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Abstract

are integrated in an ad-hoc manner with respect to a set of prede-

fined information needs. In this case, the basic issue is to design

In recent years there has been a growing interest in accessing, relating,suitable software modules that access the sources in order to fulfill
and combining data from multiple sources. Indeed, Information Integration the predefined information requirements. Several data integration
is one of the core problems in distributed databases, cooperative informa- (both virtual and materialized) projects, such as TSIMMIS [10, 34],
tion systems, and data warehousing, which are key areas in the software deSQUIRREL [39, 21], and WHIPS [18, 38] follow this idea. They
velopment industry. Two critical factors for the design and maintenance of do not require an explicit notion of integrated data schema, and
applications requiring Information Integration are conceptual modeling of rely onwrappersto encapsulate sources amediatorsto merge
the domain, and reasoning support over the conceptual representation. Weand reconcile data coming from wrappers and other mediators.

demonstrate that Knowledge Representation and Reasoning techniques can

In the declarative approach, the goal is to model the data at

play an important role for both of these factors, by proposing a Description the sources by means of a suitable language, to construct a uni-
Logic based framework for Information Integration. We show that the de- fied representation, to refer to such a representation when querying
velopment of successful Information Integration solutions requires notonly the global information system, and to derive the query answers by
to resort to very expressive Description Logics, but also to significantly ex- means of suitable mechanisms accessing the sources. This is the
tend them. We present a novel approach to conceptual modeling for Infor- jgea underlying systems such @arnot[11, 19], SIMS [1, 2] and
mation Integration, which allows for suitably modeling the global concepts |nformation Manifold[30, 25, 28]. The declarative approach pro-

of the application, the individual information sources, and the constraints yides a crucial advantage over the procedural one: although build-
among different sources. Moreover, we devise inference procedures for thejng a unified representation may be costly, it represents a reusable

fundamental reasoning services, namely relation and concept subsumptioncomponent of the Information Integration system.

and query containment. Finally, we present a methodological framework

We adopt a declarative approach to integration, and argue that

for Information Integration, which can be applied in several contexts, and o critical factors for the design and maintenance of applica-

highlights the role of reasoning services within the design process.

tions requiring Information Integration are tbenceptual modeling

of the domain and the possibility ofeasoning over the concep-

1 Introduction

tual representation We demonstrate that Knowledge Representa-
tion and Reasoning techniques can play an important role for both

. ) . of these factors, by proposing a Description Logic [16, 4] based
In recent years there has been a growing interest in Information In- ¢ mework for Information Integration. In particular, our work pro-
tegration, whose goal is to access, relate and combine data fromvides the following main contributions:

multiple sources. Indeed, Information Integration is one of the
core problems in distributed databases, cooperative information
systems, and data warehousing, which are key areas in the software
development industry [37, 26, 35, 20].

Early work on integration was carried out in the context of
database design, and focused on the so-caltkéma integration
problem, i.e. designing a global, unified schema for a database ap-
plication starting from several sub-schemata, each one produced
independently from the others [3]. More recent efforts have been
devoted todata integration which generalizes schema integration
by taking into account actual data in the integration process. Here
the input is a collection of source data sets (each one constituted by
a schema and actual data), and the goal is to provide an integrated
and reconciled view of the data residing at the sources, without in-
terfering with their autonomy [34]. Data integration can be either
virtual or materialized In the first case, the integration system acts
as an interface between the user and the sources [33, 22], whereas
in the second case, the system maintains a reconciled, replicated
view of the data at the sources [17, 23].

There are two basic approaches to the data integration problem,
calledproceduralanddeclarative In the procedural approach, data

1. We present a novel architecture for an integration system,

which allows one to explicitly represent data and information
needs at various levels.

. At the conceptual level we use Description Logicsrard-

eling both the global domain and the various sources. Since
the development of successful Information Integration solu-
tions requires specific modeling features, we propose a new
Description Logic, which treats-ary relations as first-class
citizens. Note that the usual characteristic of many Descrip-
tion Logics to model only unary predicates (concepts) and
binary predicates (roles) would represent an intolerable limit
in our case.

