
Ontobroker: How to Enable Intelligent Access to the WWW

University of Karlsruhe, Institute AIFB, 76128 Karlsruhe, Germany
Email: { fensel, decker, erdmann, studer} @aifb.uni-karlsruhe.de,

http://www.aifb.uni-karlsruhe.de/WB S/broker

Abstract.
The World Wide Web (WWW) is currently one of the most
important electronic information sources. However, its query
interfaces and the provided reasoning services are rather
limited. Ontobroker consists of a number of languages and
tools that enhance query access and inference service in the
WWW. It provides languages to annotate web documents
with ontological information, to represent ontologies, and to
formulate queries. The tool set of Ontobroker allows us to
access information and knowledge from the web and to infer
new knowledge with an inference engine based on
techniques from logic programming.

1 Introduction
The World Wide Web (WWW) contains huge amounts
knowledge about almost all subjects you can think of.
HTML documents enriched by multi-media applications
provide knowledge in different representations (i.e., text,
graphics, animated pictures, video, sound, virtual reality,
etc.). Hypertext links between web documents represent
relationships between different knowledge entities. Based
on the HTML standard, browsers are available that present
the material to users and use the HTML-links to browse
through distributed information and knowledge units.
However, retrieving information from the web is only
weakly supported. Actually, the main query answering
services the web provides are keyword-based search
facilities carded out by different search engines, web
crawlers, web indices, man-made web catalogues etc. (see
[Mauldin, 1997], [Selberg & Etzioni, 1997]). Given
keyword, such an engine collects a set of knowledge bits
from the web that use this keyword. [Luke et al., 1997]
propose ontologies to improve the query answering support
of the ,,knowledge base" WWW. Ontologies are discussed
in the literature as a means to support knowledge sharing
and reuse [Fridman Noy & Hafner, 1997]. This approach to
reuse is based on the assumption that if a modeling scheme
-- i.e. an ontology -- is explicitly specified and agreed upon
by a number of agents, it is then possible for them to share
and reuse knowledge.

Clearly, we cannot expect that ontologies will be used by
every web user and even if everybody used ontologies to
annotate his web pages it will hardly ever be possible to
negotiate on a worldwide standard for representing
knowledge about all possible subjects. Therefore, we use

Copyrights © 1998, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

the metaphor ofa newsgroup to define the role of such an
ontology. It is used by a group of people who share a
common subject and a related point of view on this subject.
Thus it allows them to annotate their documents to provide
an intelligent brokering service that enables informed
access to their web documents.

We designed and implemented some tools necessary to
enable the use of ontologies for enhancing the web. We
developed a broker architecture called Ontobroker
[Ontobroker] with three core elements: a query interface for
formulating queries, an inference engine used to derive
answers, and a webcrawler used to collect the required
knowledge from the web. We provide a representation
language for formulating ontologies. A subset of it is used
to formulate queries, i.e. to define the query language. A
formal semantics is defined to enable automatic reasoning
by the inference engine. An annotation language is offered
to enable knowledge providers to enrich web documents
with ontological information. The strength of our approach
is the tight coupling of informal, semiformal and formal
information and knowledge. This supports their
maintenance and provides a service that can be used more
generally for the purpose of knowledge management and
for integrating knowledge-based reasoning and semiformal
representation of documents (cf. [K0hn & Abecker, 1997]).

This paper is organized as follows. The languages and tools
used to represent ontologies, formulate queries, and
annotate web documents with ontological information are
successively discussed in section 2, section 3, and section
4. Related work and conclusions are given in section 5.

2 The Query Formalism
The query formalism is oriented toward a frame-based
representation of ontologies that defines the notion of
instances, classes, attributes and values. The generic
scheme for this is

O: C[A ->>V]

meaning that the object O is an instance of the class C with
an attribute A that has a certain value V. At each position in
the above scheme, variables, constants or arbitrary
expressions can be used. Furthermore because the ontology
is part of the knowledge base itself, the ontology definitions
can be used to validate the knowledge base. In the
following we will provide some example queries to
illustrate our approach. The ontology we show is developed
as part of the Knowledge Annotation initiative of the
Knowledge Acquisition community (KA 2 [Benjamins et a l.,

36

From: AAAI Technical Report WS-98-14. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

1998]. It is used to describe research groups, topics and
products of the knowledge acquisition community and
some of its.parts wJlLbc.sU~y:iam’oduce, d.,in.the
paper. The following query asks for all known objects
which are instances of the class researcher.

