
Efficiently Executing Information Gathering Plans

Eric Lambrecht and Subbarao Kambhampati
{eml, rao}@asu.edu

Department of Computer Science and Engineering
Arizona State University

Tempe, AZ 85287
(602) 965-2735

Abstract

The most costly aspect of gathering information over
the Internet is that of transferring data over the net-
work to answer the user’s query. We make two contri-
butions in this paper that alleviate this problem. First,
we present an algorithm for reducing the number of
information sources in an information gathering (IG)
plan by reasoning with localized closed world (LCW)
statements. In contrast to previous work on this prob-
lem, our algorithm can handle recursive information
gathering plans that arise commonly in practice.
Second, we present a method for reducing the amount
of network traffic generated while executing an infor-
mation gathering plan by reordering the sequence in
which queries are sent to remote information sources.
We will explain why a direct application of traditional
distributed database methods to this problem does not
work, and present a novel and cheap way of adorning
source descriptions to assist in ordering the queries.

Introduction

The explosive growth and popularity of the world-wide
web have resulted in thousands of structured queryable
information sources on the internet, and the promise
of unprecedented information-gathering capabilities to
lay users. Unfortunately, the promise has not yet been
transformed into reality. While there are sources rele-
vant to virtually any user-queries, the morass of sources
presents a formidable hurdle to effectively accessing the
information. One way of alleviating this problem is
to develop information gatherers which take the user’s
query, and develop and execute an effective information
gathering plan to answer the query. Several first steps
have recently been taken towards the development of a
theory of such gatherers in both databases and artifi-
cial intelligence communities. The information gather-
ing problem is typically modeled by building a global
schema for the information that the user is interested in,
and describing the information sources as materialized
views on the global schema. When a query is posed
on the global schema, the information gathering plan
for answering it will be a datalog program whose EDB
predicates correspond to the materialized view predi-
cates that represent information sources.

Recent research by Duschka and his co-workers
(Duschka & Genesereth 97; Duschka & Levy 97) has
resulted in a clean methodology for constructing infor-
mation gathering plans for user queries posed in terms
of a global schema. The plans produced by this method-
ology, while complete - in that they will retrieve all
accessible answers to the query, tend to be highly re-
dundant. Naive execution of such plans can be costly
in that it can generate prohibitively large amounts of
network traffic. In decentralized and geographically dis-
tributed scenarios like the World Wide Web, the cost
to transfer information and access information sources
is particularly high. Consequently, minimization of the
amount of network traffic generated to answer the user’s
query has become a critical problem. In this paper
we present two methods for optimizing information-
gathering plans for reducing network traffic: one for
removing redundant information sources from an infor-
mation gathering plan, and one for informing the gath-
erer of more efficient orders to execute an information
gathering plan.

A popular approach to minimizing information gath-
ering plans involves the use of localized closed world
/LCW) statements (Etzioni et al. 97), which state what
portion of the data in each information source is com-
plete with regard to the global schema. Intuitively, if
the user’s query is subsumed by this portion of the
data, then no other relevant information source needs
to be accessed. Our first contribution in this paper is
a systematic methodology for minimizing recursive in-
formation gathering plans (such as those generated by
(Duschka & Genesereth 97)). Our approach removes
redundant materialized view references by using LCW
statements, and an algorithm for minimizing datalog
programs under uniform equivalence.

Although there exists some previous research on min-
imizing information gathering plans using LCW state-
ments (Duschka 97; Friedman & Weld 97), none
it is applicable to minimization of information gath-
ering plans containing recursion. Our ability to han-
dle recursion is significant l~ecause recursion appears
in virtually all information gathering plans either due
to functional dependencies, binding constraints on in-
formation sources, or recursive user queries (Duschka

From: AAAI Technical Report WS-98-14. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

& Genesereth 97). Additionally, in contrast to exist-
ing methods, which do pairwise redundancy checks on
source accesses, our approach is capable of exploiting
cases where access to one information source is ren-
dered redundant by access to a combination of sources
together. Large performance improvements in our pro-
totype gatherer, Emerac, attest to the cost-effectiveness
of our minimization approach.

Once an information gathering plan is generated,
the order in which information sources in the plan are
queried can affect the amount of data transferred over
the network. By delaying a query to some source un-
til others are completed, the gatherer may be able to
generate more specific queries on the source using data
collected from other sources. This problem has been
tackled in the distributed databases domain, but the
assumptions there do not hold in the IG domain. Our
second contribution in this paper is an adornment for
information source descriptions that provide the gath-
erer with information it can use to reason about an
efficient order to query sources.