Additionally, we provide suitable mechanisms for express-
ing what we call theintermodel assertionsi.e. inter-
relationships between concepts in different sources. Thus,
integration is seen as the incremental process of understand-
ing and representing the relationships between data in the
sources, rather than simply producing a unified data schema.



The fact that our approach is incremental is also importantin The conceptual level

amortizing the cost of integration. . -
9 9 The conceptual level contains a formal description of the concepts,

3. For an accurate description of the information sources, we the relationships between concepts, and the information require-
incorporate in our logic the possibility of describing all data ments that the integration application has to deal with. The key
at the logical level in terms of a set odlational structures feature of this level is that such a description is independent from
Each relational structure is defined as a view over the con- any system consideration, and is oriented towards the goal of ex-
ceptual representation, thus providing a formal mapping be- pressing the semantics of the application. In particular, we distin-
tween the description of data and the conceptual representa-guish among the following elements in the conceptual level:

tion of the domain. . . .
e TheEnterprise Modél is a conceptual representation of the

4. We provideinference procedurefor the fundamental rea- global concepts and relationships that are of interest to the
soning services, namely concept and relation subsumption, application. It corresponds roughly to the notion of inte-
and query containment. Indeed, we present the first decid- grated c_onceptu_al schema in the traditional approaches to
ability result on query containment for a Description Logic schema integration.

with n-ary relations [6]. Based on these reasoning methods,
we present a methodological framework for Information In-
tegration, which can be applied both in the virtual and in the
materialized approach.

e For an information sourcé, the Source Modebf S is a
conceptual representation of the data residing§.in

e The termDomain Modelis used to denote the union of both
the Enterprise Model and the various Source Models, plus
possible intermodel relationships, i.e. relationships holding
between concepts belonging to different models (i.e. between
one concept in sourc8 and one concept in the Enterprise
Model, or between one concept in one source and one con-
cept in another source).

Compared with the procedural approaches, which have been
designed to cope in a more flexible way with the dynamics of
the sources, our methodology for incremental schema integration
based on intermodel assertions combines the advantages of a con-
ceptual representation with the necessary flexibility to deal with
changes in the domain. In particular, the ability of reasoning over
both the conceptual representation and the relational structures can o A Query Models a conceptual representation of an informa-

be profitably used in designing mediators with verifiable specifica- tion need. An example of Query Model is a relational query
tions. over the Domain Model.

The paper is organized as follows. In Section 2 we describe in ) ) .
more detail our architecture for Information Integration. In Sec-  We point out that the Domain Model contaiirgermodel re-

tion 3 we present the particular Description Logic we use to realize 1ationships i.e. the specification of the interdependencies between
the architecture. In Section 4 we illustrate how the reasoning tech- elements of different Source Models and between Source Models
niques associated with our logic are used to improve the designand the Enterprise Model. The notion of interdependency is a cen-
and maintenance of the Information Integration system. Section 5 tral one in our archltecture. Since the sources are of interest in t_he
concludes the paper. system, integration does not simply mean producing the Enterprise
Model, but rather to be able to establish the correct relationships
both between the Source Models and the Enterprise Model, and

2 Architecture of integration systems between the various Source Models.

In this section we describe the architecture of an integration system .
resulting from the introduction of a conceptual layer. In particular, The logical level

we illustrate both the various components that are maintained andrpg|ggical levelcontains the description of the data and the queries

used by the system, and the tasks that the system has to carry out fogs interest to the system, expressed in terms of typical logical struc-
performing its job. The proposed architecture serves as a generalreg managed by DBMSs. In particular, tSeurce Schemaf

setting where different approaches to integration can be evaluatedy 5o\rces describes the logical content of and theMaterial-

and compared. Indeed, we illustrate how existing integration sys- j;eq \iew Schemdescribes the logical content of the materialized

tems can be obtained as specializations of this general architecture,je\vs maintained by the system. Collectively, the Source Schemas
and the Materialized View Schema form what we call ata

