
Initial Results on Wrapping Semistructured Web Pages with
Finite-State Transducers and Contextual Rules

Chun-Nan Hsu*
Department of Computer Science and Engineering

Arizona State University, P.O. Box 875406
Tempe, AZ 85287-5406, USA

chunnan@isi.edu, http://www.isi.edu/sims/chunnan

Abstract

This paper presents SoftMealy, a novel Web wrap-
per representation formalism. This representation is
based on a finite-state transducer (FST) and contex-
tual rules, which allow a wrapper to wrap semistruc-
tured Web pages containing missing attributes, mul-
tiple attribute values, variant attribute permutations,
exceptions and typos, the features that no previous
work can handle. A SoftMealy wrapper can be learned
from labeled example items using a simple induction
algorithm. Learnability analysis shows that SoftMealy
scales well with the number of attributes and the num-
ber of different attribute permutations. Experimental
results show that the learning algorithm can learn cor-
rect wrappers for a wide range of Web pages with a
handful of examples and generalize well over unseen
pages and structural patterns.

Introduction
Information integration systems (see e.g., (Kirk et el.
1995; Arens, Knoblock, & Hsu 1996)) rely on wrap-
pers to retrieve data on the World-Wide Web. The
primary task of such a wrapper is to extract the data
items listed in a given set of Web pages and return
the results as data tuples. For example, consider the
fragment of the Caltech CS department faculty page1

in Figure l(a), where we have five data items. Each
item provides information about a faculty member as
a sequence of attributes. In this case the attributes
are URL U, name N, academic title h and administra-
tive title M. A wrapper for this Web page is supposed
to take its HTML source as input (see Figure l(b)),
extract the attributes from each item and return a set
of faculty tuples (U,N,A,M).

Since constructing a wrapper by hand is impracti-
cal, researchers have developed many approaches to

*New address: chunnan@iis.sinica.edu.tw, Institute of
Information Sciences, Academia Sinica, Taipei, Taiwan.
Ph: +886-2-27.88.37.99. The author wishes to thank Ming-
Tzung Dung for his help on coding the prototype system.

lwww. cs. caltech, edu/csstuff/faculty, html

a Mani Chandy, Professor of Computer Science and Executive

O~cer for Computer Science
¯ Jim Avro, Associate Professor of Computer Science
¯ David E. Breen, Assistant Director of Computer Graphics

Laboratory
¯ John Tanner, Visiting Associate of Computer Science
¯ Fred Thompson, Professor Emeritus of Applied Philosophy

and Computer Science

(a)
 <l HREFffi"http://www.cs.caltech.edu/people/mani.html">

Mani Chandy, <I>Professor of Computer Science</I> and
<I>Executive Officer for Computer Sclence</I>

 <A HREFffi"http://www.cs.caltech.edu/’arvo/home.html">
Jim Arvo, <I>Aesoclate Professor of Computer

Science</I>
 <A HREF-"http://www.gg.oaltech.edu/’david/">

David E. Breen, <I>Assistant Director of Computer
Graphics Laboratory</I>

 John Tanner,
<I>Vieiting Associate of Computer Science</I>

 Fred Thompson, <I>Profeseor Emeritus of Applied Philosophy
and Computer Scisnce</I>

(b)

Figure 1: (a) fragment of Caltech CS faculty Web page
and (b) its ItTML source (as for November, 1997)

rapid wrapper construction (e.g., (Doorenbos, Etzioni,
& Weld 1997; Ashish & Knoblock 1997; Kushmerick
1997)). Essentially, these wrappers extract a tuple
scanning the input HTML string, recognizing the de-
limiters surrounding the first attribute, and repeating
the same steps for the next attribute until all attributes
are extracted. (Kushmerick 1997) advanced the state
of the art by identifying a family of PAC-learnable
wrapper classes and their induction algorithms. Wrap-
pers of more sophisticated classes are able to locate the
margins of an item or skip useless text at the begin-
ning and the end of a page based on delimiters, but
the attribute extraction steps remain unchanged.

For example, to extract the first tuple in Figure 1,
the wrapper will scan the HTML string to locate the
delimiters for attribute U. In this case the delimiters are
"<h HREF="" and "’>". After locating U the wrapper
will proceed to extract N, A and M and complete the
extraction of this tuple.

