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Università di Roma “La Sapienza”
Via Salaria 113, 00198 Roma, Italy

fcalvanese,degiacomo,lenzerini,nardi,rosati g@dis.uniroma1.it

Abstract

In recent years there has been a growing interest in accessing, relating,
and combining data from multiple sources. Indeed, Information Integration
is one of the core problems in distributed databases, cooperative informa-
tion systems, and data warehousing, which are key areas in the software de-
velopment industry. Two critical factors for the design and maintenance of
applications requiring Information Integration are conceptual modeling of
the domain, and reasoning support over the conceptual representation. We
demonstrate that Knowledge Representation and Reasoning techniques can
play an important role for both of these factors, by proposing a Description
Logic based framework for Information Integration. We show that the de-
velopment of successful Information Integration solutions requires not only
to resort to very expressive Description Logics, but also to significantly ex-
tend them. We present a novel approach to conceptual modeling for Infor-
mation Integration, which allows for suitably modeling the global concepts
of the application, the individual information sources, and the constraints
among different sources. Moreover, we devise inference procedures for the
fundamental reasoning services, namely relation and concept subsumption,
and query containment. Finally, we present a methodological framework
for Information Integration, which can be applied in several contexts, and
highlights the role of reasoning services within the design process.

1 Introduction

In recent years there has been a growing interest in Information In-
tegration, whose goal is to access, relate and combine data from
multiple sources. Indeed, Information Integration is one of the
core problems in distributed databases, cooperative information
systems, and data warehousing, which are key areas in the software
development industry [37, 26, 35, 20].

Early work on integration was carried out in the context of
database design, and focused on the so-calledschema integration
problem, i.e. designing a global, unified schema for a database ap-
plication starting from several sub-schemata, each one produced
independently from the others [3]. More recent efforts have been
devoted todata integration, which generalizes schema integration
by taking into account actual data in the integration process. Here
the input is a collection of source data sets (each one constituted by
a schema and actual data), and the goal is to provide an integrated
and reconciled view of the data residing at the sources, without in-
terfering with their autonomy [34]. Data integration can be either
virtual or materialized. In the first case, the integration system acts
as an interface between the user and the sources [33, 22], whereas
in the second case, the system maintains a reconciled, replicated
view of the data at the sources [17, 23].

There are two basic approaches to the data integration problem,
calledproceduralanddeclarative. In the procedural approach, data

are integrated in an ad-hoc manner with respect to a set of prede-
fined information needs. In this case, the basic issue is to design
suitable software modules that access the sources in order to fulfill
the predefined information requirements. Several data integration
(both virtual and materialized) projects, such as TSIMMIS [10, 34],
SQUIRREL [39, 21], and WHIPS [18, 38] follow this idea. They
do not require an explicit notion of integrated data schema, and
rely on wrappersto encapsulate sources andmediatorsto merge
and reconcile data coming from wrappers and other mediators.

In the declarative approach, the goal is to model the data at
the sources by means of a suitable language, to construct a uni-
fied representation, to refer to such a representation when querying
the global information system, and to derive the query answers by
means of suitable mechanisms accessing the sources. This is the
idea underlying systems such asCarnot [11, 19], SIMS [1, 2] and
Information Manifold[30, 25, 28]. The declarative approach pro-
vides a crucial advantage over the procedural one: although build-
ing a unified representation may be costly, it represents a reusable
component of the Information Integration system.

We adopt a declarative approach to integration, and argue that
two critical factors for the design and maintenance of applica-
tions requiring Information Integration are theconceptual modeling
of the domain, and the possibility ofreasoning over the concep-
tual representation. We demonstrate that Knowledge Representa-
tion and Reasoning techniques can play an important role for both
of these factors, by proposing a Description Logic [16, 4] based
framework for Information Integration. In particular, our work pro-
vides the following main contributions:

1. We present a novel architecture for an integration system,
which allows one to explicitly represent data and information
needs at various levels.

2. At the conceptual level we use Description Logics formod-
eling both the global domain and the various sources. Since
the development of successful Information Integration solu-
tions requires specific modeling features, we propose a new
Description Logic, which treatsn-ary relations as first-class
citizens. Note that the usual characteristic of many Descrip-
tion Logics to model only unary predicates (concepts) and
binary predicates (roles) would represent an intolerable limit
in our case.