FORALL R <- R:Researcher.
Because the object identifier of a researcher is his/her
homepage-URL, this query would result in a large list of
URLs. This is one of the simplest possible queries.
However, usually we are not interested in all researchers,
instead we are interested in information about researchers
with certain properties, e.g. we want to know the
homepage, the last name and the email address of all
researchers with first name Richard. To achieve this we can
use the following query:

FORALL Obj, LN, EM <-
Obj:Researcher[firstName ->> Richard;

lastName ->> LN; email ->> EM].
In our example scenario the Ontobroker gives the following
answer (actually, there is only one researcher with first
name Richard in the knowledge base).

Obj = http://www.iiia.csic.es/-richard/index.html
LN = Benjamins
EM = mailto:dchard@iiia.csic.es

Another example is:
FORALL Obj, CP <-

Obj:Researcher[lastName->>.Motta";
cooperatesWith ->> CP].

The interesting point with this query is that the ontology
contains a rule specifying the symmetry of cooperating.
This means that even if the researcher with the last name
Motta has not specified a cooperation with another
researcher, Ontobroker would derive such a cooperation if a
second researcher has specified the cooperation. The
ontology contains another strong rule that is used to
abductively complete types. The relation cooperatesWith is
defined for researchers. Therefore, for each instantiation for
CP that cooperates with Motta or another researcher,
Ontobroker also derives that this instantiation is an element
of the class researcher. Both rules are examples of how
Ontobroker can be used to derive new knowledge that is not
directly represented on the WWW.

Ontobroker can also be used to collect distributed
information. The query in Figure 1 collects all research
topics of the members of the research group on knowledge-
based systems at the Institute AIFB, i.e. it retrieves the
research topics of a research group that are distributed at the
different homepages of the researcher.

Another possibility is to query the knowledge base for
information about the ontology itself, e.g. the query

FORALL Att, T <- Researcher[Att =>> T].
asks for all attributes of the class Researcher and their
associated classes.
Ontobroker provides two query interfaces: a text based
interface for expert users and a graphical interface for naive
users. The text based interface allows the direct formulation

........................... IS..SSS.IIS:J.?:.S..SS?IT.I/J.:.I ...
i Quel’y tile .~owledge ~qu sltlon ~ 1 C I~ for nfornlatlor~

’
I

..... - i
i ¯ : t

i i

11 111111111111 IIII
HelD. Java Intelf~ce. Ontolo~ies. About. [,Jew Smuch

Ontobroker found the rollowing:

R] - ¯ IntcJlJge~t lnformetion Int¢~’atJon"

RI - "Knowledge-Level Mode.l~g end Mltchhae Leern~g"

RI - "Reusable Problem-Solv~lL M e.b~o ds for Knowte.d$¢- B laedl Slv~e.rns"

~I - "Spe.c~c~on languages for Knowledll, e-B.ed Systeams"

- "1’1~ Knowledge A~Ldd~on and R~resentatlon L~a~eSe (KARL)"

~J- "The Ontobroke.r proJe.~"

RI - "~e Slog.an Level"

RI - "Validation and Vcr~ca~n of Ellov,%dSc-Bued SystcanJ"

]~I- "How do KE and RE relate?"

]U - "Ymo’,vlcdge Engine~t~l (KE)"

P-I- "Requirements Eng~eexln$ @,E)"

P.I- "O se-Cases/Sceaxados fox" developing knowledge based ~Tncms"

RI - "Declue~ve Databases"

I~1 - "Enter?rise Model]Ins"

RI - "Formal Spec~catton"

Fig. 1 The textual query interface

of queries in the above described query language. However,
the direct formulation of the query string has two
drawbacks:

¯ The user has to know the syntax of the query language.
¯The user also has to know the ontology when

formulating a query.