The rest of the paper is organized as follows. First
we review previous work on building and minimizing
information gathering plans. Then we discuss the algo-
rithm for minimizing a datalog program under uniform
equivalence that forms the core of our minimization al-
gorithm. We also discuss a modification to the plan
generation procedure described in (Duschka & Gene-
sereth 97) to allow our adaptation of the minimization
algorithm to work more effectively. Then we present
the full algorithm for minimizing an information gath-
ering plan. Next, we discuss the extra information we
give to the gatherer that allows it to reason about effi-
cient plan orderings, and we show how the gatherer can
use that information. Finally, we relate our work with
others, and present our conclusions and directions for
future work.

Background

Building Information Gathering Plans

Given a query on some database schema and a set of
materialized views defined over the same schema, it has
been shown (Duschka & Genesereth 97) that a datalog
program in which all EDB predicates are materialized
views can be easily constructed to answer the query, if
such a program exists. We call such a datalog program
an information gathering plan. This method has been
extended (Duschka & Levy 97) to deal with functional
dependency information and information sources with
query binding pattern requirements. The heart of the
algorithm is a simple materialized view inversion algo-
rithm.

We use the ’~’ symbol to denote materialized view
definitions. Consider that we have the information
source SOURCEA represented as a materialized view as
follows:

SOURCEA(X, Y) ~ j(X, Y) A k(Y,

This definition states that the information source repre-
sented by the SOURCEA predicate contains tuples with
two attributes, such that each tuple satisfies the logical
sentence in the body of the view. Consider now that
we have the query:

query(X, Y) :- j(X,

We can easily build an information gathering plan that
will answer the query (at least partially) using only our
materialized view above. This method works by invert-
ing all materialized view definitions, then adding them
to the query. The inverse, v-1, of the materialized view
definition with head v(X1,..., Xm) is a set of logic rules
in which the body of each new rule is the head of the
original view, and the head of each new rule is a rela-
tion from the body of the original view. All variables
that appear in the head of the original rule are un-
changed, but every variable in the body of the original
view that does not appear in the head is replaced with
a new function term fg(X1,..., Xm). When we invert
our definition above, we achieve

j(Z, Y) :- souRcEA(X,
k(Y, £(X, Y)) :- sO,RCEA(X,

When these rules are added to the original query, they
effectively create a logic program to answer the original
query. Notice that the global schema predicates that
were considered EDB predicates are now IDB, and all
EDB predicates are now materialized views.

Function terms in the constructed logic program can
easily be removed through a flattening procedure, to
convert it into a true datalog program. Note that func-
tion terms only appear through inverted rules, which
are never recursive, so there will never be an infinite
number of function terms in the plan. We can remove
function terms through a simple derivative of bottom
up evaluation. If bottom up evaluation of the logic pro-
gram can yield a rule with a function term in an IDB
predicate, then a new rule is added with the correspond-
ing function term. Then, function terms that appear in
IDB predicates are replaced with the arguments to the
function terms, and the name of the IDB predicate is
annotated to indicate this replacement. Thus, the rule
we created above: .:

k(Y, fl (X, Y)) :- SOURCEA(X, Y)

is replaced with

k<l,f(2,3)>(Y, X, :- souRcEA(X, Y)

In this fashion, all function terms in the logic program
are removed, and it becomes a true datalog program.
This completes our creation of an information gathering
plan to answer the original query.

The materialized view itversion algorithm can be
modified in order to model databases that cannot an-
swer arbitrary queries, and have binding pattern re-
quirements. Consider that we have a second informa-

10

to rl[s ~ s ~ v], which is

r5: j(X, Y) dora(X) SOURCEC(X, Y)A j(X, Y)
A k(Y, "Duschka")

It is easy to see that there is indeed a containment map-
ping between r4 and rS. This proves that r2 subsumes
rl and so rl can be removed from the rewritten query
without affecting the answer.

Plan Minimization Preliminaries

We now consider the process of minimizing information
gathering plans with recurs;on with the help of LCW
statements. This process is a modification of a method
for minimizing datalog programs under uniform equiv-
alence, presented in (Sagiv 88). In this section, we first
introduce the original method of reduction under uni-
form equivalence, and then introduce a modification to
the view inversion algorithm that reduces the number
of IDB predicates in the information gathering plan to
enable the minimization algorithm to work more effec-
tively on information gathering plans.