Additionally, we provide suitable mechanisms for express-
ing what we call theintermodel assertions, i.e. inter-
relationships between concepts in different sources. Thus,
integration is seen as the incremental process of understand-
ing and representing the relationships between data in the
sources, rather than simply producing a unified data schema.
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The fact that our approach is incremental is also important in
amortizing the cost of integration.

3. For an accurate description of the information sources, we
incorporate in our logic the possibility of describing all data
at the logical level in terms of a set ofrelational structures.
Each relational structure is defined as a view over the con-
ceptual representation, thus providing a formal mapping be-
tween the description of data and the conceptual representa-
tion of the domain.

4. We provideinference proceduresfor the fundamental rea-
soning services, namely concept and relation subsumption,
and query containment. Indeed, we present the first decid-
ability result on query containment for a Description Logic
with n-ary relations [6]. Based on these reasoning methods,
we present a methodological framework for Information In-
tegration, which can be applied both in the virtual and in the
materialized approach.

Compared with the procedural approaches, which have been
designed to cope in a more flexible way with the dynamics of
the sources, our methodology for incremental schema integration
based on intermodel assertions combines the advantages of a con-
ceptual representation with the necessary flexibility to deal with
changes in the domain. In particular, the ability of reasoning over
both the conceptual representation and the relational structures can
be profitably used in designing mediators with verifiable specifica-
tions.

The paper is organized as follows. In Section 2 we describe in
more detail our architecture for Information Integration. In Sec-
tion 3 we present the particular Description Logic we use to realize
the architecture. In Section 4 we illustrate how the reasoning tech-
niques associated with our logic are used to improve the design
and maintenance of the Information Integration system. Section 5
concludes the paper.

2 Architecture of integration systems

In this section we describe the architecture of an integration system
resulting from the introduction of a conceptual layer. In particular,
we illustrate both the various components that are maintained and
used by the system, and the tasks that the system has to carry out for
performing its job. The proposed architecture serves as a general
setting where different approaches to integration can be evaluated
and compared. Indeed, we illustrate how existing integration sys-
tems can be obtained as specializations of this general architecture.

2.1 Components

The data structures managed by an integration system are shown in
Figure 1, where four levels are singled out:conceptual, logical1,
physical, andmeta. Furthermore, Figure 1 includes the following
elements, which are outside the boundary of the integration system:

� TheInterface, which is the module that allows the communi-
cation with both the user (i.e. anyone interested in retrieving
information) and the designer (i.e. the one in charge of the
building and the functioning of the system).

� TheExternal Sources, which represent the independent sys-
tems managing the actual data that the system is supposed to
integrate.

1Here the term “logical” is used according to the database terminology, where it
denotes a description of data in terms of structures managed by DBMSs (e.g., relational
tables), which are at a more abstract level with respect to the physical organization of
data.

The conceptual level

The conceptual level contains a formal description of the concepts,
the relationships between concepts, and the information require-
ments that the integration application has to deal with. The key
feature of this level is that such a description is independent from
any system consideration, and is oriented towards the goal of ex-
pressing the semantics of the application. In particular, we distin-
guish among the following elements in the conceptual level:

� TheEnterprise Model2 is a conceptual representation of the
global concepts and relationships that are of interest to the
application. It corresponds roughly to the notion of inte-
grated conceptual schema in the traditional approaches to
schema integration.

� For an information sourceS, the Source Modelof S is a
conceptual representation of the data residing inS.

� The termDomain Modelis used to denote the union of both
the Enterprise Model and the various Source Models, plus
possible intermodel relationships, i.e. relationships holding
between concepts belonging to different models (i.e. between
one concept in sourceS and one concept in the Enterprise
Model, or between one concept in one source and one con-
cept in another source).

� A Query Modelis a conceptual representation of an informa-
tion need. An example of Query Model is a relational query
over the Domain Model.

We point out that the Domain Model containsintermodel re-
lationships, i.e. the specification of the interdependencies between
elements of different Source Models and between Source Models
and the Enterprise Model. The notion of interdependency is a cen-
tral one in our architecture. Since the sources are of interest in the
system, integration does not simply mean producing the Enterprise
Model, but rather to be able to establish the correct relationships
both between the Source Models and the Enterprise Model, and
between the various Source Models.

