be written:

movieListing(Cinema, Moviel, Times)
A review(Movie2, Review)
A Moviel~Movie2

As in the “soft join” discussed above, the result of this
query would be a list of bindings for the variables Cin-
ema, Moviel, Times, Movie2, and Review, with the
bindings that make Moviel and Movie2 most similar
presented first. Allowing for a moment the syntactic
sugar of allowing constants to appear in queries, a more
complex query might search reviews by plot to see if the
latest science fiction comedy is playing at the Mountain-
side Theater:

movieListing(Cinema, Moviel, Times)
A review(Movie2, Review)

A Moviel~Movie2

A Cinema~ “mountainside theater”

A Review~ “comedy with space aliens”

It is also possible to use WHIRL to define and mate-
rialize a view. We will now briefly summarize WHIRL’s
treatment of views, using the following example:

v(Movie)«
review(Movie, Review)
A Review~ “comedy with space aliens”

W8 denotes the result of applythg that mapping to W—i.e.,
the result of taking W and replacing every variable X; ap-
pearing in W with the corresponding document vector vi. A
substitution 8 is ground for W if W@ contains no variables.

To materialize such a view, the interpreter will first
collect the K highest-scoring answer substitutions for
the conjunctive query corresponding to the body of the
view clause (where K is a parameter selected by the
user.) Call these K best substitutions © = {6,,...,
6k }. To materialize the view above, the interpreter will
create a new relation v that contains tuples of the form
(Movieb;), where §; € ©. Let m be some particular
movie (say, m=“Men in Black”). The score of the tuple
(m) is computed using the formula

km
1-JI-s) (1)
ji=1
where sy,...,s, are the scores of the substitutions

f; € © such that Movied; = m.

One way of thinking of © is as a relation with one col-
umn for each variable in the body of the clause, and one
row for each answer substitution for the clause body.
Materializing a view can now be described as a two-
step process. First, one computes this relation. Sec-
ond, one “projects away” the unwanted columns (i.e.,
the columns corresponding to variables that do not ap-
pear in the head of the clause.) The projection step
can lead to duplicate rows, which are then collapsed to-
gether and rescored using Equation 1. The size of the
intermediate table is limited to K rows for efficiency
reasons.

WHIRL also supports disjunctive views. Views are
discussed in more detail in (Cohen 1998a).

Experiments with WHIRL
Efficiency and Scalability

A detailed description of the inference algorithm used
in WHIRL is beyond the scope of this paper (but see
(Cohen 1998a) for a detailed description). The cur-
rent inference algorithm exploits a number of features to
make inference efficient. In particular, in most contexts
it is sufficient to return a small prefix of the ordered
list of answer substitutions to a user—for instance, the
top 20 or so answer substitutions is usually enough.
By taking advantage of special properties of the simi-
larity function used, it is possible to compute the top-
scoring k answer substitutions without computing all

possible answer substitutions. This leads to a substan--

tial speedup in answering complex queries. The current
implementation of WHIRL combines A* search meth-
ods with various optimization methods used in more
conventional IR systems, notably the “maxscore” opti-
mization method proposed by Turtle and Flood (Turtle
& Flood 1995).

Table 1 summarizes the runtime performance? of
WHIRL on 10 sample queries in one implemented do-
main. (The bird domain described in Section .) For
each query, the top 20 answers were retrieved. The
first column is the size of the cross-product of the re-
lations combined by WHIRL in the query (in millions

“On an SGI Challenge with 250 MHz R10000 processors.

VideoFlicks-IMDB

Naive —— |
Maxscore --+---

WHIRL e |

90

70
60
50 |
40 |
30
20 |
10

CPU time

g8

o sg- . .
0 5000 10000 15000 20000 25000 30000
Number of tuples

Figure 2: Runtime for similarity joins (in seconds)

of tuples). This information is provided to show that
the interpreter is much more efficient than simply re-
ordering all possible tuples from the cross-product of
the relations; clearly, WHIRL is quite fast, even when
computing three- and four-way joins (Cohen 1998b).
In a second set of experiments concerning scalabil-
ity, we took two large relations (both containing movie
names) from the Web, and evaluated the performance
of WHIRL on similarity joins, i.e. queries of the form