Minimizing Datalog Programs Under
Uniform Equivalence

To minimize a datalog program; we might try removing
one rule at a time, and checking if the new program is
equivalent to the original program. Two datalog pro-
grams are equivalent if they produce the same result
for all possible assignments of EDB predicates (Sagiv
88). Checking equivalence is known to be undecideable.
Two datalog programs are uniformly equivalent if they
produce the same result for all possible assignments of
EDB and IDB predicates. Uniform equivalence is de-
cideable, and implies equivalence. (Sagiv 88) offers
method for minimizing a datalog program under uni-
form equivalence that we present here, and later adapt
for our information gathering plan minimization.

The technique for minimizing a datalog program un-
der uniform equivalence involves removing rules from
the program, one at a time, and checking to see if the
remaining rules can produce the same data as the re-
moved rule, given an initial assignment of relations. If
the remaining rules cannot do so, then the removed
rule is reinserted into the datalog program. The ini-
tial assignment of relations is built by instaatiating the
variables in the body of the removed rule. To instan-
t;ate the variables of the relation [oo(X1 ... X,~) means
to create an instance of the relation foo with constants
"XI" ... "X,~".

Consider that we have the following datalog program:

r1: p(X) :- p(Y) ̂ j(x,
rz: p(x) :- s(Y) ̂ j(x,
r3: s(X) :- p(X)

We can check to see if rl is redundant by removing it
from the program, then instantiating its body to see if

...... the wrna’ming rfites can:’ derive Che ~stanfia~tion~of the
head of this rule through simple bottom-up evaluation.
Our initial assignment of relations is:

p("Y")
j("X’, "Y")

If the remaining rules in the datalog program can derive
p("X’) from the assignment above, then we can safely
leave rule rl out of the datalog program. This is indeed
the case. Given j("Y") we can assert s("Y") via rule
r3. Then, given s("Y’) and j("X’, "Y"), we can assert
p("X") from rule r2 . Thus the above program will
produce the same results without rule rl in it.

Modification of Inversion Algorithm

One artifact of the process of removing function terms
from an information gathering plan is the large num-
ber of IDB predicates added to the plan. These extra
predicates make it difficult to perform pairwise rule sub-
sumption checks on rules in our information gathering
plan. Recall that, in our example of function term re-
moval above, we created a new predicate edge<lJ(2’a)>

by flattening out an edge predicate with function term
arguments. This new predicate is incomparable with
the edge predicate, because they have different names
and different arities, even though both refer to the same
relation. Because of this mismatch, we try to eliminate
the newly introduced predicates before attempting to
minimize the information gathering plan. By reducing
the number of IDB predicates in the plan to a minimum,
pairwise subsumption checks work more effectively.

To further illustrate the problem, consider that
we have the following information gathering program,
where SOURCEA and SOURCEB are materialized view
predicates:

query(X) :- j<IjI(2’3)> (X, X,
query(X) :- j<l,12(2,z)> (X, X, Y)

j<I,II(2’a)> (X, X, :- souacEA(X, Y)
j<l,I2(2’3)> (X, X, :- SOUaCEB(X, Y)

There is no pair of rules for which we can build a con-
tainment mapping to prove subsumption, because each
rule differs from all others by at least one predicate.
However, if we remove the variants of the j predicate,
we can obtain the equivalent program:

query(X) :- SOURCEA(X, Y)
query(X) :- souacEB(X, Y)

Since we know how to compare rules with materialized
views using LCW and view statements, we can compare
these rules to determine if one subsumes the other.

The IDB predicate removal algorithm works in two
parts: first a search is performed to find predicates that
can be safely removed without altering the meaning of
the program, then the rules with those predicates in
their head are removed and unified with the remaining
rules. An IDB predicate can be safely removedif it does