2.1 Components Schema Obviously, the Materialized View Schema is meaningful

. . _only in the case where the integrated data (or portions thereof) are

The data structures managed by an integration system are shown iy ateriglized, whereas it is meaningless in the case of fully virtual

: ; re s
FLgur_e 1 Wgere fO‘IJ:r Ie;]/els are S'Ff?g'ed gqbnlc%ptua:]logf;lc”al . integration. Finally, theQuery Schemasxpress the information
physical andmeta Furthermore, Figure 1 includes the following  heeds at the logical level, for example as a set of relational queries
elements, which are outside the boundary of the integration system: oo+ the Data Schema.

e Thelnterface which is the module that allows the communi-
cation with both the user (i.e. anyone interested in retrieving The physical level
information) and the designer (i.e. the one in charge of the

building and the functioning of the system). In our architecture, the physical level refers to the actual data man-

aged by the system. Therefore, the physical level is the one where

e TheExternal Sourceswhich represent the independent sys- the extensional information of the system is taken into account. In
tems managing the actual data that the system is supposed tdarticular, theMaterialized View Storeontains the data that the
integrate. system maintains materialized. Figure 1 shows also wrappers and

mediators at this level. Arapperis a software module that is able

'Here the term “logical” is used according to the database terminology, where it
denotes a description of data in terms of structures managed by DBMSs (e.g., relational ~ ?Here the term “model” is used to denote a formal description in a given repre-
tables), which are at a more abstract level with respect to the physical organization of sentation language. Note the difference with the usual meaning in databases, where it
data. denotes the formalism itself.
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Figure 1: Architecture for Data Integration

to access a source and retrieve the data therein in a form that isrepresents the information on which are the concepts and relation-
coherent with the logical specification of the source. ships that are materialized in the views maintained by the system.
A mediator[36] is a software module that takes as input sets Regarding the second aspect, the mapping between mediators
of data produced by either wrappers or other mediators, refines thisand Query Schemas and/or the Materialized Views Schema makes
information by integrating and resolving conflicts, and produces as explicit the fact that each mediator is supposed to compute the ex-
output another set of data, namely the one corresponding to thetension of a logical object, which can be either materialized or not.
result of a given query. In other words, a mediator is always as- A wrapper is always associated to an element of a Source Schema,
sociated to a particular query at the logical level. The result of a namely, the one whose data are extracted and retrieved by the wrap-
mediator can be either materialized, transferred to the interface, orper. The mapping with Source Schemas represents exactly the cor-
transferred to another mediator. respondence between a wrapper and the logical element whose ex-
tensional data are extracted from the source by the wrapper.

The meta level

. . . 2.2 Tasks
The meta level comprises tihdeta Mode] which is the repository

with all meta information about the various system components, In this section we briefly discuss the tasks that should be carried
and is used by both the user and the designer. A more detailedout during the use of an integration system conforming to our ar-
discussion of the meta level is outside the scope of this paper, andchitecture.
can be found, for example, in [24]. The first class of tasks comprises all the activities regarding the
definition of the different elements of the architecture. Such ac-
tivities mainly pertain to the design of the integration system. For
example, the specification of the various Conceptual Models and
Figure 1 also shows the mappings between the conceptual and thdéhe intermodel links belongs to this phase. We note that the archi-
logical level, and between the logical and the physical level. tecture does not prescri_be to build the c_or_u_:eptual level in one sh_ot,
Regarding the first aspect, the mapping between Source Mod- but rather supports an incremental definition of both the Domain
els and Source Schemas represents the fact that the corresponden@d the Query Models. Indeed, such models are subject to changes
between the logical representation of data in the sources and con-and additions as the analysis of the information sources proceeds.
cepts in the Source Models should be explicit. The same holds ~ Observe that in the (partially) materialized approach to integra-
for information needs expressed at the conceptual level and queriedion, one of the most critical tasks is the decision of what and how
expressed at the logical level. Finally, the correspondence betweerf0 materialize. Moreover, in both the materialized and the virtual
elements of the Domain Model and the Materialized View Schema approach, the task of wrapper and mediator design is extremely

Mappings



important. Designing a wrapper means to decide how to access therespectively) that are undecidable. Information Manifold uses the
source in order to retrieve data, and designing a mediator means toClassic [32] Description Logic at the conceptual level, and extends
decide how to use wrappers in order to answer a particular query orit with conjunctive queries at the logical level. While this Descrip-
to materialize a particular view. Note that the design of a mediator tion Logic is polynomially decidable, it cannot fully capture neither
comprises the resolution of conflicts and/or heterogeneity of data the relationships among the various classes of data in the domain,
residing in different sources. nor the intermodel assertions.