From: AAAI Technical Report WS-98-14. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

TIvi~ upproach, howev~, fails to ~x~act the vest of
this example page, although the page appears to be
structured in a highly regular fashion. This example
page is not a special case. My study shows that the
Web pages that their wrappers fail to wrap can be
characterized by the following features:

¯ Missing attributes (e.g, a faculty may not have
an administrative title)

¯ Multiple attribute values (e.g., a faculty may
have two or more administrative titles)

¯ Variant attribute permutations (e.g., the aca-
demic title that appears before the administrative
title in most items may appear after the adminis-
trative title in others)

¯ Exceptions and typos

According to (Kushmerick 1997), 30% of the search-
able Web sites in his survey cannot be wrapped in this
manner. As the number of application domains and
the complexity of Web-based software are rising, the
percentage may increase quickly.

Two problems make the previous work fail to wrap
those pages. The first problem is the assumption
that there is exactly one attribute permutation
for a given Web site. However, Web pages that dis-
play semistructured data (Buneman 1997) usually need
many different attribute permutations for data with
missing attributes or multiple attribute values. In our
example Web page, there are four different attribute
permutations for just five items:

(U,N,A,M) (U,N,A) (U,N,M) (N,A)
Their assumption makes it impossible to wrap Web
pages with more than one attribute permutations and
thus is invalid.

The second problem is the use of delimiters, be-
cause it prevents the wrapper to recognize different at-
tribute permutations. Considering the situation when
the wrapper has extracted the name N from an item
in our example page and attempts to extract the next
attribute. The strings that may serve as the delim-
iters surrounding the next attribute for the first three
items are the same ", <I>," and "<I>~ ,2,
but the next attribute could be A or M. As a result, it
is not sufficient to distinguish different attribute per-
mutations based on delimiters. This situation occurs
very often because minimizing the number of distinct
delimiters appearing in a single document is considered
as a good formatting practice. The use of delimiters
has another problem. How to extract the state and
zip code from "CA90210" with delimiters? There is no
delimiter at all. Unless the wrapper takes the context

2~ denotes a newline, following (Kushmerick 1997)

of the margin b~w~ two uttrib~te~ into account, it
is very difficult to wrap these pages.

This paper presents a novel wrapper representation
called SoftMealy3. The reminder of the paper shows
how SoftMealy solves all the problems.

Wrapper Representation

The SoftMealy representation is based on a finite-state
transducer (FST) where each distinct attribute permu-
tation in the Web page can be encoded as a success-
ful path and the state transitions are determined by
matching contextual rules that describes the context
delimiting two adjacent attributes.

Tokens, Separators and Contextual Rules

The wrapper segments an input HTML string into to-
kens before it starts to extract the tuples. Each token
is denoted as t(v), where t is a token class and v is a
string. Below are the token classes and their examples:

¯ All uppercase string: "ASU" -+ CAlph(ASU)
¯ An uppercase letter, followed by a string with

at least one lowercase letter: "Professor" -~
CiAlph(Professor)

¯ A lowercase letter, followed by zero or more char-
acters: "and" -+ OAlph(and)

¯ Numeric string: "123" --+ Num(123)
¯ HTML tag: "<I>" ~ Html(<I>)
¯ Punctuation symbol: "," -+Punc(,)
¯ Control characters -- since they are invisible, we

will use their length as the argument: a newline
--+ NL(1), four tabs -~ Tab(4), and three blank
spaces ~ Spc (3)

A separator is an invisible borderline between two
adjacent tokens. A separator s is described by its con-
text tokens, which consists of the left context sL and
the right context sa. Separators are designed to re-
place delimiters. To extract an attribute, the wrap-
per recognizes the separators surrounding an attribute.
Separators for an attribute may not be the same for all
items in a semistructured Web page. Contextual rules
are defined to characterize a set of individual separa-
tors. A contextual rule is expressed as one or more
disjunctive sequences of tokens t(v) and its general-
ized form t(_), which denotes any token of class t (e.g.,
Html(_) denotes any HTML tag).

Example 1 Consider the first item in Figure l(b).
The separator s between "<I>" and "Professor" is de-
scribed by

3It is named after G. H. Mealy who originated finite-
state transducers in 1955.