The structure of the query language can be exploited to
remedy the first drawback: the general structure of an
elementary expression is:

Object:Class[Attribute ->> Value]
This provides the guidance when designing a query
interface. Each part of the above depicted elementary
expression can be related to an entry field. Possible values
of the entry field can then be selected from a menu (e.g.
variable names). This frees users from typing and
understanding logical expressions as much as possible. The
simple expressions can then be combined by logical
connectives as shown in Figure 2 which asks for the
researchers with last name Benjamins and their email
addresses.

This does not resolve the second drawback: we also need
support for selecting classes and attributes from the
ontology. To allow the selection of classes, the ontology
has to be presented in an appropriate manner. Usually a
ontology can be represented as a large hierarchy of
concepts. In regard to the handling of this hierarchy a user
has at least two requirements: first he wants to scan the
vicinity of a certain class looking for classes better suitable
to formulate a certain query. Second a user needs an
overview over the whole hierarchy to allow an quick and
easy navigation from one class in the hierarchy to another

37

Fig. 2 The advanced query interface.

class. These requirements are met by a presentation scheme
based on Hyperbolic Geometry [Lamping et al., 1995]:
classes in the center are depicted with a large circle,
whereas classes at the border of the surrounding circle are
only marked with a small circle (see Figure 3). The
visualization techniques allows a quick navigation to
classes far away from the center as well as a closer
examination of classes and their vicinity. When a user
selects a class from the hyperbolic ontology view, the class
name appears in the class field and the user can select one
of the attributes from the attribute choice menu because the
pre-selected class determines the possible attributes. The
interface is programmed in Java as an applet, thus it is
executable on all major platforms where a Web-browser
with Java support exists. ! Based on these interfaces
Ontobroker automatically derives the query in textual form
and presents the result of the query (see Figure 4).

3 The Representation Formalisms and
Inference Engine

The basic support we want to provide is query answering
about instances of an ontology. The ontology may be
described by taxonomies and rules. Since there are effective

uery th Communle/mr informltlon.

I
[’:[~. ,)~y~..U3Igt~aG.~ ¯ .QntoIogi~+~. A[~I~. ~.e~v~.¢gr~b

Ontobroker found the following:

Vetteblel -" httDJ/~.lU&¢sic.etl~rich*u’~illde.x.hta~"
Vm-lnble2 - "~"

Fig. 4 The textual query interface with automatically
derived query

!" The hyperbolic ontology view is based on a Java-profiler
written by Vladimir Bulatov and available at hap://
www.physics.orst.edu/-bulatov/HyperProf/index.html

Fig. 3 The hyperbolic ontology view

and efficient query evaluation procedures for Horn logic
like languages we based our inference engine on Horn
logic. However, simple horn logic is not appropriate from
an epistemological point of view for two reasons:

¯First, the epistemological primitives of simple predicate
logic (of which Horn logic is a subset) are not rich
enough to support adequate representations of
ontologies.

¯ Second, it is often very artificial to express logical
relationships via Horn clauses.

We will subsequently discuss how we bypassed both
shortcomings.

3.1 Elementary Expressions
Usually, ontologies are defined via concepts or classes, is-a
relationships, attributes, further relationships, and axioms.
Therefore an adequate language for defining the ontology
has to provide modeling primitives for these concepts.
Frame-Logic [Kifer et al., 1995] provides such modeling
primitives and integrates them into a logical framework
providing a Horn logic subset. Furthermore, in contrast to
most Description Logics, expressing the ontology in
Frame-Logic allows for queries that directly use parts of the
ontology as first class citizens. That is, not only instances
and their values but also concept and attribute names can be
provided as answers by means of variable substitutions.