P(X1y 0 Xir o X6) A gV, Y L Y) A X~ Y

We joined size n subsets of the movie relations, for var-
ious values of n between 2000 and 30,000, retrieving
in each case the top 10 answers. We compared the
run-time of WHIRL to the run-time for two strawmen
approaches to computing similarity joins. The first, the
natve method for similarity joins, takes each document
in the ¢-th column of relation p in turn, and submits it
as a IR ranked retrieval query to a corpus corresponding
to the j-column of relation ¢q. The top K results from
each of these IR queries are then merged to find the
best K pairs overall. This approach uses inverted in-
dices, but employs no special query optimizations. The
second strawman is the maxscore method for similarity
Jjotns; this method is analogous to the naive method
described above, except that the mazscore optimiza-
tion (Turtle & Flood 1995) is used in finding the best
K results from each “primitive” query. As noted above,
WHIRL is closely related this optimization method.
The results are shown in Figure 2. For this data,
WHIRL speeds up the mazscore method by a factor
of between 4 and 9, and speeds up the naive method
by a factor of 20 or more. The absolute time re-
quired to compute the join is also fairly modest—with
n = 30,000, WHIRL takes well under a minute® to
pick the best 10 answers frdm the 900 million possible

Al timing results are given in CPU seconds on a MIPS
Irix 6.3 with 200 MHz R10000 processors.

x-size | Time Query
(millions) | (sec)
0.087 [0.04 [na(Ord,N),Ord~" passeriforms”, es(ESN,Stat), ESN~N
0.I7] 0.01 || na(Ord,N),Ord~"falconiformes” fct(FN,HRef), FN~N
16 | 0.02 || na(Ord,N),Ord~"gruiformes” fct(FN,HRef),FN~N es(ESN,Stat), ESN~N
60 | 0.08 || na(Ord,N),ident(IN,HRef) IN~N,es(ESN,Stat), ESN~N
67 | 0.08 || na(Ord,N),N~"strigiformes” call(CN,HRef), CN~N,nhp(NHPN), NHPN~N
69 | 0.04 || na(Ord,N),N~"anseriformes” ,img(IN,HRef),IN~N,nj(NJN),NJN~N
190 | 0.03 || na(Ord,N),Ord~"falconiformes”,img(IN,HRef) IN~N,es(ESN,Stat) ;ESN~N
6700 | 0.06 || na{Ord,N),bmap(BN,HRef),BN~N nj(NJN),NJN~N,w(WN),WN~N
9,000 | 0.08 || na(Ord,N),smap(MN,HRef), MN~N,nj(NJN),NJN~N,w(WN),WN~N
66,000 [0.02 || na(Ord,N),Ord~"pelicaniforms” ,img(IN,HRef),IN~N,
nj(NJN),NJN~N,es(ESN,Stat), ESN~N

Table 1: Performance of the WHIRL interpreter on sample queries. Predicate names have been abbreviated for

formatting reasons.

candidates. For more detail on these experiments, see
(Cohen 1998a).

Accuracy of Integration Inferences

We also evaluated the accuracy of similarity joins,
again using data taken from the Web. We selected
pairs of relations which contained two or more plau-
sible “key” fields. One of these fields, the “primary
key”, was used in the similarity literal in the join. The
second key field was then used to check the correctness
of proposed pairings; specifically, a pairing was marked
as “correct” if the secondary keys matched (using an
appropriate matching procedure) and “incorrect” oth-
erwise. We then treated “correct” pairings in the same
way that “relevant” documents are typically treated in
evaluation of a ranking proposed by a standard IR sys-
tem; in particular, we measured the quality of a ranking
using non-interpolated average precision. The results
for three such pairs of relations are summarized in Ta-
ble 2. On these domains, similarity joins are extremely
accurate, relative to the secondary keys (Cohen 1998a).

In another set of experiments (Cohen 1997), we
}ooked at constrained similarity joins—queries of the
orm

p(X1,..., X .., Xa)
Agh,.... Y. %)
ANXi~Y;

A Xk ~ “constraint”

In this case the similarity join is restricted to tuples for
which some field is similar to some “constraint docu-
ment” specified by the user. This is analogous to im-
posing an additional selection criterion on an ordinary
relational join. These queries are somewhat difficult to
evaluate automatically in general, so we were careful
about choosing the additional “selectional criteria”; in
the movie domain, for instance, the queries specified
that the review must be similar to a plot description
which was intended to pick out one particular movie.
(For more details see (Cohen 1997).) The average pre-
cision for these queries is lower, but still respectable—

between 36% and 100%, and averaging around 56%. We
note that these queries involve combining a similarity
join with an IR-type ranked retrieval, so performance
better than that achievable by modern IR systems on
ranked retrieval problems is impossible.