The second kind of tasks includes all the design activities to be Notably, our approach, described in the next section, is based
performed when a new information need arises. In this case, theon a decidable Description Logic, but does not impose any pre-
new query has to be compared with those computed by the avail- defined direction for expressing links between the sources and the
able mediators. The most important problem here is the one of Enterprise Model.
query rewriting i.e. checking if and how the new query can be re-
formulated in terms of those computed by the existing mediators.

In virtual integration, this may lead the new mediator to simply call e.g. in the WHIPS system [18, 38], in which information is not

for the existing mediators. In materialized integration, reformulat- represented at the conceptual level. The lack of a conceptual level

ing the query in terms of the materialized views means avoiding to . shared by the SQUIRREL system [41, 40, 39, 21]. However,

X s
access the sources. Conversely, if the query (or part thereof) cannot . . L% ; .
be answered by simply relying on the existing materialized views, tcl)\?tvr}lr?uileliJel\;RstL itis also possible to take into account the case

a new view (or new views) should be materialized, and the prob-
lem of query rewriting arises in a different form: the new view to
materialize is seen as a query that has to be formulated in terms 0f3 Representation and reasoning

the Source Schemas.

Finally, the third class of tasks concerns the activities that are While Section 2 illustrates the general architecture of the integra-
routinely carried out during the operational phase of the systems, tion system, the goal of this section is to describe a formalism
namely data extraction, query computation, and view materializa- that can be used both at the conceptual and the logical level, and
tion and refreshment. the associated reasoning techniques. In this paper we do not deal
with representation and reasoning on Query Models and Query
Schemas.

Data warehouses [23] In this setting views are materialized, as

2.3 Comparison with existing systems

The architecture outlined above can be instantiated to different in-

i : : Representation at the conceptual level We use for the con-
formation integration settings.

ceptual level a specifibescription Logi¢ calledDLR, which in-
cludesconceptsandn-ary relations. DLR is inspired by the lan-
Schema integration [3] In the schema integration setting, in- guages introduced in [5, 13, 12, 9], and is a natural extension of
tegration starts by providing a conceptual representation of the Description Logics [16, 8, 4] towards-ary relations, which are
sources (Source Models), and proceeds by generating the globakxtremely important in our context.

database schema (Enterprise Model). Such a schema is then used We assume to deal with a finite setaibmic relationsandcon-

for the design of the implemented database (Materialized View cepts denoted byP and A respectively. We us® to denote ar-
Schema, Materialized View Store). Once such database has beemitrary relations (of given arity between 2 andl,..), andC to
created, the sources are discarded and the conceptual level is nodlenote arbitraryconcepts respectively built according to the fol-
used anymore. lowing syntax ¢ andj denote components of relations, i.e. integers
between 1 and.,.., n denotes the arity of arelation, i.e. an integer

Multidatabases [33, 22] The setting of multidatabases deals PetWween 2 and...., andk denotes a nonnegative inteder)

with different sources, which are considered as internal compo-

nents of the Integration System. Based on a logical representa- R == Ta [P [ ($i/n:C) | "R | RiNRs

tion of the sources, mediators are designed in order to satisfy infor- C o= T1|A|-C | CinC: |

mation needs also expressed at the logical level (Query Schemas). %R | (< k[$]R)