3.2 Complex Expressions

More complex expressions can be built from the
elementary ones. We distinguish between the following
complex expressions: facts, rules, double rules, and queries.
Facts are ground elementary expressions. A rule consists of
a head, the implication sign <-, and the body. The head is

38

just a conjunction of elementary expressions (connected
using AND). The body is a complex formula built from
elementar~ .expressions _and: .the... asual ~ 4xLe, digat¢ Jogi¢
connectives (implies: ->, implied by: <-, equivalent: <->,
AND, OR, and NOT). Variables can be introduced in front
of the head (with an FORALL-quantifier) or anywhere in
the body (using EXISTS and FORALL-quantifiers).

3.3 An Illustration

Ontologies defined with this language consist mainly of
two or three parts:
¯The concept hierarchy, which defines the subclass

relationship between different classes, together with the
attribute definitions. These two parts can be split for
reasons of readability.

¯A set of rules defining relationships between different
concepts and attributes.

A part of an example ontology (see [Ontobroker] for the
entire ontology) defining a small concept hierarchy, some
attributes, and two rules relating different concepts are
provided in Table 1.

The concept hierarchy consists of elementary expressions
declaring subclass relationships, The attribute definitions
declare attributes of concepts and the valid types that a
value of an attribute must have. The first rule ensures
symmetry of cooperation and the second rule specifies that
whenever a person is known to have a publication then the
publication also has an author who is the particular person
and vice versa. This kind of rule completes the knowledge
and frees a knowledge provider to provide the same
information at different places reducing development as
well as maintenance efforts.

3.4 The Inference Engine
The inference engine of Ontobroker has two key
components: the translation (and re translation) process
from the rich modeling language to a restricted one and the
evaluation of expressions in the restricted language. For
technical reasons we have decided against direct evaluation
of expressions of the rich modeling language (see [Decker
et al., submitted] for more details). The expressions are
translated into generalized logic programs that are
translated further into normal logic programs via a Lloyd-

Topor transformation. Standard techniques from deductive
databases are applicable to implement the last stage: the

...... bottom up. fixpoiat ~valaat, ioa.proe.=dare.. Bec.au~ w=~llow
negation in the clause body we have to carefully select an
appropriate semantics and evaluation procedure. To deal
with non stratified negation we have adopted the well-
founded model semantics and compute this semantics with
dynamic filtering and the alternating fixpoint approach
[Van Gelder, 1993].

4 The Provider Side: Annotating Web-
Pages with Ontological Information

Knowledge contained in the WWW is generally formulated
using the Hyper-Text Mark-up Language (HTML).
Therefore, we developed an extension to the HTML syntax
to enable the ontological annotation of web pages.2 We will
only provide the general idea (see [Ontobroker] for more
details). An extract from an example page is given in
Figure 5.

The idea behind our approach is to take HTML as a starting
point and to add only few ontologically relevant tags. With
these minor changes to the original HTML pages the
knowledge contained in the page is annotated and made
accessible as facts to the Ontobroker. This approach allows
the knowledge providers to annotate their web pages
gradually, i.e. they do not have to completely formalize the
knowledge contained therein. Further, the pages remain
readable by standard browsers like Netscape Navigator or
MS Explorer. Thus there is no need to keep several
different sources up-to-date and consistent, reducing
development as well as maintenance efforts considerably.
All factual ontological information is contained in the
HTML page itself.

We provide three different epistemological primitives to
annotate ontological information in web documents:

2. We did not make use of the extensible Markup Language (XML) [XML]
to define our annotation language as an extension of HTML because many
existing HTML pages are not well-formed XML documents, i.e.. the
document type HTML defined in XML is more restrictive than HTML as
it is widely used now. However, we will provide a wrapper to generate
descriptions in the Resource Description Format (RDF) as soon as RDF
will become a standard.

Table I. Some Ontology Definitions

Concept Hierarchy Attribute Definitions Rules

Object[l. Person[FORALL Person1, Publication1
Person :: Object. firstName =>> STRING; Publication1 :Publication[author ->> Person1] <->

Employee :: Person. lastName =>> STRING; Person1 :Person[publication ->> Publlcationt].
Researcher :: Employee. eMail =>> STRING;

Publication::Object. publication -->> Publication].
Organization=Object. Employee[

affiliation =>> Organization;
...],

39

¯An object identified by an URL (Uniform Resource
Locater) can be defined as an instance of a certain class.