67

sR ::= CIAIph(Professor) Spc(1) 0AIph(of) ...
This separator marks the beginning of A, but it is spe-
cific to this item. The class of separators S at the
beginning of A for all items is characterized as the fol-
lowing contextual rules:
SL ::-- Html() Punc(,) Spc(_) Html(<I>)

Punc(,) NL(_) Spc(_) Html(<I>)
Punc(,) Spc(_) Html(<I>)

SR ::= ClAiph(_)
where "r’ means "or." S covers the separators whose
left context satisfies one of the three disjuncts and the
right context is any C1Alph token. The first disjunct
states that the left context is a token string ""
followed by a comma, one or more spaces and "<I>",
from left to right. The second and third disjuncts can
be interpreted in a similar manner. []

Finite-State Transducer

The FST in SoftMealy takes a sequence of the separa-
tors rather than the raw HTML string as input. The
FST matches the context tokens of the input separa-
tors with contextual rules to determine state transi-
tions. This is analogous to moving a flashlight beam
through a token string. When we pictorially present
a finite-state transducer, we adapt the standard no-
tation (see e.g., (Roche & Schabes 1997)) unless
plained otherwise. A question mark "?" stands for any
input separator that does not match on any other out-
going edge, and next_token denotes the token string
right next to the input separator. For example, the
next_token of the separator in Example 1 is "Profes-
sor". We also use "+" to denote string concatenation.

A FST is constructed for one item type. If there
are many types of items in a page, as many FSTs can
be constructed. The substring that contains a type of
items in a Web page is called the body or the scope of
that type of items. Figure 2 shows the part of the FST
that extract a body string. The FST tries to match
hL, the left context of the separator at the head of
the body, and tR, the right context of the separator
at the tail of the body. The tuple transducer in the
middle iteratively extracts the tuples from the string
between hL and tR. In each iteration, the tuple trans-
ducer accepts an item and returns the extracted tuple
of attributes.

? / e ? / tuples

tap’eI~nextjokenJ t e

~1 transducer

Figure 2: Body transducer

A tuple ,transducer is the ;core of. a SoRMe~y
wrapper. Formally, a tuple transducer is a 5-tuple

(~1, ~2, Q, R, E) such that:

¯ ~1 is the set of separators as the input alphabet.
¯ ~2 is the set of characters as the output alphabet.
¯ Q is a finite set of states containing:

- Initial state b and final state e represent the
beginning and the end of an item, respec-
tively.

- k is a state if there is an attribute k to be
extracted.

- For each attribute k there is a state k that
corresponds to the dummy attribute, the to-
kens that we intend to skip between the
end of attribute k and the next attribute.
For example, N =", <I>" for the first
item in Figure l(b) because it is between
N ="Mani Chandy" and the next attribute
"Professor..."

¯ R is the set of contextual rules. Each contextual
rule, denoted as s(i, j), describes the class of sep-
arators (a subset of ~1) between two attributes
j (including dummy attributes and b, e).

¯ EC_QxRx~ x Q is the set of edges. Astate
transition from i to j is legal if there exists an
edge (i, r, o, j) E E such that the next input sepa-
rator satisfies r. An edge from i to j encodes that
attributes i and j are adjacent in the target Web
pages when their separator satisfies the associated
contextual rule. This way, each attribute permu-
tation can be encoded as a successful path in the
transducer.

For the sake of compactness, we can combine edges
that connect the same pair of states into a single edge.
This is possible because the contextual rules can be
disjunctive and next_token is used as the output string
whenever applicable. Therefore, there is at most one
edge between two states.

States allow the tuple transducer to decide when to
extract tokens and when to skip, depending on whether
it is at an attribute state or at a state for a dummy
attribute. At final state e, if the FST recognizes tR

then there is no more items and the extraction will
terminate, otherwise, state e will become state b for
the next tuple. Figure 3 shows the diagram of the
tuple transducer for the example Web page.