11

"~ticrn so’dvce~’:SOtrEtb’E(~ ~hat has a binh’ing constraint on that ~dld be ccmstrtt~ted if’SDURCE~ ’and SOURCEB
its first argument. We denote this in its view as follows: were available. The plan contains redundancies because

so,Rc ,c($x, Y) j(x, Y) A k(Y,
The ’$’ notation denotes that X must be bound to a
value for any query sent to SOURCEC. The inversion
algorithm can be modified to handle this constraint as
follows. When inverting a materialized view, for ev-
ery argument Xn of the head that must be bound, the
body of every rewrite rule produced for this material-
ized view must include the domain relation dom(Xn).
Also, for every argument Xi that is not required to be
bound in the head, SOURCE(X1,..., Xra), of some ma-
terialized view we must create a rule for producing dom
relations. The head of each domain relation producing
rule is dom(Xi), and the body is the conjunction of the
information source relation and a dom(Xn) relation for
every variable Xn that is required to be bound. Thus,
after inverting the materialized view definitions for the
SOURCEC view and the SOURCEA view with the modi-
fied algorithm, we obtain

j(X,]I)
k(Y, A (x, y))

dora(X)
dom(Y)
j(X, Y)

k(Y, f2(X, Y))
dom(Y)

:- SOURCEA(X, Y)
:- SOURCEA(X, Y)
:- souRcEA(X, Y)
:- SOURCEA(X, Y)
:- dom(X) A SOURCEC(X, IF)
:- dom(X) A SOURCEC(X, Y)
:- dom(X) A SOURCEC (X, Y)

What is interesting to note here is that the plan to
solve a non-recursive query with no recursion might
contain recursion as a result of the method used to
model query constraints on information sources. In
fact, if any information sources with binding pattern
requirements are available and relevent to the user’s
query, then the plan that answers the query will con-
tain recursion through the dom predicates.

LCW statements & Rule Subsumption

Materialized view definitions alone do not provide
enough information for information gathering plan gen-
eration to generate efficient plans. Consider an infor-
mation source, SOURCEB, that subsumes SOURCEA (de-
scribed above). Its materialized view definition could
be

SOURCEB(X, Y) --+ j(X,

Note that even though this view definition appears to
subsume the view for SOURCEA, it would be incorrect to
conclude from the view definition alone that the infor-
mation in SOURCEB subsumes that in SOURCEA. This
is because the materialized view definition defines a
query that all information in the view satisfies, but it
doesn’t necessarily mean that the view contains all the
information that satisfies the query. Now consider the
new information gathering plan for our original query

all rules that reference SOUaCEA are unnecessary. That
is, we can remove portions of the rewrite (specifically,
the rules with SOURCEA in them) and still return the
same answer. Without more knowledge of information
sources, we cannot discover or eliminate this redun-
dancy.

We can more accurately describe the informa-
tion sources by using localized closed world (LCW)
statementsI (Etzioni et al. 97; Friedman & Weld 97).
Where a materialized view definition describes all possi-
ble information an information source might contain in
terms of a global schema, an LCW statement describes
what information the source is guaranteed to contain
in terms of the global schema. Defining an LCW state-
ment for an information source is similar to defining a
view. We use the ’+-’ symbol to denote an LCW defi-
nition. Consider the following LCW definitions:

SOURCEA(X, Y) +- j(X, Y) A k(Y, "Duschka")
souRcEB(X, Y) fiX, Y)

In this example, SOUaCEB contains all possible in-
stances of the j relation, and SOURCEA contains a sub-
set of those instances.

Consider that we have two datalog rules, each of
which has one or more materialized view predicates in
its body that also have LCW statements, and we wish
to determine if one rule subsumes the other. We can-
not directly compare the two rules because materialized
view predicates are unique and therefore incomparable.
However, if we make use of the source’s view and LCW
statements, we can determine if one rule subsumes the
other (Duschka 97; Friedman & Weld 97).

Given some rule, A, let A[s ~ s A v] be the result
of replacing every information source predicate si that
occurs in A with the conjunction of st and the body of
its view. Also let A[s ~ s V l] be the result of replacing
every information source relation st that occurs in A
with the disjunction of st and the body of its LCW
statement. Given two rules, A and B, rule A subsumes
B if there is a containment mapping from A[s ~ s V l]
to B[s ~ s A v] (Duschka 96).

Consider the following inverted rules from our exam-
ple above:

rl: j(X, Y) :- dom(X) A SOURCEC(X, It)
rZ: j(X, Y) :- SOURCEB(X, Y)

We can prove that rule r2 subsumes rule rl by show-
ing a containment mapping from one of the rules from
r2[s ~ s V l], which is:

r3: j(X, Y) :- souac~.B(X, Y)
r4: y(x, Y) :_ j(x,

1In (Duschka 96), the notion of conservative view is
equivalent to our LCW statements, and the notion of a lib-
eral view is equivalent to our normal materialized view.