Integration of Partially Extracted Data

A major advantage of the STIR representation is that
it is very robust to errors in the data. To illustrate this,
consider the problem of working with fields that have
been incompletely extracted.

In the movie domain experiment described in Section
(and reported again above) we used the same hand-
coded extraction procedures used in the Information
Manifold. Thus each movie listing was segmented as
shown in Figure 1, with the movie title in a separate
field from other information; similarly, in the review re-
lation, the name of the movie being reviewed was also
extracted. However, similarity joins can also be per-
formed when object descriptions cannot be easily ex-
tracted from the surrounding text. For example, one
could treat the entire review as a single field; similarly,
one could treat an entire movie listing as a single un-
segmented field including movie name, cinema name,
and show times. Similarity joins can still be performed
on the resulting fields, and documents referring to the
same movie should still match reasonably well, although
one would expect the irrelevant “noise” words to have
some adverse affect.

In experiments with the review and movie listing
relations, the degradation due to incomplete extrac-
tion was quite small. Joining movie names to unseg-
mented movie reviews reduces non-interpolated aver-
age precision by only 2%, to 98%, and joining unseg-
mented movie listings to unsegmented reviews reduces
non-interpolated average precision by less than 7%, to
93%. »

These intriguing results have now been duplicated in
a second domain. We took a Web page that listed on-
line demos of educational games for children, and at-

Similarity Joins

Constrained Similarity Joins

Domain Average Constraint Domain | Average
Precision Precision
Business 84.6% | | modems business 71.5%
Animals 92.1% | | internet business 100.0%
Movies 100.0% software business 57.0%
telecom. equip. | business 49.0%
plotl movies 54.5%
plot2 movies 61.3%

mexico animals 48.3%)
texas animals 46.5%
washington animals 36.2%
florida animals 42.2%
maine animals 50.0%

Table 2: Average precision for similarity joins

tempted to join it with second list of education games.
The second list was from a relation providing informa-
tion concerning the age range for which a game is con-
sidered appropriate, and will be called henceforth the
agelist. The original demo listing was simply an item-
ized list of free-text descriptions. Some representative
items, with hyperlinks removed, are given below:

o 7th Level has The Great Word Adventure Demo star-
ring Howie Mandel for Windows.

e Conezus has two shockwave demos - Bubbleoids (from
Super Radio Addition with Mike and Spike) and Hop-
per (from Phonics Adventure with Sing Along Sam).

o Broderbund software has the Zoombinis Mudball Wall
Demo. (Mac and Win) Cool!

We performed two experiments with this data. First,
we joined each complete list item with the agelist, and
recorded a pairing as correct if the agelist game was in
fact mentioned in the list item. Second, we manually
extracted each game name from the page, and joined
the resulting list of game names with agelist. A pairing
was judged correct if the game names referred to the
same game (as determined by manual inspection.)

In this case the average precision was 86.5% with
extraction, and 67.1% without extraction. Although
extraction does provide a benefit in this case, it should
be noted that even without extraction, the result of the
similarity join is certainly accurate enough to be usable.
For instance, without extraction, the first 23 pairings
contain only two mistakes; these mistakes, appearing
at ranks 5 and 6, incorrectly pair the games “Mario
Teaches Typing” and “Mario Teaches Typing 2”.

Accuracy of Classification Inferences

We also evaluated the accuracy of a second type of
query. Suppose one is glven a relation of the form
train(inst,lab) associating an “instance” inst with some
“label” lab where the label is taken from a relatively
small fixed set of possible labels. (For instance, the in-
stances in train might be news story headlines, and the

labels might be subject categories from the set busi-
ness,sports, US,world,other.) One can assign a label to
a new instance (e.g., a new headline) by first making it
the sole entry in the relation test(inst), and then mate-
rializing the view

v(X,Lab) «+ test(X),train(Y,Lab), X~ Y.

This query associates labels with X based on X’s sim-
ilarity to instances Y in the training data. Used in this
manner, WHIRL is a sort of nearest-neighbour classi-
fier, algorithmically similar to the vector space distance-
weighted K-NN method investigated by Yang (Yang &
Chute 1994}; however, WHIRL uses a different scheme
is used to combine the weights associated with the K
closest neighbours of an unclassified instance.