The contextual rules might cover each other and
make the FST nondeterministic, which is not efficient
and error-prone. To deal with this problem, in the
current implementation, we use a rule priority policy
that prefers a specific rule to a general rule. More pre-
cisely, the policy prefers rules that are longer or with

68

? / £ ? / next_token ? /
(’--~s<b,U> / ~ ~ s<~,N> "U="+ s<U,U> / ~’~~

s<b,N> /
"N="+ next_token

- e "N=’+ _ *M="+

s<N,N>/~next_token ~s<A,A,./ e’~ ne~l~.1oken..’~

? / next_token ? / £ s<N,M> /
’M="+ next_token

Figure 3: Tuple transducer

more ground tokens. This heuristic worked well in the
experiments but I already have several concrete pro-
posals and will address the problem in the future. See
the last section for more detail.

To sum up, the extraction starts by tokenizing an
input Web page, and then uses a FST to recognize
separators that mark the head and tail of the body
and return the tuples in the body.

Expressiveness Analysis

The SoftMealy representation provides sufficient flexi-
bility to wrap semistructured Web pages because it al-
lows multiple outgoing inter-state edges for each state
and the use of contextual rules. As a result, we can
conclude the expressiveness of SoftMealy as follows:

1. SoftMealy can deal with missing attributes, multiple
attribute values, and variant attribute permutations:
For missing attributes, an edge bypassing the state
corresponding to a missing attribute solves the prob-
lem. For example, the edge from b to N in Figure 3
allows the wrapper to extract the last two items in
Figure 1 where U is missing. Similarly, by properly
arranging the edges, the wrapper can deal with any
attribute permutations.

2. SoftMealy can deal with exceptions and typos with
its disjunctive contextual rules.

3. SoflMealy subsumes the wrapper classes in (Kushm-
erick 1997): His wrappers are special cases of Soft-
Mealy FSTs that are linear, that is, each state has at
most one incoming inter-state edge and one outgo-
ing inter-state edge. Delimiters are also special cases
of contextual rules where one side of the context is
empty. This follows that SoftMealy can wrap any
pages his wrappers can wrap.

4. SoftMealy can wrap nested sources: (Kushmerick
1997) discusses a class of nested sources that gener-
ate Web pages appearing like a "table of contents."
Figure 4 shows that SoftMealy can wrap that class
of Web pages.

Figure 4: FST for nested Web sources

Induction Algorithm

A FST consists of input/output alphabets, states and
edges. In the case of SoftMealy FSTs, the components
remaining to be induced are the edges and their as-
sociated contextual rules. In this section, we present
an algorithm that generalizes contextual rules from la-
beled items in a set of sample pages.

The labeled items provides the positions of the
separators and the attribute permutations (including
dummy attributes) of the items. The first step of learn-
ing is to construct corresponding states and edges ac-
cording to the attribute permutations appearing in the
training items. The next step is to learn the contextual
rules for the edges. The learner will collect the separa-
tors that delimit the same pairs of attributes together.
This produces a set of training instances of s(i,j) for
each pair of adjacent attributes i and j. Each instance
is expressed as ground context tokens of the separator.
Our goal is to induce contextual rules that cover all
separator instances in the sample pages.

To constrain the search space of a large number of
the contextual rules that can be induced, we incorpo-
rate an inductive bias that constrains the length of sep-
arator instances. This bias requires that the context
of a separator instance includes the adjacent zero or
more nonword tokens plus at most one word token (i.e.,
CAlph, C1AIph, 0Alph and Num; others are nonword
tokens), and that the context should not span across
the separator of another pair of attributes. This bias
is based on our heuristic that a short context string
including a word token is sufficient to characterize a
separator class.

Example 2 Consider the first item in Figure 1.
Labeling this item yields an attribute permutation

69

:(b,U,U,N, fi~,A,.4,M,e) and the positions..,of their
separators. After applying the inductive bias for the
length of training instances, the instances for separa-
tors s(]~r, A) and s(A, .4) are as follows:

s(]V,A) L ::---- Html() Punc(,) Spc(1) Html(<I>)

s(/9, A)R ::= CIAlph(Professor)
s(A, i> L ::= CIAlph(Science)

s(A,i) R ::= Html(</I>) OAlph(and)

With the training set for each separator class, we can
apply an induction algorithm (e.g., (Michalski 1983))
to produce contextual rules. Due to the bias, the
length of each training instance may be different and
we need to decide how to align the tokens into columns
for the generalization. Our solution is to align word to-
kens together and align nonword tokens to the right for
left context and to the left for right context.