¯ =The v~luc.of~ objeca’s attribate c.~.l~ .set.
o A relationship between two or more objects may be
established.

All three kinds are expressed by using an extended version
of a frequent HTML tag, i.e. the anchor tag:

<a ...> ...
Typically a provider of information first defines an object.
This is done by stating the class of the ontology of which it
is an instance. For example, if Richard Benjamins would
like to define himself as an object, he would say he is an
instance-of the class Researcher. To express this in our
HTML extension he would use the following line on his
home page (see Figure 5).

This line states that the object denoted by the handle ’http://
www.iiia.csic.es/~richard’ is an instance of class
Researcher. Actually the handle given above is the URL of
Richard Benjamins home page, thus from now on he is
denoted as a researcher by the URL of his home page.

Each class is possibly associated with a set of attributes.
Each instance of a class can define values for these
attributes. To define an attribute value on a web page the
knowledge provider has to name the object he wants to
define the value for, he has to name the attribute and
associate it with a value. For example, the ontology
contains an attribute email for each object of class
Researcher. If Richard Benjamins would like to provide his
email address, he would use this line on his home page.

<a onto=" ’http://www.liia.csic.es/~richard’
[email=’mailto:richard @ilia.csic.es’] ">

This line states that the object denoted by the handle ’http:/
/www.iiia.csic.es/-richard’ has the value ’mailto:richard
@iiia.csic.es’ for the attribute email.
Several objects and attributes can be defined on a single
web page, and several objects can be related to each other
explicitly. Given the name of a relation REL and the object
handles Objl to Objn this definition looks like this:

c̄a onto= "REL(Obh, Obj2, Obj3 Objn)" > ...
The listed examples look rather clumsy, especially because
of their long object handles and the redundancy coming
from writing information twice, once for the browser and
again for Ontobroker. So the annotation language provides
some means to facilitate annotating web pages and
eliminating a large share of the clumsiness and redundancy
(cf. [Ontobroker]). For example, to define on a web page
that an object is an instance of a class, e.g. that Richard
Benjamins is a Researcher, we can use the following kind
of annotation (see Figure 5):

The following annotation defines the affiliation attribute of
the object denoted by the URL of the current page and
takes the value from the anchor-tag’s href-attribute (see
Figure 5).

<a onto="page[affiliation=href]"
href="http:llwww.swLpsy.uva.nll">

Department of Social Science Informatics (SWl)

Finally, the annotation

=-I ’’-"o"’’ ill

<html>
<head><TITLE> Richard Benjamins </TITLE>
<a onto="page:Researcher’~.
</head>

<H l>

<a onto="page[photo=href]"
HREF="http:llwww.iiia.csic.esl~rlchardlpicturesldchard.gif" >

<a onto="page[firstName=body]’~.Richard<la>
<a onto=’page[lastName=body]’~,Benjamins
</hl> <p>

Artificial Intelligence Research Institute (IIIA)
CSlC, Barcelona, Spain

and

Dept. of Social Science Informatics (SWl)

<A H REF="http://www.uva.nl/uva/english/=>UvA,
Amsterdam, the Netherlands

<HR>
J

Fig. 5 An example HTML page

4O

 Richard
defines Richard (contained between <a ...> and) as the

..... value, of.l.he ..atla~ut=~ fir, szdVante ,of .the. object, which ~is
denoted by page (see Figure 5). Through this convention
the annotation of web pages becomes more concise and
redundancy can be nearly avoided.

5 Conclusions and Related Work

Up to now, the inference capabilities of the World Wide
Web are very limited. In essence, they are restricted to
keyword-based search facilities which are offered by the
various Web search engines. In this paper we introduced
methods and tools for enhancing the Web to form a
knowledge-based WWW. We proposed ontologies as a
means to annotate WWW documents with semantic
information and used the metaphor of a newsgroup to
define a collection of people who share a common view on
a subject and thus a common ontology. To define various
subnets in the WWW, different ontologies can be used to
annotate Web documents. We use Frame logic for defining
ontologies and an appropriate subset for specifying
(semantic) queries to the Web. An annotation language for
attaching ontological information to Web documents is
offered which avoids redundancy as far as possible. Our
Ontobroker tool includes a query interface for formulating
queries, an inference engine for deriving answers to the
posed queries, and a web crawler for searching through the
various subnets and translating the ontological annotations
into facts for the inference engine. In this manner, the web
crawler implements a wrapper which hides the syntactical
structure of annotations from the inference engine and the
query client.