As a further evaluation of WHIRL, we created nine
benchmark problems from web pages found on the
World Wide Web; all of these associate text, typically
short, name-like strings, with labels from a finite set.
We compared the generalization accuracy of WHIRL to
the accuracy of several other inductive learning meth-
ods, including Yang’s method, C4.5 (Quinlan 1994) us-
ing a binary representation, and Ripper (Cohen 1995;
Cohen & Singer 1996) using set-valued features. We
used K = 30 for WHIRL and Yang’s method. Minimal
feature selection was used for C4.5 (terms appearing in
less than three examples were discarded) and no feature
selection was used for the remaining learning methods.
Standard experimental methodology was used to assess
the accuracy of the predictions; for details see (Cohen
& Hirsh 1998).

The results are shown in Table 3. WHIRL outper-
forms C4.5 eight of nine times, and outperforms RIP-
PER seven of nine times. The competing method that
is closest in performance to WHIRL is Yang’s method,
which is closely related to WHIRL. WHIRL also outper-
forms Yang’s method eight of nine times; although all of
these eight differences are small, five of them are statis-
tically significant. WHIRL is never significantly worse

Accuracy (%)

Time (sec)

default | RIPPER | C4.5 [Yang | WHIRL RIPPER C4.5 | WHIRL
memos 19.8 509 | 575 | 64.4 66.5 || hcoarse 92.7 51.4 21.1
cdrom 26.4 383 | 39.2 1 47.2 47.5 || hfine 126.0 55.7 22.0
birdcom 42.8 88.8 | 79.6 | 82.3 83.9 || species 299.7 1505.6 23.5
birdsci 42.8 91.0 | 83.3| 89.2 90.3 || books 213.4 | 11437.2 72.4
hcoarse 11.3 28.0 | 30.2 | 327 32.9 || netvet 122.2 1566.1 37.8
hfine 4.4 16.,5 | 17.2 | 21.0 20.8 || average 170.8 | 2923.2 35.4
species 51.8 906 | 89.4| 93.6 94.3 .
books 5.7 423 | 52.2| 60.1 61.4
netvet 22.4 67.1 1 68.8| 67.8 68.1
average 25.24 57.52 | 57.41 | 62.00 62.90

Table 3: Accuracy, and runtime for learning and classification

than any other learner on any individual problem.®

We also observe that although nearest neighbour
methods are often slow in terms of classification time,
the indexing methods employed by WHIRL (and other
IR systems) for text make nearest-neighbour classifica-
tion quite efficient for problems of this type; this is in-
dicated by Table 3, which also gives the combined time
required to learn from the training data and classify the
test data for the five larger benchmark problems.”

Practical experience in using WHIRL

WHIRL has also been used as the central component
of a working integration system. The main additional
components of this system are an HTTP server inter-
face to WHIRL, which allows conjunctive queries to
WHIRL to be easily formulated using HTML forms;
and a spider program which allows one to easily extract
STIR relations from HTML pages. These components
are described in detail elsewhere (Cohen 1998b); here
we will simply observe that the ability to work effec-
tively with incompletely extracted data makes extrac-
tion from HTML pages much easier.

At the time of this writing, two moderately large
domains have been fully implemented for this system,
and a number of isolated information sources have
been converted for purposes of evaluation or demon-
stration. One implemented domain integrates informa-
tion on birds of North America from about two dozen
sites. The integrated database contains pointers to
over 5000 pages containing information about birds, in-
cluding nearly 2800 images of birds; around 700 fact
sheets; more than 350 bird calls; over 1000 maps show-
ing relative abundance of bird species at various times
of the year; a list of bird species that are endangered in

®We used McNemar’s test to test for significant differ-
ences on the problems for which a single holdout was used,
and a paired t-test on the folds of the cross-validation when
10CV was used.

"As a brief indication of size, hcoarse has 1875 train-
ing examples and 600 test examples, 126 classes, and 2098
distinct terms; books has 3501 training examples, 1800 test
examples, 63 classes, and 7019 terms.

the United States; and bird checklists for North Amer-
ica, the state of New Jersey, and one national park.
The second domain integrates information about edu-
cational computer games from twelve sites. The inte-
grated database contains more than 2500 pointers to
various web pages, including over 1800 reviews, pricing
information for over 300 games, pointers to more than
60 online demos, and over 280 home pages for game
publishers. Both domains are available as demos on
the World Wide Web at http://whirl.research.att.com.