Example 3 Suppose we label items number 1, 2,
4 and 5 in Figure 1 and collect a training set for
s(N, A). After the alignment, we have four columns
for s(iV, A)L and one column for s(19, A)R:
I.s(IV, A) L ::= Html() Punc(,) Spc(1) Html(<I>)

2.8(IV, A>L ::= Html() Punc(,) Spc(1) Html(<I>)

3.s(IV, A) L ::= Punc(,) NL(1) Spc(5) Html(<I>)

4.s(IV, A) L ::= Punc(,) Spc(1) Html(<I>)

1.s(/V,A) R ::= ClAlph(Associate)
2.s(/V,A) R ::= ClAlph(Professor)
3.s(/9, A>a ::= CiAlph(Visiting)

4.s(IV, A)R ::----- CIAlph(Gordon)
[]

The generalization algorithm induces contextual
rules by taxonomy tree climbing (Michalski 1983). The
algorithm generalizes each column by replacing each
token with their least common ancestor with other
tokens in the same taxonomy tree. Figure 5 shows
fragments of the taxonomy trees. Our current imple-
mentation applies a heuristic that always generalizes a
control character token t(v) to t(_) (i.e., when t is
of NL, Spc or Tab). After the generalization, duplicate
instances will be removed and the remaining instances
constitute the output contextual rules. The algorithm
is given as follows:
Algorithm 1 (Generalization)
1 INPUT D = training set that has been aligned;
2 F0R each column c in D
3 F0R each token t(v) in c
4 IF 3 tl(v l) 6 C such that

t and t’ in the same taxonomy tree THEN
5 replace $(V) w/ their least common ancestor
6 remove duplicate instances in D;
7 RETURN D;

Example 4 The generalization of the instances in Ex-
ample 3 yields the following contextual rules:

Figure 5: Token Taxonomy Trees

1.s(_K/,A) L ::= Html() Punc(,) Spc(_) Html(<I>)
2.s(IV, A)L ::= Html() Punc(,) Spc(_) Html(<I>)
3.s(iV, A)L ::= Punt(,) NL(_) Spc(_) Html(<I>)
4.s(/%r,A)L ::= Punt(,) Spc(_) Html(<I>)

l.s(l[I,A) R ::= C1AIph(_)
2.s(N,A)a ::= CIAIph(_)
3.s(IV, A>R ::= CIAIph(_)
4.s(i~I,A) a ::= CIAIph(_)
Removing the duplicates, we obtain the contextual
rules identical with SL and Sa in Example 1. []

Learnability Analysis
This section presents my initial analysis on the learn-
ability of the SoftMealy representation. See (Hsu 1998)
for proof of the results and detailed discussion.

This analysis focuses on the sample complexity. In
the case of wrapper induction, that amounts to answer

how many training items are required to learn an ap-
proximately correct wrapper with hlgh confidence. To
simplify the analysis, I decompose the problem into
two parts: the number of training items required to
learn a correct FST graph structure, and the number
of items required to learn a correct contextual rule for
a separator class.

A FST with a correct graph structure contains neces-
sary edges to cover all possible attribute permutations.
Based on the PAC learning theory, the learner needs
m training items such that:

m > 1((2K2 + 2K)In2 + In(l/6))

This is derived from the fact that 2K2 + 2K is the
maximal number of edges in a FST for Web sites with
K attributes.

An alternative representation to wrap Web pages
with variant attribute permutations is to cover each
different attribute permutation with a linear FST. This
approach requires m > (gK In 2 + ln(1/6))/e. This
shows the benefit of the compactness of SoftMealy
where one edge can be a part of many successful paths.
This property allows our learner to cover unseen at-
tribute permutation with sufficient edges. For exam-
ple, the FST in Figure 3 is induced to cover four dif-
ferent attribute permutations of the example page, but

70

there are six successful paths in that leST. That is, the
FST generalizes to two unseen attribute permutations.