Typically, mediators do not materialize data in the system. Also, -

the conceptual level is generally not taken into account. The semantics of thBLR constructs is specified through the usual

notion of interpretation. AmnterpretationZ = (A%, .T) is consti-

Global information systems [34] In this setting the goal isto  tuted by aninterpretation domaimAT and aninterpretation func-
. A . . : T H T T

provide tools for the integrated access to multiple and diverse au-tion -~ that assigns to each concepta subseC™ of A”, and to
tonomous information sources and repositories, such as databasegach relationR of arity n a subsefR” of (A%)", such that the
HTML documents, unstructured files. Among the systems pro- conditions in Figure 2 are satisfied. We observe thatdenotes
posed in this framework, Information Manifold [30, 25, 28] uses the interpretation domain, whilé,, for n > 1, doesnot denote
a representation at the conceptual level of a reconciled view (called the n-cartesian product of the domain, but only a subset of it, that
World View) of the information sources and no data is material- covers all relations of arity.. As a consequence, the™ construct
ized. Also TSIMMIS [10, 34] deals with a virtual scenario, but on relations is used to express difference of relations, rather than
does not provide a conceptual representation of data. One differ-complement.
ence between the above two systems is that in the former, dataatthe A DLR conceptual modeM (i.e., either the Enterprise Model
sources are described as views over the World View, whereas in theor one of the Source Models) is constituted by a finite sehof
latter, each mediator computes a view over the sources. Both thesdramodel assertionsvhich express knowledge on the relations and
strategies have disadvantages: in the first case intersource relation
ships are not expressible, and in the second case general Concep%ﬁgomains, i.e. sets of values such as integer, string, etc., can be easily included in
cannot be Cha.raCtenzed md?pendemly fro.m the sources. . “4Concepts and relations mustwell-typed which means that (i) only relations of

A declarative approach is taken also in Carnot and SIMS, in' the same arity: can be combined to form expressions of tffbe M R.» (which inherit
which reasoning is based on formalisms (Cyc [27] and LOOM [31], the arityn), and (i) < n whenever denotes a component of a relation of anity




T Co(anr TI = A7
P. C TI AT CoA?
(-R)T = TL\R® (-C)F = AT\CF
(RiMR:)T = RINRY (cinc)t = cinct
($i/n:CYF = {(di,...,dn) € TL | d; € CT}
(ABR)T = {deA’T|3I(dy,...,dn) € RT.di =d}
(<k[$IR)T = {de AT ||{(d1,...,dn) ER] |di =d}| <k}

Figure 2: Semantic rules f@LR (P, R, R1, andR have arityn)

concepts inM, and have the form

LCL Lzl L=L L#%L

with L, L' either two relations of the same arity or two concepts.

An interpretationZ satisfiesan intramodel assertioh T L’
(resp.L = L") if LT C L'F (resp.L* = L'F), and it satisfies
L Z L' (resp.L # L')if Z does not satisfy. C L' (resp.L. = L').

An interpretatiorsatisfiesM, if it satisfies all assertions M.

To specify knowledge on the conceptual interrelationships
among the sources and/or the enterprise, wantsemodel asser-
tions[9], which have essentially the form of intramodel assertions,
although the two relations (concepts)and L’ belong to two dif-
ferent conceptual models1;, M;. Intermodel assertions can be
eitherextensionalwhich express relationships between the exten-
sions of the relations (concepts) involvedjmensiona) which ex-

Given an interpretatio of a DM W, a queryq for W of
arity n is interpreted as the sef of n-tuples(oz,...,0,), with
eacho; € AZ, such that, when substitutings, . . ., 0,) for
(z1,-.-,zn), the formula

3y1.body, (X, ¥1) V -- -V Iy m.body,, (X, ¥m)

evaluates to true iff. If g andq’ are two queries (of the same arity)
for W, we say thay is contained ing’ wrt W, if ¢* C ¢'% for
everyZ satisfyingW.