Ontobroker is the basis for realizing the Knowledge
Acquisition Initiative (KA)2 ([Benjamins et al., 1998]) and
for developing a knowledge management system for
industrial designers in regard to ergonomic questions. In the
latter project, the same knowledge may be used by users,
i.e. industrial designers, and as input and output for
inference processes of the system. This twofold use of the
same piece of knowledge is enabled through the tight
coupling of semiformal and formal knowledge in
Ontobroker. In the paper, we presented Ontobrokor mainly as a
tool to enhance information access. However, maintenance
of distributed and heterogeneous information sources may
become an even more important topic given the steadily
increasing amount of knowledge that is provided by
semiformal knowledge sources like web documents.
Annotating parts of documents with semantical information
enable automatic support for modifying these documents.
Instead of searching by hand through several documents
that may contain the same or parts of the same information
that needs to be changed one can automatically propagate
such modifications without changing the semiformal nature
of the documents.

The approach closest to ours is SHOE, which introduced
the idea of using ontologies to annotate information in the
WWW [Luke et al., 1997]. HTML pages are annotated via

ontologies to support information retrieval based on
semantic information. However, there are major differences

¯ ,.,in ,,the. ~ndertying, philosophy: ,ha ,,=SHOE, 4~rovidears of
information can introduce arbitrary extensions to a given
ontology. Furthermore, no central provider index is
defined. As a consequence, when specifying a query the
client may not know all the ontological terms which have
been used to annotate the HTML pages and the web crawler
may miss knowledge fragments because it cannot parse the
entire WWW. Thus the answer may miss important
information and the web crawler may miss knowledge bits.
In contrast, Ontobroker relies on the notion of an ontogroup
defining a group of Web users who agree on an ontology
for a given subject. Therefore, both the information
providers and the clients have complete knowledge of the
available ontological terms. In addition, the provider index
of the Ontocrawler provides a complete collection of all
annotated HTML pages. Thus, Ontobroker can deliver
complete answers to the posed queries. The philosophy of
Ontobroker is also tailored to homogeneous intranet
applications, e.g. in the context of knowledge management
within an enterprise. SHOE and Ontobroker also differ with
respect to their inferencing capabilities. SHOE uses
description logic as its basic formalism and currently offers
rather limited inferencing capabilities. Ontobroker relies on
Frame-Logic and supports rather complex inferencing for
query answering. One can situate Ontobroker in the general
context of approaches that support the integration of
distributed and heterogeneous information sources using a
mediator [Wiederhold & Genesereth, 1997] that translates
user queries into sub-queries for the different information
sources and integrates the sub-answers. Wrappers and
content descriptions of information sources provide the
connection of an information source to the mediator.
However, these approaches assume that the information
sources have a stable syntactical structure that a wrapper
can use to extract semantic information. Given the
heterogeneity of any large collection of web pages, this
assumption seems hardly to be fulfilled in our application
area. Therefore, we delegated the semantical enrichment of
the information sources to the provider and make no
assumptions about the format of the information source and
its changes. However, wrapper and annotation-based
approaches are complementary. [Ashish & Knoblock,
1997] distinguish three types of information sources at the
web: multiple-instance sources, single-instance sources,
and loosely-structured sources. The former two types have
a stable format that can be used by a wrapper to extract
information. The latter type covers home pages of persons
etc. where the layout is neither standard nor stable over
time. Writing wrappers for this type of sources would be a
time-consuming activity which would be soon out of date.
However, writing wrappers for stable information sources
that automatically generate factual knowledge processable
by Ontobroker enables us to broaden our approach to include
structured information sources that do not make use of our
annotation language.