The PAC model provides a loose bound on the sam-
ple complexity. Since in the worst case, the learner
needs to select at least an instance of each attribute
permutation to learn the correct graph structure, we
can derive a tighter bound by estimating the minimal
number of training items required to select at least an
instance for each attribute permutation with a prob-
ability greater than 0.95. Assuming that the universe
of the items is sufficiently large so that this probabil-
ity follows a multinomial distribution 4, then the up-
per bound of the training items is the minimal m that
makes the probability greater than 0.95:

a m~
= mineral m! II -> 0.95}

allMj j=l J"

where a is the number of different attribute permu-
tations, pj is the proportion of items with attribute
permutation j such that ~j=l PJ = 1, and Mj is a
nonzero a partition of m, that is, a set of a positive
integers {ml ... ma} that makes ~j~=l mj = m.

The upper bound m is a function of a and the dis-
tribution Pl -..Pa. In general, for a given a, m is small
when the distribution is uniform and grows quickly as
the distribution becomes skewed. Figure 6(a) illus-
trates the m surface for a -- 3. When the distribution
is uniform, m grows approximately linearly as a in-
creases, as shown in Figure 6(b).

We have discussed the sample complexity to learn a
correct graph structure for a FST. A correct wrapper
also needs correct contextual rules. Contextual rules
are one form of k-DNF formula, from (Hanssler 1988),
this is polynomially learnable. (Hsu 1998) provides
detailed discussion as well as the time complexitY of
the learning algorithm.

Experimental Results

We have implemented our learning algorithm into a
prototype system in JAVA. The system has a GUI that
allows a user to open a Web site, define the attributes,
and label the items in the Web page with a mouse. The
system learns a wrapper from labeled items. If an error
appears in the output, the user can provide correct
labeling and invoke an error recovery function (Hsu

Dung 1998) to correct the error until the output is
completely correct.

We conducted two experiments to evaluate Soft-
Mealy. The first experiment is to test its expressive-
ness. The second experiment is to test whether the
learning system can generalize over unseen pages.

4If the size of the universe is small, the probability
should follow a hypergeometric distribution.

~o, ~! .i i! iii". "¢. "..
7o,] :,’.i .! i:’ ~’.. "i.. ’...i "’..

~ol

~~’ "’?’..’"~ "". i"’.."..
5O . ". :

,o :i:i. i...:’"!.:"..."...:i..:".."..
...:: ’"...,. ’:i, ’.: ".. i. ’ ~. ".i

lo ...~.. -:".. "’.. ",!".. :.. ’~ "..:
o " "’. . ".. ’".":’.. ’"’,. ’"i. ’~..~".. "!

........ :," , ,,,.:’. ’.. ’,, ’. . :4 "’. ’.,0,2 ’,. ’. ’.. ". ’. ":’" ’, ":, ’.~

0.6 " "’, ’"’ ."’":":"" ’:":" "’" ’"" """ " 09

o.e ’"". " "" 0 4 O,S O.e

p, (p~-l-p,--p2)

(a)
Pl p~ = 1/a

Is = 1 2 3 4 5 6 7 8 9 10

m= 1 6 11 16 21 27 33 39 44 51
(b)

Figure 6: Growth of the sample complexity

Experiment for Expressiveness

We have successfully applied SoftMealy to wrap a set
of Web pages that itemize Computer Science faculty
members at universities in North America. The test
pages are selected randomly from the index provided
by the Computing Research Association cra. org. For
each page, we constructed a wrapper to extract a sub-
set of predefined 14 attributes (e.g., name, URL, pic-
ture, et cetra.), depending on their availability in the
page. We chose this domain because it is a rich source
of itemized Web pages with diverse structural varia-
tions. It is our intention not to select test pages with
any presumed format in mind.

Table 15 shows the profile of the test pages and the
performance statistics. The average number of differ-
ent attribute permutations of the test pages is 2.63,
which shows that these pages are not strictly struc-
tured. The number of training instances TI for each
page is the maximal number of labeled items used to
learn a correct wrapper in our random trials.

To evaluate the generalization of the learned con-
textual rules, we compared the number of learned dis-
juncts R with the number of separator classes SP (i.e.,
the number of edges). We also compared tt with the
total number of items IT in a page. Ideally, It should be
independent of IT but correlated with SP. Figure 7(a)
and (b) show the correlations. The results favor our
approach because we obtained a strong correlation co-
efficient 0.980 (~ 1) between R and SP and almost

5The experments were conducted in November, 1997.