12

for each IDB predicate, pi that occurs in P
append ’-idb’ to pi’s name

repeat
let r be a rule of P that has not yet been
considered
let/5 be the program obtained by deleting
rule r from P

let/5’ be/5Is ~+ s Vl]
let r’ be r[s ~-~ s A v]
if there is a rule, ri in r~, such that r~ is
uniformly subsumed by/5~

then replace P with/5
until each rule has been considered once

Figure 1: Information gathering plan reduction algo-
rithm for some plan P

not appear as a subgoal of one of its own rules.

Once we have a list of all predicates that can be re-
moved, we can replace references to those predicates in
the information gathering program with the bodies of
the rules that define the predicates. The algorithm in
section 13.4 of (Ullman 89) performs such a task. After
passing each predicate through this algorithm, we have
successfully reduced the number of IDB predicates in
our information gathering program to a minimum.

Minimizing Information Gathering
Plans

The basic procedure for reducing an information gather-
ing plan runs as in the datalog minimization under uni-
form equivalence algorithm (section). We iteratively
try to remove each rule from the information gathering
plan. At each iteration, we use the method of replacing
information source relations with their views or LCW’s
as in the rule subsumption algorithm to transform the
removed rule into a representation of what could pos-
sibly be gathered by the information sources in it, and
transform the remaining rules into a representation of
what is guaranteed to be gathered by the information
sources in them. Then, we instantiate the body of the
transformed removed rule and see if the transformed
remaining rules can derive its head. If so, we can leave
the extracted rule out of the information gathering plan,
because the information sources in the remaining rules
guarantee to gather at least as much information as the
rule that was removed. The full algorithm is shown in
Figure 1.

The process of transforming the candidate rule and
the rest of the plan can best be described with an ex-
ample. Consider the following problem. We have infor-
mation sources described by the following materialized
views and LCW statements:

,x~wsoRDB (’& : A), ,,~-~::’:~ad,~or(£ ~.A i
ADVISORDB(S, A) +-- advisor(S, A)

CONSTRAINEDDB($S, A)
--~

advisor(S, A)
CONSTRAINEDDB($S, A) +-- advisor(S, A)

and our query is

query(X, Y) :- advisor(X,

After rule inversion and addition of the query to the
inverted rules, our information gathering plan is corn-
puted to be:

rl: query(X, Y) :- advisor(X, Y)
rP: advisor(S, A) :- ADVISORDB(S, A)
r3: advisor(S, A) :- dorn(S)

^ CONSTRAXNEDDB(S, A)
r4: dora(S) :- ADVmOaDB(S, A)
r5: dom(A) :- ADVISORDB(S, A)
r6: dom(A) :- dora(S)

A CONSTRAINEDDB(S, A)

Most of this plan is redundant. Only the rules rl (the
query) and r2 are needed to completely answer the
query. The remaining rules are in the plan due to the
constrained information source.

For our example, we’ll try to prove that rule r3 is
unnecessary. First we remove r3 from our plan, then
transform it and the remaining rules so they represent
the information gatherered by the information sources
in them. For the removed rule, we want to replace each
information source in it with a representation of all the
possible information that the information source could
return. If we call our rule r, then we want to transform
it to r[s ~ s A v]. This produces:

advisor(S, A) dom(S) A CONSTRAINEDDB(S, A)

A advisor(S, A)

There is a problem here that must be dealt with be-
fore this transformation. The advisor relation in the
head of the rule no longer represents the same thing
as the advisor relation in the body of the rule. That
is, the advisor predicate in the head represents an IDB
relation in the information gathering plan, while the
advisor predicate in the body represents an EDB pred-
icate. Before we replace an information source in some
rule with its view or LCW, we need to rename the global
schema predicates in the rule so they don’t match the
predicates from the views. For every world predicate
named predicate that appears in the rule, we rename it
predicate-idb. The correct transformation of r, then, is

advisor-idb(S, A) :- dom(S)
A CONSTRAINEDDB(S, A)
A advisor(S, A)

For the remaining rules, P, we transform them into
P[s ~-~ s Vl] (after renaming the IDB predicates), which
represents the information guaranteed to be produced
by the information sources in the rules. For our exam-