Conclusions

WHIRL differs from previous knowledge integration
systems in using an unconventional data model which
represents information directly in text, and answering
queries using a “soft” logic, WHIRL. WHIRL approxi-
mates conventional database queries using textual sim-
ilarity tests. In particular, information sources are rep-
resented as tables of simple texts, and joins and other
database queries are approximated by replacing equal-
ity tests with similarity tests on text. WHIRL uses the
cosine distance metric and TF-IDF weighting schemes
to estimate the similarity of texts; this is one of several
robust and general similarity metrics developed by the
IR community.

Representing data as tables of texts makes knowl-
edge integration easier in several ways. Notably, the
fields that will be used as keys do not need to nor-
malized. Furthermore, the robustness of the similarity
metrics means that extraction need not be complete—
acceptable performance is still obtained if some “noise”
words are contained in a field. These properties make
it much easier to convert information sources into our
data model.

WHIRL has been validated with a number of exper-
iments in controlled settings, many of which are de-
scribed above. These controlled settings are in many
respects artificial: we do not expect, for instance, that
queries in domains of real Anterest will often be sim-
ple similarity joins, nor do we believe that WHIRL
will be typically used as a nearest-neighbour classifier.
However, it is difficult to quantify the performance of

WHIRL’s similarity-based reasoning methods on com-
plex queries, and WHIRL’s excellent performance on
these simple types of queries is extremely encouraging.
WHIRL has also been validated by building working
information access systems in two different non-trivial
domains.

References

Arens, Y.; Knoblock, C. A.; and Hsu, C.-N. 1996.
Query processing in the SIMS information mediator.
In Tate, A., ed., Advanced Planning Technology. Menlo
Park, CA: AAAI Press.

Atzeni, P.; Mecca, G.; and Merialdo, P. 1997.
Semistructured and structured data on the Web: go-
ing back and forth. In Suciu, D., ed., Proceed-
ings of the Workshop on Management of Semistruc-
tured Data. Tucson, Arizona: Available on-line
from http://www.research.att.com/ suciu/workshop-
papers.html.

Cohen, W. W., and Hirsh, H. 1998. Joins that gener-
alize: Text categorization using WHIRL. Submitted
to KDD-98.

Cohen, W. W., and Singer, Y. 1996. Context-sensitive
learning methods for text categorization. In Proceed-
ings of the 19th Annual International ACM Confer-
ence on Research and Development in Information Re-
trieval, 307-315. Zurich, Switzerland: ACM Press.

Cohen, W. W. 1995. Fast effective rule induction. In
Machine Learning: Proceedings of the Twelfth Inter-
national Conference. Lake Tahoe, California: Morgan
Kaufmann.

Cohen, W. W. 1997. Knowledge integration for struc-
tured information sources containing text (extended
abstract). In The SIGIR-97 Workshop on Networked
Information Retrieval.

Cohen, W. W. 1998a. Integration of heterogeneous
databases without common domains using queries
based on textual similarity. In Proceedings of ACM
SIGMOD-98.

Cohen, W. W. 1998b. A Web-based information sys-
tem that reasons with structured collections of text.
In Proceedings of Autonomous Agents-98.

Garcia-Molina, H.; Papakonstantinou, Y.; Quass, D.;
Rajaraman, A.; Sagiv, Y.; Ullman, J.; and Widom,
J. 1995, The TSIMMIS approach to mediation:
Data models and languages (extended abstract). In

Next Generation Information Technologies and Sys-
tems (NGITS-95).

Levy, A. Y.; Rajaraman, A.; and Ordille, J. J.
1996. Querying heterogeneous information sources us-
ing source descriptions. In Proceedings of the 22nd
International Conference on Very Large Databases
(VLDB-96).

Porter, M. F. 1980. An algorithm for suffix stripping.
Program 14(3):130-137.

Quinlan, J. R. 1994. C4.5: programs for machine
learning. Morgan Kaufmann.

Salton, G., ed. 1989. Automatic Text Processing.
Reading, Massachusetts: Addison Welsley.

Turtle, H., and Flood, J. 1995. Query evaluation:

strategies and optimizations. Information processing
and management 31(6):831-850.

Ullman, J., and Widom, J. 1997. A first course in
database systems. Upper Saddle River, New Jersey:
Prentice Hall.

Yang, Y., and Chute, C. 1994. An example-based
mapping method for text classification and retrieval.
ACM Transactions on Information Systems 12(3).