71

~!UR~ IT A AP S SP "1% TI
www.cs.nmt .edu/Faculty.html
www.cs.olemiss.edu/faculty/
www.cs.fit .edu/people/faculty.ht ml
www.cs.brandeis.edu/faculty-descriptions/
www.cs.caltech.edu/csstuff/faculty.html
www.cs.colostate.edu/people.html
www.cs.dartmouth.edu/faculty/
www.cs.msstate.edu/FACULTY_AND.STAFF/
www.cse.fau.edu/faculty.ht ml
www.cs.gmu.edu/faculty/
www.cs.columbia.edu/home/people/people.ht ml~faculty
cyclone.cs.clemson.edu/html/whoswho/facultyindex.sht ml
www.cs.gmu.edu/ofchours.html
www.cs.jhu.edu/faculty.html
www.cs.wm.edu/cspages/people/faculty.html
www.cs.msu.edu/fac/index.html
www.cs.iast ate.edu/faculty/index.html
www.cs.nps.navy.mil/people/faculty/
www.cs.concordia.ca/People/Faculty.html
www.cs.duke.edu/cgi-bin/factable?text
www.cs.washington.edu/people/faculty/
www.eas.asu.edu/~-csedept/people/faculty.ht ml
gauss.nmsu.edu:8000/faculty/faculty.html
www.cs.nyu.edu/cs/new_faculty.html?
simon.cs.cornell.edu/Info/Faculty/faculty-list .ht ml
www.seas.gwu.edu/seas/eecs/faculty.html
cbis.ece.drexel.edu/ECE/ece_bios.html
class.ee.iastat e.edu/fac_staff/index.html
www.ri.cmu.edu/ri-home/people.html
www-eecs.mit .edu/faculty/index.html

6 6 3 14 16 38 6
8 3 2 8 8 21 5

11 1 2 4 4 14 5
11 7 2 20 19 50 6
15 4 4 10 12 31 5
18 2 2 6 7 17 4
18 7 5 16 19 56 6
18 6 3 14 16 49 9
21 2 1 6 5 14 5
21 1 1 4 3 7 2
22 1 1 4 3 8 3
22 7 4 15 17 49 5
23 5 4 15 16 45 9
24 2 1 5 4 16 4
25 6 5 20 16 50 9
29 2 2 5 5 13 4
29 3 3 7 9 23 4
29 1 1 4 3 9 5
31 4 2 10 10 29 7
32 5 2 12 12 26 5
34 1 1 4 3 8 2
35 7 3 17 18 51 5
35 4 2 9 9 26 5
36 3 2 8 10 35 6
39 2 1 6 5 15 5
41 4 3 8 11 35 6
46 10 13 28 33 108 25
48 3 2 8 8 24 6
51 2 1 6 5 18 5
157 2 1 6 5 21 6

Key: IT-- ~ of items, A= ~ of attributes, AP --- ~ of attribute t)ermutations,S= # of states,
SP = # of separator classes,R = # of disjuncts, TI = # of training instances.

Table 1: Performance statistics on wrapping CS faculty Web pages

correlation -0.031 (~ 0) between R and IT.
The number of training instances TI is also cor-

related with SP, with correlation coefficient equal to
0.773 (see Figure 7(c)). This shows that our learning
algorithm can learn correct contextual rules for each
class of separators with a handful of training items.
The outlier at the upper right corner is obtained from
the faculty page of the Drexel University6. This page
is nested and particularly difficult to wrap.

Generalizing over Unseen Pages

We apply SoftMealy to wrap the ASU Web directory
site 7. This Web site provides the information of the
faculty, staff and students at ASU with a total of 12
possible attributes. This site is particularly interest-
ing because its output pages contain a large number
of different attribute permutations in order to display
different personnel categories at a university.

The experiment was conducted as follows. We sent

6cbis. ece. drexel, edu/ECE/ece_bios, html
7~. asu. edu/asu.eb/directory/

11 random queries to the source and obtained 11 out-
put pages. We sorted the pages on their size (i.e., the
number of items) and selected the largest one as the
test page and the others as the training pages. The test
page contains 69 items and 17 different attribute per-
mutations while the training pages contain a total of 85
items and 18 different attribute permutations. Among
these attribute permutations, only seven appearing in
the test page also appear in the training pages.