The logical level

Thelogical levelcontains the description of the data and the queries
of interest to the system, expressed in terms of typical logical struc-
tures managed by DBMSs. In particular, theSource Schemaof
a sourceS describes the logical content ofS and theMaterial-
ized View Schemadescribes the logical content of the materialized
views maintained by the system. Collectively, the Source Schemas
and the Materialized View Schema form what we call theData
Schema. Obviously, the Materialized View Schema is meaningful
only in the case where the integrated data (or portions thereof) are
materialized, whereas it is meaningless in the case of fully virtual
integration. Finally, theQuery Schemasexpress the information
needs at the logical level, for example as a set of relational queries
over the Data Schema.

The physical level

In our architecture, the physical level refers to the actual data man-
aged by the system. Therefore, the physical level is the one where
the extensional information of the system is taken into account. In
particular, theMaterialized View Storecontains the data that the
system maintains materialized. Figure 1 shows also wrappers and
mediators at this level. Awrapperis a software module that is able

2Here the term “model” is used to denote a formal description in a given repre-
sentation language. Note the difference with the usual meaning in databases, where it
denotes the formalism itself.
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Figure 1: Architecture for Data Integration

to access a source and retrieve the data therein in a form that is
coherent with the logical specification of the source.

A mediator [36] is a software module that takes as input sets
of data produced by either wrappers or other mediators, refines this
information by integrating and resolving conflicts, and produces as
output another set of data, namely the one corresponding to the
result of a given query. In other words, a mediator is always as-
sociated to a particular query at the logical level. The result of a
mediator can be either materialized, transferred to the interface, or
transferred to another mediator.

The meta level

The meta level comprises theMeta Model, which is the repository
with all meta information about the various system components,
and is used by both the user and the designer. A more detailed
discussion of the meta level is outside the scope of this paper, and
can be found, for example, in [24].

Mappings

Figure 1 also shows the mappings between the conceptual and the
logical level, and between the logical and the physical level.

Regarding the first aspect, the mapping between Source Mod-
els and Source Schemas represents the fact that the correspondence
between the logical representation of data in the sources and con-
cepts in the Source Models should be explicit. The same holds
for information needs expressed at the conceptual level and queries
expressed at the logical level. Finally, the correspondence between
elements of the Domain Model and the Materialized View Schema

represents the information on which are the concepts and relation-
ships that are materialized in the views maintained by the system.

Regarding the second aspect, the mapping between mediators
and Query Schemas and/or the Materialized Views Schema makes
explicit the fact that each mediator is supposed to compute the ex-
tension of a logical object, which can be either materialized or not.
A wrapper is always associated to an element of a Source Schema,
namely, the one whose data are extracted and retrieved by the wrap-
per. The mapping with Source Schemas represents exactly the cor-
respondence between a wrapper and the logical element whose ex-
tensional data are extracted from the source by the wrapper.

2.2 Tasks

In this section we briefly discuss the tasks that should be carried
out during the use of an integration system conforming to our ar-
chitecture.

The first class of tasks comprises all the activities regarding the
definition of the different elements of the architecture. Such ac-
tivities mainly pertain to the design of the integration system. For
example, the specification of the various Conceptual Models and
the intermodel links belongs to this phase. We note that the archi-
tecture does not prescribe to build the conceptual level in one shot,
but rather supports an incremental definition of both the Domain
and the Query Models. Indeed, such models are subject to changes
and additions as the analysis of the information sources proceeds.

Observe that in the (partially) materialized approach to integra-
tion, one of the most critical tasks is the decision of what and how
to materialize. Moreover, in both the materialized and the virtual
approach, the task of wrapper and mediator design is extremely



important. Designing a wrapper means to decide how to access the
source in order to retrieve data, and designing a mediator means to
decide how to use wrappers in order to answer a particular query or
to materialize a particular view. Note that the design of a mediator
comprises the resolution of conflicts and/or heterogeneity of data
residing in different sources.