Reasoning The typical kinds of reasoning services needed at
the conceptual level in order to support the designer in applying
the integration methodology presented in Section 4 (e.g., check-
ing whether the DM is consistent, checking whether a relation or
a concept is satisfiable in the DM, checking subsumption between

press conceptual relationships that are not necessarily reflected afqations or concepts in the DM) can be reduced to checking satisfi-

the instance level. Formally, the interpretation of extensional in-

ability of the DM. The reasoning tasks can in particular be exploited

termodel assertions is analogous to the one of intramodel asser,, computing and incrementally maintaining the concept and rela-

tions. Instead, intensional intermodel assertions are interpreted
by first taking the intersection of the relations (concepts)L’
with both T,; and T,; (T1; and Ty;). For example, an in-
terpretationZ satisfies the intermodel asserti®; Cin: R if
T fNTENRECTINTINRE

A Domain Model (DM) W is an (m + 2)-tuple
(Mo, M1,...,Mn,G) such that: (i) M, is the Enterprise
Model; (ii) eachM;, fori € {1,...,m}, is a Source Model; (iii)
G (for “glue”) is a finite set of intermodel assertions. We assume
that G always includes for each € {1,...,m} the following
assertionsT1; Cezt T1g,andT n; Cear T oo for eachn such that
arelationR of arity n appears inM;. An interpretatiorf satisfies
W if it satisfies all the intramodel and intermodel assertiorig/in

Representation at the logical level We express the logical

level in terms of a set of relation schemas, each describing either a

tion lattice of the DM, or more generally the lattice of all concept
and relation expressions.

The expressiveness @1LR, required for capturing meaning-
ful properties in the DM, makes reasoning a complex task. We have
devised a sound and complete procedure to decide the satisfiabil-
ity of a DM which works in worst-case deterministic exponential
time in the size of the DM. Indeed, this worst-case complexity is
inherent to the problem, therefore reasoning with respect to a DM
is EXPTIME complete. The inference method works in two steps:
first, reasoning on the DM is reduced to reasoning on a knowledge
base expressed in the Description LogiEQ [14]; then reasoning
procedures foCZQ, based on the correspondence with Proposi-
tional Dynamic Logics, are exploited.

For reasoning at the logical level, we provide suitable tech-
nigques for query containment. In particular, we have developed
an algorithm for deciding query containment with respect to a DM,

relation of a Source Schema, or a relation of the Materialized View Which explaits a reduction to unsatisfiability ¢ZQ, and which

Schema. Such relations are related to the DM by characterizing
each relation schema in terms of a non-recursive Datalog query
over the elements of the DM, i.e. a query of the form:

q(X) « body,(X,¥1) V-V body,,(X,¥m)

where eactbody, (%, ¥;) is a conjunction otoms eitherR.(t) or
C(t) (wheret and¢ are variables ir%,y;)°, with R, C relations
and concepts over the DM. Tlagity of ¢ is equal to the number of
variables ofk.

extends the one in [6, 7] to deal with both intramodel and inter-
model assertions.

Example Figure 3 shows a DMWYV = (Mg, M1, M2, G), that
represents an enterprise and two sources containing information
about contracts between clients and departments for services, and
about registration of clients at departments. Symbols subscripted
by i refer to modelM;. The intramodel assertions i, M.,

M are visualized in Figure 4, using Entity-Relationship diagrams,
which are typical of conceptual modeling in Databases and are fully

We observe that‘ by means of assertions on both relations andcompatible withDLR. Source 1 contains information about clients

concepts expressed in the DM, additional constraints than those di-

rectly present in the query can be imposed. This distinguishes our
approach with respect to [15, 29], whereary relations appearing
in queries are not part of the conceptual model.

50ur approach works also when constants are used in the queries.

registered at public-relations departments. Source 2 contains infor-
mation about contracts and complete information about services.
The Enterprise Model provides a reconciled conceptual description
of the two sources. Note that, in this example, such reconciled
description is not complete yet: e.g., the relatBROMOTION

is not modeled inM, (recall that our approach to integration is
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Figure 4: Enterprise and source models in Entity-Relationship diagrams

incremental). The various interdependencies among relations andtext of both virtual and materialized data integration. The method-
concepts in the Enterprise Model and the two Sources Models areology deals with two scenarios, calleturce-drivenand client-
represented by the intermodel assertions on the right-hand side ofdriven