13

ple, weproduce:

query(X, Y) :- advisor-idb(X, Y)
advisor-idb(S, A) :- ADVISORDB(S, A)
advisor-idb(S, A) :- advisor(S, A)

dora(S) :- ADVISOaDB(S, A)
dom(S) :- advisor(S, A)
dora(A) :- ADVISORDB(S, A)
dora(A) :- advisor(S, A)
dom(A) :- dora(S) A CONSTRAINEDDB(S, A)
dom(A) :- dom(S) A advisor(S,

When we instantiate the body of the transformed re-
moved rule, we get the following constants:

do.~("S")
constrainedDB("S", "A ")

advisor("S", "A ")

After evaluating the remaining rules given with
these constants, we find that we can derive
advisor-idb("S", "A "), which means we can safely leave
out the rule we’ve removed from our information gath-
ering program.

If we continue with the algorithm on our example
problem, we won’t remove any more rules. The re-
maining dom rules can be removed if we do a simple
reachability test from the user’s query. Since the dom
rules aren’t referenced by any rules reachable from the
query, they can be eliminated as well.

The final information gathering plan that we end up
with after executing this algorithm will depend on the
order in which we remove the rules from the original
plan. Consider if we tried to remove r2 from the original
information gathering plan before r3. Since both rules
will lead to the generation of the same information, the
removal would succeed, yet the final information gath-
ering plan would contain the dom recursion in it, which
greatly increases the execution cost of the plan. A good
heuristic for ordering the rules for testing for removal
is by information source execution cost, from highest
to lowest. That is, we first try to remove rules that in-
volve calling one or more information sources that take
a long time to return an answer. Rules which have a
dom term should have a large extra cost added to them,
since recursion often arises due to dom rules, and recur-
sion implies high execution cost.

Informing the Gatherer of Query Order

Optimizations

Given our final information gathering plan, an infor-
mation gatherer might evaluate it using traditional
database evaluation algorithms like bottom-up or top-
down datalog evaluation. Because the gatherer most
likely cannot retrieve the complete contents of the in-
formation sources due to binding restrictions or the cost
of transferring so much data over the network, bottom-
up evalution is impractical. Top-down datalog evalu-
ation is much more applicable in the IG domain, as

the data transferred between the gatherer and the re-
mote information sources is much more "focused" than
bottom-up, and doesn’t require the transfer of as much
data over the network.

A crucial practical choice we have to make during
top-down evaluation is the order in which predicates are
evaluated. If we correctly order the queries to multiple
sources, we expect to be able to use the results of earlier
queries to reduce the size of results in future queries
and facilitate their computation. In database literature,
this is referred to as the "bound-is-easier" assumption
(Ullman 89).

Consider we have the following query, where each
predicate represents a remote information source:

sovl~cEA("Lambrecht", X) A souRcEB(X, Y)

Which source should we query first? In the absence of
any additional information, distributed database litera-
ture assumes both SOURCEA and SOURCEB are fully re-
lational databases of similar size (Ozsu & Valduriez).
this case, we would then query SOURCEA first, because
we would expect the answer to this query to be smaller
than retrieving the complete contents of SOURCEB. The
results of the query on SOURCEA can then be sent to
SOUaCEB to complete the evaluation. Consider that
if we were to query SOURCEB first, we would have to
transfer the entire contents of SOURCEB over the net-
work, then the values bound to X would have to be
sent to SOURCEA to finally retrieve the answer at what
would likely be a higher cost

In the information gathering domain, however, the
assumption that information sources are fully relational
databases is no longer valid. An information source may
now be a wrapped web page, form interfaced databases,
or a fully relational database. A wrapped web page is
a WWW document interfaced through a wrapper pro-
gram to make it appear as a relational database. The
wrapper retrieves the web page, extracts the relational
information fl’om it, then answers relational queries. A
form-interfaced database refers to a database with an
HTML form interface on the web which only answers
selection queries over a subset of the attributes in the
database. A WWW airline database that accepts two
cities and two dates and returns flight listings is an ex-
ample of a form interfaced database.

Consider, in our example above, if SOURCEB were
a wrapped web page. Regardless of the selections we
place on it, the same amount of data will always be
transferred over the network. Thus it doesn’t matter
what selections we have on SOURCEB, because it will
always be a constant cost query, and can be queried
before all other information sources without increasing
the cost of the plan.