The second kind of tasks includes all the design activities to be
performed when a new information need arises. In this case, the
new query has to be compared with those computed by the avail-
able mediators. The most important problem here is the one of
query rewriting, i.e. checking if and how the new query can be re-
formulated in terms of those computed by the existing mediators.
In virtual integration, this may lead the new mediator to simply call
for the existing mediators. In materialized integration, reformulat-
ing the query in terms of the materialized views means avoiding to
access the sources. Conversely, if the query (or part thereof) cannot
be answered by simply relying on the existing materialized views,
a new view (or new views) should be materialized, and the prob-
lem of query rewriting arises in a different form: the new view to
materialize is seen as a query that has to be formulated in terms of
the Source Schemas.

Finally, the third class of tasks concerns the activities that are
routinely carried out during the operational phase of the systems,
namely data extraction, query computation, and view materializa-
tion and refreshment.

2.3 Comparison with existing systems

The architecture outlined above can be instantiated to different in-
formation integration settings.

Schema integration [3] In the schema integration setting, in-
tegration starts by providing a conceptual representation of the
sources (Source Models), and proceeds by generating the global
database schema (Enterprise Model). Such a schema is then used
for the design of the implemented database (Materialized View
Schema, Materialized View Store). Once such database has been
created, the sources are discarded and the conceptual level is not
used anymore.

Multidatabases [33, 22] The setting of multidatabases deals
with different sources, which are considered as internal compo-
nents of the Integration System. Based on a logical representa-
tion of the sources, mediators are designed in order to satisfy infor-
mation needs also expressed at the logical level (Query Schemas).
Typically, mediators do not materialize data in the system. Also,
the conceptual level is generally not taken into account.

Global information systems [34] In this setting the goal is to
provide tools for the integrated access to multiple and diverse au-
tonomous information sources and repositories, such as databases,
HTML documents, unstructured files. Among the systems pro-
posed in this framework, Information Manifold [30, 25, 28] uses
a representation at the conceptual level of a reconciled view (called
World View) of the information sources and no data is material-
ized. Also TSIMMIS [10, 34] deals with a virtual scenario, but
does not provide a conceptual representation of data. One differ-
ence between the above two systems is that in the former, data at the
sources are described as views over the World View, whereas in the
latter, each mediator computes a view over the sources. Both these
strategies have disadvantages: in the first case intersource relation-
ships are not expressible, and in the second case general concepts
cannot be characterized independently from the sources.

A declarative approach is taken also in Carnot and SIMS, in
which reasoning is based on formalisms (Cyc [27] and LOOM [31],

respectively) that are undecidable. Information Manifold uses the
Classic [32] Description Logic at the conceptual level, and extends
it with conjunctive queries at the logical level. While this Descrip-
tion Logic is polynomially decidable, it cannot fully capture neither
the relationships among the various classes of data in the domain,
nor the intermodel assertions.

Notably, our approach, described in the next section, is based
on a decidable Description Logic, but does not impose any pre-
defined direction for expressing links between the sources and the
Enterprise Model.

Data warehouses [23] In this setting views are materialized, as
e.g. in the WHIPS system [18, 38], in which information is not
represented at the conceptual level. The lack of a conceptual level
is shared by the SQUIRREL system [41, 40, 39, 21]. However,
within SQUIRREL it is also possible to take into account the case
of virtual views.

3 Representation and reasoning

While Section 2 illustrates the general architecture of the integra-
tion system, the goal of this section is to describe a formalism
that can be used both at the conceptual and the logical level, and
the associated reasoning techniques. In this paper we do not deal
with representation and reasoning on Query Models and Query
Schemas.

Representation at the conceptual level We use for the con-
ceptual level a specificDescription Logic, calledDLR, which in-
cludesconceptsandn-ary relations3. DLR is inspired by the lan-
guages introduced in [5, 13, 12, 9], and is a natural extension of
Description Logics [16, 8, 4] towardsn-ary relations, which are
extremely important in our context.

We assume to deal with a finite set ofatomic relationsandcon-
cepts, denoted byP andA respectively. We useR to denote ar-
bitrary relations (of given arity between 2 andnmax), andC to
denote arbitraryconcepts, respectively built according to the fol-
lowing syntax (i andj denote components of relations, i.e. integers
between 1 andnmax,n denotes the arity of a relation, i.e. an integer
between 2 andnmax, andk denotes a nonnegative integer)4:

R ::= >n j P j ($i=n:C) j :R j R1 uR2

C ::= >1 j A j :C j C1 u C2 j

9[$i]R j (� k [$i]R)

The semantics of theDLR constructs is specified through the usual
notion of interpretation. AninterpretationI = (�I ; �I) is consti-
tuted by aninterpretation domain�I and aninterpretation func-
tion �I that assigns to each conceptC a subsetCI of �I , and to
each relationR of arity n a subsetRI of (�I)n, such that the
conditions in Figure 2 are satisfied. We observe that>1 denotes
the interpretation domain, while>n, for n > 1, doesnot denote
then-cartesian product of the domain, but only a subset of it, that
covers all relations of arityn. As a consequence, the “:” construct
on relations is used to express difference of relations, rather than
complement.