41

Acknowledgments
We thank Richard Benjamins and Rainer Perkuhn for their

¯ ,,daedIfftd,c, omments ~od ~ Gomez-Pe.,w,z fot~prov~ding the
Ontolingua translation. Special thanks to Jiirgen Angele
who developed the inference engine that is used by
Ontobrokor.

References
[Ambite & Knoblock, 1997] J. L Ambite and C,. A.
Knoblock: Agents for Information Gathering, IEEE Expert,
September/October 1997.

[Ashish & Knoblock, 1997] N. Ashish and C. Knoblock:
Semi-automatic Wrapper Generation for Internet
Information Sources. In Proceedings of the IFCIS
Conference on Cooperative Information Systems (CooplS),
Charlston, South Carolina, 1997.

[Benjamins et al., 1998] V. R. Benjamins, D. Fensel, A.
Gomez-Perez, S. Decker, Michael Erdmann, E. Motta, and
M. Musen: Knowledge Annotation Initiative of the
Knowledge Acquisition Community (KA)2. In Proceedings
of the 11th Banff Knowledge Acquisition for Knowledge
Based System Workshop (KA W’98), Banff, Canada, April
18-23, 1998.

[Decker et al., submitted] S. Decker, D. Fensel, M.
Erdmann, and R. Studer: The Technical Core of
Ontobroker. Submitted, available via [Ontobroker].
[Euzenat, 1996] J. Euzenat: Corporate Memory through
Cooperative Creation of Knowledge Bases and Hyper-
documents. In: Proceedings of the lOth Banff Knowledge
Acquisition Workshop (KA W 96), Banff, Canada,
November 1996
[Fridman Noy & Hafner, 1997] N. Fridman Noy and C. D.
Hafner: The State of the Art in Ontology Design, AI
Magazine, 18(3):53--74, 1997.

[Kifer et al., 1995] M. Kifer, G. Lausen, and J. Wu: Logical
Foundations of Object-Oriented and Frame-Based
Languages, Journal of the ACM, 42, 1995.

[K~ihn & Abecker, 1997] Otto Kiihn and Andreas Abecker:
Corporate Memories for Knowledge Management in
Industrial Practice: Prospects and Challenges, Journal of
Universal Computer Science, Special Issue on Information
Technology for Knowledge Management. Springer Science
Online, 3(8), August 1997.

[Lamping et al., 1995] L. Lamping, R. Rao, and Peter
Pirolli.: A Focus+Context Technique Based on Hyperbolic
Geometry for Visualizing Large Hierarchies. In
Proceedings of the ACM SIGCHI Conference on Human
Factors in Computing Systems. 1995

[Luke et al., 1997] S. Luke, L. Spector, D. Rager, and J.
Hendler: Ontology-based Web Agents. In Proceedings of
First International Conference on Autonomous Agents,
1997.

[Mauldin, 1997] M. L. Mauldin: Lycos: Design Choices in
an Internet Search Engine, IEEE Expert, January-February
1997. http://www.lycos.com
[Ontobroker] http://www.aifb.uni-karlsruhe.de/WBS/broker

[RDF] Resource Description Framework, http://www.w3.org/
Metadata/RDF/Group/WD-rdf-syntax
[Selberg & Etzioni, 1997] E. Selberg and O. Etzioni: The
MetaCrawler Architecture for Resource Aggregation on the
Web, IEEE Expert, January-February 1997. http://
www.metacrawler.com

[URL] Uniform Resource Locator, http://www.w3.org/pub/
WWW/Protocols
[Van Gelder, 1993] A. Van Gelder: The Alternating
Fixpoint of Logic Programs with Negation, Journal of
Computer and System Sciences, 47(1):185-221, 1993.

[Wiederhold & Genesereth, 1997] G. Wiederhold and M.
Genesereth: The Conceptual Basis for Mediation Services,
IEEE Expert, September/October, pp. 38-47,1997.

[XML] Extensible Markup Language, http://www.w3.org/TPJ
PR-xml-971208

42