To plot the learning curve, we sorted the training
pages in the ascending order of their size, and applied
the learning system to generate a wrapper for each ob-
served training page so far, and used the generated
wrapper to extract the test page. We labeled a total of
15 items in order to successfully wrap the 10 training
pages and obtained 92 contextual rule disjuncts. The
result is shown in Figure 8, where all the data points
are cumulative. Interestingly, even though there are 10
unseen attribute permutations in the test page, Soft-
Mealy still covered 60 out of 69 items (~ 87%) in the
test page. We note that because an error may affect

72

¯ ¯ ~e¯

......,"

..~4"¯ ̄

:̄.,("
i~1.|.,’;:¢ |

1oo -I

I

~5o-I

o]
0

. ...’"....
....

25

j-
15

’EL~ 10
F.
I-- 5

¯ ""

¯ : ".;’Y;.."

, , i , J , ’ ’
50 100 10 20 30 10 20 30

Items Separators Separators

Figure 7: Scatterplots of (a) rules and items, (b) rules and separators, and (c) training instances and separators

140

120

tO0

@ - -¢ Total unseen tuples covered
~. = Tuples covered in test page
xx Total tuples in training pages
o o Training tuples used

...."

1 2 3 4 5 6 7 8
Training pages

JJ

st4

/
/

/
,// ,,"

..
..."

9 10

Figure 8: Learning curve on wrapping ASU directory

the extraction of the rest of the page, four items not
covered in the test page should have been covered if
their previous items had been extracted correctly.

Conclusions and Future Work
This paper presented the SoftMealy wrapper represen-
tation for semistructured Web pages. The key features
of SoftMealy are as follows. First, the FST allows a
wrapper to encode different attribute permutations.
Second, the disjunctive contextual rule allows a wrap-
per to characterize different attribute transition sepa-
rators. The learning algorithm can bring.to bear the
token taxonomy trees and induce accurate contextual
rules with a handful of examples. The experimental
results show that the prototype system performs well
on a wide range of Web pages.

The future work includes applying a number of algo-
rithms for removing ambiguity, determinization, and
minimization (Roche & Schabes 1997) to optimize
learned FSTs. We are currently working on includ-
ing negative examples in the induction of contextual

rules to improve the accuracy. It is also important to
make the wrappers robust against changes in the Web
pages so that they can skip errors and return the most
reasonable set of tuples.

References
Arens, Y.; Knoblock, C. A.; and Hsu, C.-N. 1996. Query
processing in the SIMS information mediator. In Tate,
A., ed., Advanced Planning Technology. Menlo Park, CA:
The AAAI Press.

Ashish, N., and Knoblock, C. A. 1997. Semi-automatic
wrapper generation for internet information sources. In
Proceedings of Coopis-97.

Buneman, P. 1997. Semistructured data. In Proceedings
of PODS-9Z

Doorenbos, R. B.; Etzioni, O.; and Weld, D. S. 1997.
A scalable comparison-shopping agent for the world-wide
web. In Proceedings of AA-g7, 39-48. New York, NY:
ACM Press.
Hanssler, D. 1988. Quantifying inductive bias: AI learning
algorithms and Valiant’s learning framework. Artificial
Intelligence 36:177-221.

Hsu, C.-N., and Dung, M.-T. 1998. Wrapping semistruc-
tured web pages with finite-state transducers. In Working
Notes of CONALD Workshop 6 Pittsburg, PA: Center
for Automated Learning and Discovery, Carnegie Mellon
University.

Hsu, C.-N. 1998. Wrapper induction: An alternative view.
In preparation.

Kirk, T.; Levy, A. Y.; Sagiv, Y.; and Srivastava, D.
1995. The Information Manifold. In Working Notes of
the AAAI Spring Symposium Technical Report SS-95-08.
Menlo Park, CA: AAAI Press.
Kushmerick, N. 1997. Wrapper Induction for Information
Extraction. Ph.D. Dissertation, Department of Computer
Science and Engineering, University of Washington, Sea-
tle, WA.
Michalski, R. S. 1983. A theory and methodology of
inductive learning. In Machine Learning: An Artificial
Intelligence Approach, volume I. Los Altos, CA: Morgan
Kaufmann Publishers, Inc. 83-134.

Roche, E., and Schabes, Y., eds. 1997. Finite-State Lan-
guage Processing. Cambridge, MA: MIT press.

73