A DLR conceptual modelM (i.e., either the Enterprise Model
or one of the Source Models) is constituted by a finite set ofin-
tramodel assertions, which express knowledge on the relations and

3Domains, i.e. sets of values such as integer, string, etc., can be easily included in
DLR.

4Concepts and relations must bewell-typed, which means that (i) only relations of
the same arityn can be combined to form expressions of typeR1uR2 (which inherit
the arityn), and (ii)i � n wheneveri denotes a component of a relation of arityn.
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Figure 2: Semantic rules forDLR (P,R,R1, andR2 have arityn)

concepts inM, and have the form

L v L0 L 6v L0 L � L0 L 6� L0

with L, L0 either two relations of the same arity or two concepts.
An interpretationI satisfiesan intramodel assertionL v L0

(resp.L � L0) if LI � L0I (resp.LI = L0I ), and it satisfies
L 6v L0 (resp.L 6� L0) if I does not satisfyL v L0 (resp.L � L0).
An interpretationsatisfiesM, if it satisfies all assertions inM.

To specify knowledge on the conceptual interrelationships
among the sources and/or the enterprise, we useintermodel asser-
tions [9], which have essentially the form of intramodel assertions,
although the two relations (concepts)L andL0 belong to two dif-
ferent conceptual modelsMi,Mj . Intermodel assertions can be
eitherextensional, which express relationships between the exten-
sions of the relations (concepts) involved, orintensional, which ex-
press conceptual relationships that are not necessarily reflected at
the instance level. Formally, the interpretation of extensional in-
termodel assertions is analogous to the one of intramodel asser-
tions. Instead, intensional intermodel assertions are interpreted
by first taking the intersection of the relations (concepts)L, L0

with both >ni and>nj (>1i and>1j). For example, an in-
terpretationI satisfies the intermodel assertionRi vint R0

j if

>n
I

i \ >n
I

j \R
I

i � >n
I

i \ >n
I

j \R
0

j
I .

A Domain Model (DM) W is an (m + 2)-tuple
hM0;M1; : : : ;Mm;Gi such that: (i)M0 is the Enterprise
Model; (ii) eachMi, for i 2 f1; : : : ;mg, is a Source Model; (iii)
G (for “glue”) is a finite set of intermodel assertions. We assume
that G always includes for eachi 2 f1; : : : ;mg the following
assertions:>1i vext >10, and>ni vext >n0 for eachn such that
a relationR of arityn appears inMi. An interpretationI satisfies
W if it satisfies all the intramodel and intermodel assertions inW.

Representation at the logical level We express the logical
level in terms of a set of relation schemas, each describing either a
relation of a Source Schema, or a relation of the Materialized View
Schema. Such relations are related to the DM by characterizing
each relation schema in terms of a non-recursive Datalog query
over the elements of the DM, i.e. a query of the form:

q(~x)  body
1
(~x; ~y1) _ � � � _ bodym(~x; ~ym)

where eachbody i(~x; ~yi) is a conjunction ofatoms, eitherR(~t) or
C(t) (where~t and t are variables in~x,~yi)5, with R, C relations
and concepts over the DM. Thearity of q is equal to the number of
variables of~x.

We observe that, by means of assertions on both relations and
concepts expressed in the DM, additional constraints than those di-
rectly present in the query can be imposed. This distinguishes our
approach with respect to [15, 29], wheren-ary relations appearing
in queries are not part of the conceptual model.

5Our approach works also when constants are used in the queries.