Alternatively, assume that souacEA(W, X) repre-
sents a form interfaced student directory database that
accepts a student’s name, W, and returns a series of
X values that represent email addresses for this stu-
dent. Since the directory doesn’t accept email addresses

14

(bindings’for:X) as part of the q~ery;:it is-n’t worthwhile
to query SOURCEB first to obtain those bindings.

Given the types of information sources we expect to
find in the information gathering domain: wrapped web
pages, form interfaced databases, and fully relational
databases, there is a simple way to inform the gatherer
as to what types of queries on an information source
might reduce the data it transfers over the network.
When defining for the gatherer a predicate to represent
an information source, for every argument of the pred-
icate that, if bound, might reduce the amount of data
transferred over the network in response to a query on
the information source, we adorn with a ’~’.

Assume we have some fully relational database repre-
sented by the predicate RELATIONAL-SOURCE. We can
adorn it as in the following:

RELATIONAL-SOURCE (~X, ~ Y)

The ’~’ on the X denotes that if the gatherer can
bind X to some values before sending the query to
RELATIONAL-SOURCE, we expect the amount of data
to be transferred over the network in response to
a query to be smaller than if we were to query
RELATIONAL-SOURCE without binding X to any values.
This also applies to the Y argument. Thus, we would
expect the amount of data transferred over the network
as a result of the query

RELATIONAL-SOURCE(X, Y)

to be larger than the amount of data due to the query

RELATIONAL-SOURCE(C~Eric ", Y)

which in turn is expected to be larger than the amount
of data due to query

RELATIONAL-SOURCE(CCEr{C~, "Lambrecht")

We do not adorn our SOURCEB wrapped web page,
from the example above, with any ’~’ signs. This is
because binding values to the arguments of SOURCEB
before querying it have no effect on the amount of data
transferred due to the query. That is, we don’t expect
the amount of data transferred over the network from
the query

sourccB("Amol", Y)

to be smaller than that transferred due to the query

sourceB(X, Y)

Finally, we annote SOURCEA above as

sourccA(~W, X)

because we only expect that binding values to W will
reduce the amount of data transferred over the net-
work. Since SOURCEA doesn’t accept bindings for X as
part of the queries it will answer, any selections on X

~¢ := all varia’o]es bound by the head;
mark all subgoals "unchosen";
mark all subgoals with no %-adornments as "chosen";
for i := 1 to m do begin

b := -1;
for each unchosen subgoal G do begin

find the bound and %-adorned arguments
of G, given that V is the set of bound variables;
if there are c > b bound %-adorned
arguments of G and with this binding
pattern G is permissible
then begin

b := c;
H := G;

end;
if b # -1 then begin

mark H "chosen";
add to V all variables appearing in H;

end
else fail

end
end

Figure 2: Modified version of heuristic ordering algo-
rithm in Figure 12.23 of [Ullman 89]

must be computed locally by the gatherer after query-
ing SOURCEA for tuples with the given W bindings.

Given our adorned information source descriptions,
we can order our access to information sources in a rule
according to the number of bound adorned arguments.
Predicates should be ordered within a rule so that all
predicates with no adorned arguments appear first in
any order, followed by the remaining predicates ordered
such that the number of bound and adorned arguments
in subsequent predicates never decreases. This algo-
rithm is the same as one presented in (Ullman 89), ex-
cept that we compare the number of bound ~adorned
arguments, rather than just the number of bound ar-
guments in each predicate. The algorithm appears in
Figure 2 If the algorithm fails, then subgoals are not
reordered. If the algorithm succeeds, then the order in
which to access subgoMs is specified by H.

Related Work

Friedman and Weld (Friedman & Weld 97) offer an effi-
cient algorithm for reducing the size of a non-recursive
rewritten query through the use of LCW statements.
Their algorithm converts a non-recursive information
gathering plan into a directed acyclic graph whose
nodes represent relational operators and information
sources. It then searches the graph for nodes that rep-
resent the relational operator union, and it attempts to
minimize the union by performing palrwise subsump-
tion checks (making use of LCW statements) on each
subgraph leading from the union (which represent por-
tions of the plan that are unioned together). It is be-

15

cause of the fact that this algorithm only performs pair-
wise subsumption checks that it cannot handle recur-
sion, since it does not make sense to compare a rule
defined in terms of itself with another rule. The mini-
mization algorithm in this paper, on the other hand, can
check if sets of rules subsume a single rule. Thus while
the algorithm presented in this paper is more costly to
execute, it can minimize a much greater range of plans.