Figure 3.
As for the logical level representation, suppose, for example,

Table ; having three columns, one for the client, one for the de-
partment which the client is registered at, and one for the location
of the department. Such a table is specified in terms of the DM by
means of the query:

Table 1(z,y,2) < REG-ATi(z,y) A LOCATION(y, 2)

Using the reasoning services associated WitiR, we can au-
tomatically derive logical consequences of the DM. For instance,
we can prove that the asserti®BiROMOTIONLC.,: REG-ATy M
($2: PrDept ,) is a logical consequence ®¥. Observe that, al-
though M, does not contain a relatioRROMOTIONthe above
assertion relateBROMOTIONto M, in a precise way.

Next, consider, for instance, the following queries posed to
M()I

+ Client o(z) ACONTRAC z,y, 2)
+ Client o(z) ACONTRACH z,y, z)A
REG-ATo(z,w) A PrDept o(w)

g2 is obviously contained ig:. However, taking into account the
assertions iV, we can also derive that is contained ings wrt
W.

4 The methodology

We outline a methodology for Information Integration, based on the
techniques previously described, which can be applied in the con-

that the actual data in Source 1 are described by a relational table>0urce-driven integration Source-driven integration is trig-
gered when a new source or a new portion of a source is taken
into account for integration. The steps to be accomplished in this

case are:

1. Source Model constructiolhe Source Model capturing the
concepts and the relationships of the new source that are crit-
ical for the enterprise is produced.

2. Source Model integrationThe Source Model isntegrated
into the Domain ModelThis can lead to changes both to the
Source Models, and to the Enterprise Model. The specifica-
tion of intermodel assertions and the derivation of implicit re-
lationships by exploiting the reasoning techniques, represent
the novel part of the methodology. Notably, not only asser-
tions relating elements in one Source Model with elements
in the Enterprise Model, but also assertions relating elements
in different Source Models are of importance. For example,
inferring that the set of instances of a relation in so¢és
always a subset of those in souggcan be important in or-
der to infer that accessing sourg for retrieving instances
of the relation is useless.

3. Quality analysis. The Quality Factors of the resulting Do-
main Model are evaluated and a restructuring is accom-
plished to match the required criteria. This step requires
the use of the reasoning techniques associated with our for-
malisms to check for quality factors such as consistency, re-
dundancy, readability, accessibility, believability [7].



4. Source Schema constructiorf.he Source Schema, i.e. the
logical view of the new source or a new portion of the source
(expressed as a collection of queries over the corresponding
Source Model) is produced. The source schemas are used
in order to determine the sources relevant for computing an-
swers to queries, by exploiting the ability to reason about
queries.

. Materialized View Schema restructuringhis step is done
only in Materialized Data Integration. On the basis of the
new source, an analysis is carried out on whether the Ma-
terialized View Schema should be restructured and/or modi-
fied in order to better meet quality requirements. Again, the
schema is constituted by a set of queries over the Domain
Model, and for its restructuring the use of reasoning tech-
niques is crucial. A restructuring of the Materialized View

(2]

(3]

(4]

(5]

Y. Arens, C. A. Knoblock, and W. Chen. Query reformulation
for dynamic information integratiord. of Intelligent Informa-
tion Systems5:99-130, 1996.

C. Batini, M. Lenzerini, and S. B. Navathe. A comparative
analysis of methodologies for database schema integration.
ACM Computing Survey48(4):323—-364, 1986.

A. Borgida. Description logics in data managemefEEE
Trans. on Knowledge and Data Engineering(5):671-682,
1995.

D. Calvanese, G. De Giacomo, and M. Lenzerini. Structured
objects: Modeling and reasoning.Pmoc. of the 4th Int. Conf.

on Deductive and Object-Oriented Databases (DOOD-95)
number 1013 in Lecture Notes in Computer Science, pages
229-246. Springer-Verlag, 1995.

Schema may require the design of new mediators. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the de-

cidability of query containment under constraints Pioc. of
the 17th ACM SIGACT SIGMOD SIGART Sym. on Principles
of Database Systems (PODS-98998.

] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and
R. Rosati. Source integration in data warehousing. Technical

(6]

Client-driven integration The client-driven design strategy
refers to the case when a new query (or a set of queries) posed by

a client is considered. The reasoning facilities are exploited to an-
alyze and systematically decompose the query and check whether [7
its components are subsumed by the views defined in the various

schemas. Report DWQ-UNIROMA-002, DWQ Consortium, Oct. 1997.
In Materialized Data Integration, the analysis is carried out as [g] D. Calvanese, M. Lenzerini, and D. Nardi. A unified frame-
follows: ' '

work for class based representation formalisms. In J. Doyle,
E. Sandewall, and P. Torasso, editdPspc. of the 4th Int.
Conf. on the Principles of Knowledge Representation and
Reasoning (KR-94)pages 109-120, Bonn, 1994. Morgan
Kaufmann, Los Altos.

1. By exploiting query containment checking, we verify if and
how the answer can be computed from the materialized
views.

. In the case where the materialized views are not sufficient,
we verify if the answer can be obtained by materializing new
concepts represented in the Domain Model. In this case,
query containment helps to identify the set of sub-queries to
be issued on the sources and to extend and/or restructure the
Materialized View Schema. Different choices can be identi- [10]
fied, based on various preference criteria (e.g. minimization
of the number of sources, as in [30]) which take into account
the above mentioned quality factors.

[9] T. Catarci and M. Lenzerini. Representing and using inter-
schema knowledge in cooperative information systeinsf
Intelligent and Cooperative Information Syster2¢4):375—

398, 1993.

S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Pa-
pakonstantinou, J. Ullman, and J. Widom. The TSIMMIS
project: Integration of heterogeneous information sources. In
Proc. of IPSI Conf. (IPSI'94)Tokyo (Japan), 1994.

C. Collet, M. N. Huhns, and W.-M. Shen. Resource integra-
tion using a large knowledge base in Carn&EE Computer

. In the case where neither the materialized data nor the con-[ll]

cepts in the Domain Model are sufficient, the necessary data

should be searched for in new sources, or in new portions of

already analyzed sources. The new (portions of the sources)[12]

are then added to the Domain Model using the source-driven
approach, and the process of analyzing the query is iterated.

24(12):55-62, 1991.

G. De Giacomo and M. Lenzerini. Description logics with
inverse roles, functional restrictions, and n-ary relations. In
Proc. of the 4th European Workshop on Logics in Atrtificial

Intelligence (JELIA-94)volume 838 ofLecture Notes In Ar-
In Virtual Data Integration, one has to determine whether and tificial Intelligence pages 332—-346. Springer-Verlag, 1994.
how the answer can be computed from the data in the analyzed

sources, falling into case (2) or (3). [13]

G. De Giacomo and M. Lenzerini. What's in an aggregate:
Foundations for description logics with tuples and sets. In
Proc. of the 14th Int. Joint Conf. on Atrtificial Intelligence

(IJCAI-95), pages 801-807, 1995.

G. De Giacomo and M. Lenzerini. TBox and ABox reasoning
in expressive description logics. In L. C. Aiello, J. Doyle,
and S. C. Shapiro, editorBroc. of the 5th Int. Conf. on the
Principles of Knowledge Representation and Reasoning (KR-
96), pages 316-327. Morgan Kaufmann, Los Altos, 1996.

F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. A hy-
brid system integrating Datalog and concept languages. In
Proc. of the 2nd Conf. of the Italian Association for Artifi-
cial Intelligence (AlI*IA-91) number 549 in Lecture Notes In
Artificial Intelligence. Springer-Verlag, 1991. An extended
version appeared also in the Working Notes of the AAAI Fall
Symposium “Principles of Hybrid Reasoning”.

5 Conclusions

We have presented the fundamental features of a declarative ap{14]
proach to Information Integration based on Description Logics. We

are currently applying the presented framework to the problem of
data warehouse design within the ESPRIT Project DWQ (Founda-
tions of Data Warehouse Quality).
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