Given an interpretationI of a DM W, a queryq for W of
arity n is interpreted as the setqI of n-tuples(o1; : : : ; on), with
each oi 2 �I , such that, when substituting(o1; : : : ; on) for
(x1; : : : ; xn), the formula

9~y1.body
1
(~x; ~y1) _ � � � _ 9~ym.bodym(~x; ~ym)

evaluates to true inI. If q andq0 are two queries (of the same arity)
for W, we say thatq is contained inq0 wrt W, if qI � q0I for
everyI satisfyingW.

Reasoning The typical kinds of reasoning services needed at
the conceptual level in order to support the designer in applying
the integration methodology presented in Section 4 (e.g., check-
ing whether the DM is consistent, checking whether a relation or
a concept is satisfiable in the DM, checking subsumption between
relations or concepts in the DM) can be reduced to checking satisfi-
ability of the DM. The reasoning tasks can in particular be exploited
for computing and incrementally maintaining the concept and rela-
tion lattice of the DM, or more generally the lattice of all concept
and relation expressions.

The expressiveness ofDLR, required for capturing meaning-
ful properties in the DM, makes reasoning a complex task. We have
devised a sound and complete procedure to decide the satisfiabil-
ity of a DM which works in worst-case deterministic exponential
time in the size of the DM. Indeed, this worst-case complexity is
inherent to the problem, therefore reasoning with respect to a DM
is EXPTIME complete. The inference method works in two steps:
first, reasoning on the DM is reduced to reasoning on a knowledge
base expressed in the Description LogicCIQ [14]; then reasoning
procedures forCIQ, based on the correspondence with Proposi-
tional Dynamic Logics, are exploited.

For reasoning at the logical level, we provide suitable tech-
niques for query containment. In particular, we have developed
an algorithm for deciding query containment with respect to a DM,
which exploits a reduction to unsatisfiability inCIQ, and which
extends the one in [6, 7] to deal with both intramodel and inter-
model assertions.

Example Figure 3 shows a DM,W = (M0;M1;M2;G), that
represents an enterprise and two sources containing information
about contracts between clients and departments for services, and
about registration of clients at departments. Symbols subscripted
by i refer to modelMi. The intramodel assertions inM0,M1,
M2 are visualized in Figure 4, using Entity-Relationship diagrams,
which are typical of conceptual modeling in Databases and are fully
compatible withDLR. Source 1 contains information about clients
registered at public-relations departments. Source 2 contains infor-
mation about contracts and complete information about services.
The Enterprise Model provides a reconciled conceptual description
of the two sources. Note that, in this example, such reconciled
description is not complete yet: e.g., the relationPROMOTION
is not modeled inM0 (recall that our approach to integration is



CONTRACT0 v ($1:Client 0) u ($2:Dept 0) u
($3:Service 0)

REG-AT0 v ($1:Client 0) u ($2:Dept 0)
PrDept 0 v Dept 0

REG-AT1 v ($1:Client 1) u ($2:Dept 1)
PROMOTION1 v REG-AT1

LOCATION1 v ($1:Dept 1) u ($2:String )
Dept 1 v 9�1LOCATION1[$1].>2

CONTRACT2 v ($1:Client 2) u ($2:Dept 2) u
($3:Service 2)

Dept 1 �ext PrDept 0

REG-AT1 vext REG-AT0
Client 1 �ext Client 0 u 9

�1REG-AT0[$1].PrDept 0

Client 0 u 9
�1CONTRACT0[$1].>2

vext 9�1PROMOTION1[$1].>2

Client 2 vext Client 0 u 9
�1CONTRACT0[$1].>2

Dept 2 vext Dept 0
Service 2 �ext Service 0

Client 1 �int Client 2

Dept 1 �int Dept 2

Figure 3: Domain model(($i=n:C) is abbreviated by($i:C))
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Figure 4: Enterprise and source models in Entity-Relationship diagrams

incremental). The various interdependencies among relations and
concepts in the Enterprise Model and the two Sources Models are
represented by the intermodel assertions on the right-hand side of
Figure 3.

As for the logical level representation, suppose, for example,
that the actual data in Source 1 are described by a relational table
Table 1 having three columns, one for the client, one for the de-
partment which the client is registered at, and one for the location
of the department. Such a table is specified in terms of the DM by
means of the query:

Table 1(x; y; z)  REG-AT1(x; y) ^ LOCATION1(y; z)

Using the reasoning services associated withDLR, we can au-
tomatically derive logical consequences of the DM. For instance,
we can prove that the assertionPROMOTION1 vext REG-AT0 u
($2:PrDept 0) is a logical consequence ofW. Observe that, al-
thoughM0 does not contain a relationPROMOTION, the above
assertion relatesPROMOTION1 toM0 in a precise way.