A complementary approach to optimizing informa-
tion gathering plans is presented in (Ashish et al. 97).
The authors present a method for executing additional
queries on information sources to determine which ones
are not necessary for answering the original query. We
believe their technique could be integrated well with
those presented in this paper.

Conclusions &: Future Work

In this paper, we have presented two ways to reduce
the amount of network traffic generated in the process
of answering a user’s query. The first is an algorithm
that makes use of LCW statements about information
sources to prune unnecessary information sources (and
hence excess network traffic) from a plan. The second
is a way of informing the information gatherer of the
querying capabilities of information sources, so that it
can reason about efficient orderings in which to query
remote information sources.

We have implemented the reduction algorithm in
our prototype information gatherer Emerac, written in
Java. The most visible improvement after implement-
ing the algorithm has been Emerac’s ability to remove
unnecessary recursion. Given an information gather-
ing plan that contains a set of information sources
with no binding constraints that can completely answer
the query, and a set of information sources with bind-
ing constraints that can completely answer the query,
Emerac is able to remove the references to the informa-
tion sources with binding constraints. This effectively
removes all recursion from the information gathering
program, and speeds up answering of the plan tremen-
dously. We are currently improving the gatherer to
more efficiently execute plans it has generated.

Our continuing research in IG involves further explo-
ration into minimizing the costs involved in executing
an information gathering plan. Given that the mini-
mization algorithm can lead to different plans depend-
ing on the order in which rules are tested for removal,
we would like to discover the best order for choosing
rules for removal based upon our knowledge of execu-
tion costs. We are also looking into other cheap anno-
tations on the source descriptions that can be exploited
by the information gatherer to improve its efficiency
and performance.

References

N. Ashish, C. A. Knoblock, A. Levy. Information
Gathering Plans With Sensing Actions. Proceedins

of the Fourth European Conference on PIanning,
Toulouse, France, 1997.
Y. Arens, C. A. Knoblock, W. Shen. Query Reformula-
tion for Dynamic Information Integration. Journal of
Intelligent Information Systems, Boston, MA, 1996.

Oliver M. Duschka. Generating Complete Query
Plans Given Approximate Descriptions of Content
Providers. Stanford technical report, 1996.

Oliver M. Duschka. Query Optimization Using Local
Completeness. Proceedings of AAAI, 1997.

Oliver M. Duschka and Michael R. Genesereth. An-
swering Recursive Queries Using Views. Principles of
Database Systems, 1997.
Oliver M. Duschka and Alon Levy. Recursive plans for
information gathering. Proceedings of IJCAL 1997.

0. Etzioni, K. Golden and D. Weld. Sound and ef-
ficient closed-world reasoning for planning. Artificial
Intelligence, 89(1-2), 113-148.

0. Etzioni, S. Hanks, T. Jiang, R. M. Karp, O.
Madani, and 0. Waarts. Efficient Information Gath-
ering on the Internet. Proceedings of the IEEE Sym-
posium on Foundations of Computer Science (FOCS),
1996.
Marc Friedman, Daniel S. Weld. Efficiently Execut-
ing Information-Gathering Plans. International Joint
Conference on AI (IJCAI), 1997.
Chung T. Kwok and Daniel S. Weld. Planning to
Gather Information. University of Washington tech-
nical report UW-CSE-96-01-04, 1996.

Alon Y. Levy. Obtaining Complete Answers from In-
complete Databases. Proceedings of the 22nd VLDB
Conference, Mumbai (Bombay), India, 1996.

Alon Y. Levy, Anand Rajaraman, and Joann J. Or-
dille. Querying Heterogeneous Information Sources
Using Source Descriptions. Proceedings of the 22nd
VLDB Conference, Mumbai (Bombay), India, 1996.

M. Tamer ()zsu and Patrick Valduriez. Principles of
Distributed Database Systems. Prentice Hall, Engle-
wood Cliffs, New Jersey, 1991.

Yehoshua Sagiv. "Optimizing Datalog Programs."
Foundations of Deductive Databases and Logic Pro-
gramming. M. Kaufmann Publishers, Los Altos, CA,
1988.
Jeffrey D. Ullman. Principles of Database and
Knowledge-base Systems, Volume II. Computer Sci-
ence Press, Rockville, MD, 1989.
Jeffrey D. Ullman. Information Integration Using Log-
ical Views. Invited talk at the International Confer-
ence on Database Theory, Delphi, Greece, 1997.

16