Next, consider, for instance, the following queries posed to
M0:

q1(x; y)  Client 0(x) ^ CONTRACT0(x; y; z)
q2(x; y)  Client 0(x) ^ CONTRACT0(x; y; z)^

REG-AT0(x;w) ^ PrDept 0(w)

q2 is obviously contained inq1. However, taking into account the
assertions inW, we can also derive thatq1 is contained inq2 wrt
W.

4 The methodology

We outline a methodology for Information Integration, based on the
techniques previously described, which can be applied in the con-

text of both virtual and materialized data integration. The method-
ology deals with two scenarios, calledsource-drivenand client-
driven.

Source-driven integration Source-driven integration is trig-
gered when a new source or a new portion of a source is taken
into account for integration. The steps to be accomplished in this
case are:

1. Source Model construction.The Source Model capturing the
concepts and the relationships of the new source that are crit-
ical for the enterprise is produced.

2. Source Model integration.The Source Model isintegrated
into the Domain Model. This can lead to changes both to the
Source Models, and to the Enterprise Model. The specifica-
tion of intermodel assertions and the derivation of implicit re-
lationships by exploiting the reasoning techniques, represent
the novel part of the methodology. Notably, not only asser-
tions relating elements in one Source Model with elements
in the Enterprise Model, but also assertions relating elements
in different Source Models are of importance. For example,
inferring that the set of instances of a relation in sourceSi is
always a subset of those in sourceSj can be important in or-
der to infer that accessing sourceSj for retrieving instances
of the relation is useless.

3. Quality analysis. The Quality Factors of the resulting Do-
main Model are evaluated and a restructuring is accom-
plished to match the required criteria. This step requires
the use of the reasoning techniques associated with our for-
malisms to check for quality factors such as consistency, re-
dundancy, readability, accessibility, believability [7].



4. Source Schema construction.The Source Schema, i.e. the
logical view of the new source or a new portion of the source
(expressed as a collection of queries over the corresponding
Source Model) is produced. The source schemas are used
in order to determine the sources relevant for computing an-
swers to queries, by exploiting the ability to reason about
queries.

5. Materialized View Schema restructuring.This step is done
only in Materialized Data Integration. On the basis of the
new source, an analysis is carried out on whether the Ma-
terialized View Schema should be restructured and/or modi-
fied in order to better meet quality requirements. Again, the
schema is constituted by a set of queries over the Domain
Model, and for its restructuring the use of reasoning tech-
niques is crucial. A restructuring of the Materialized View
Schema may require the design of new mediators.

Client-driven integration The client-driven design strategy
refers to the case when a new query (or a set of queries) posed by
a client is considered. The reasoning facilities are exploited to an-
alyze and systematically decompose the query and check whether
its components are subsumed by the views defined in the various
schemas.

In Materialized Data Integration, the analysis is carried out as
follows:

1. By exploiting query containment checking, we verify if and
how the answer can be computed from the materialized
views.

2. In the case where the materialized views are not sufficient,
we verify if the answer can be obtained by materializing new
concepts represented in the Domain Model. In this case,
query containment helps to identify the set of sub-queries to
be issued on the sources and to extend and/or restructure the
Materialized View Schema. Different choices can be identi-
fied, based on various preference criteria (e.g. minimization
of the number of sources, as in [30]) which take into account
the above mentioned quality factors.

3. In the case where neither the materialized data nor the con-
cepts in the Domain Model are sufficient, the necessary data
should be searched for in new sources, or in new portions of
already analyzed sources. The new (portions of the sources)
are then added to the Domain Model using the source-driven
approach, and the process of analyzing the query is iterated.

In Virtual Data Integration, one has to determine whether and
how the answer can be computed from the data in the analyzed
sources, falling into case (2) or (3).

5 Conclusions

We have presented the fundamental features of a declarative ap-
proach to Information Integration based on Description Logics. We
are currently applying the presented framework to the problem of
data warehouse design within the ESPRIT Project DWQ (Founda-
tions of Data Warehouse Quality).
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