
STALKER: Learning Extraction Rules for Semistructured,
Web-based Information Sources *

Ion Muslea, Steve Minton, Craig Knoblock
Information Science Institute and the Integrated Media Systems Center

University of Southern California
(muslea, minton, knoblock}@isi.edu

Abstract

Information mediators are systems capable of
providing a unified view of several information
sources. Central to any mediator that accesses
Web-based sources is a set of wrappers that can
extract relevant information from Web pages.
In this paper, we present a wrapper-induction
algorithm that generates extraction rules for
Web-based information sources. We introduce
landmark automata, a formalism that describes
classes of extraction rules. Our wrapper in-
duction algorithm, STALKER, generates extrac-
tion rules that are expressed as simple landmark
grammars, which are a class of landmark au-
tomata that is more expressive than the existing
extraction languages. Based on just a few train-
ing examples STALKER learns extraction rules for
documents with multiple levels of embedding.
The experimental results show that our approach
successfully wraps classes of documents that can
not be wrapped by existing techniques.

1 Introduction
With the expansion of the World Wide Web, com-
puter users have gained access to a large variety of
comprehensive information repositories, ranging from
real estate to entertainment and electronic commerce.
However, the Web is based on a browsing paradigm
that makes it difficult to retrieve and integrate data
from multiple sources. The most recent generation

*This work is supported in part by the University
of Southern California Integrated Media Systems Center
(IMSC) - a National Science Foundation Engineering Re-
search Center, by the United States Air Force under con-
tract number F49620-98-1-0046, by the Rome Laboratory
of the Air Force Systems Command and the Defense Ad-
vanced Research Projects Agency (DARPA) under con-
tract number F30602-97-2-0352, by the Defense Logistics
Agency, DARPA, and Fort Huachuca under contract num-
ber DABT63-96-C-0066, and by a research grant from Gen-
eral Dynamics Information Systems. The views and conclu-
sions contained in this paper are the authors’ and should
not be interpreted as representing the official opinion or
policy of any of the above organizations or any person con-
nected with them.

of information mediators (e.g., Ariadne (Knoblock et
al. 1998), TSIMMIS (Chawathe et al. 1994), Internet
Softbots (Doorenbos, Etzioni, & Weld 1997), Informa-
tion Manifold (Kirk et al. 1995)) address this problem
by enabling information from pre-specified sets of Web
sites to be accessed via database-like queries. For in-
stance, consider the query "What seafood restaurants
in L.A. have prices below $20, and accept the Visa
credit-card?". Assume that we have a mediator that
can access two sources that provide information about
LA restaurants, the Zagat Guide and LA Weekly, as
shown in Figure 1. To answer this query, the mediator
could use Zagat’s to identify seafood restaurants under
$20, and then use LA Weekly to check which of these
take Visa.

The mediators cited above rely on wrappers that
are customized to extract information from semi-
structured Web pages (a page is semi-structured if the
desired information can be located using a concise,
formal grammar). Some mediators, such as TSIM-
MIS (Chawathe et al. 1994) and ARANEUS (Atzeni,
Mecca, & Merialdo 1997) depend on humans to cre-
ate the grammar rules required to extract information
from a page. However, there are several reasons why
this is undesirable. Writing extraction rules is tedious,
time consuming and requires a high level of expertise.
These difficulties are multiplied when an application
domain involves a large number of existing sources or
the sources change over time.

In this paper, we introduce a new machine learning
method for wrapper construction, and, based on our
approach, unsophisticated users can painlessly turn
Web pages into relational information sources. The
next section introduces a formalism describing semi-
structured Web documents, and then Sections 3 and
4 present a domain-independent information extractor
that we use as a skeleton for all our wrappers. Section
5 describes STALKER, a supervised learning algorithm
for inducing extraction rules, and Section 6 presents a
detailed example. The final sections describe our ex-
perimental results, related work and conclusions.

74

From: AAAI Technical Report WS-98-14. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

ByCuhdno J By Food Ranking j Bes~Deele j

....... 2e! eL.....!.... ~ ~.......~ =?~....i
Killer Shrimp
Seafood
4000 Co/fax Ave., .~tdio 0~ 878-508-157,2
5Z3 Wa~/ngton ,~1",, Marfna de~ Re] 31,2-578-ZZ93
4,23 N. PCH, Redondo Shores $hopp/ng Cir., Redondo Beach 3t,2-798-00,28

[] "Heaven for shrimpophilos", since this chain serves "nothing but"; they come peeled
or unpeeled, cooked in a bayou butter and pepper sauce and served (on paper plates)
with bread, rico or spaghetti by "punk rock" staffers; it’s a "messy, spicy’, "dunkor’s
delight" with some of the best shrimp "west of the Crescent City,"
Back to ~4Dhabetlcal usa

Choose a Location:

Hom~ I Search I KeY I Tell Us

LA Restaurants

 WEEKLY
Seer~ Cxite~: Memo: kil[~: =dn’br~ Locedon: Any Coiohxe: Amy

KILLER SHRIMP
~3 We~mt Biwt., ~eebm del ltey

Food for the gods- -kesh, sweet, tender, succulent, big Loei~iena olvimp floe6ng in a
heavenly spicy sauce. You went it, Kmer’o got it, you des e,,va it. Around for e~t years,
Killer Slu~p i~ a popd~ hot opot end has bzcome one of L.A.’s landmark d~ing
expe:dences --tom~sts end nadv~ all seem to know that this is the place to satisfy eravmgs
for the reel thing. Indoor end pedo dining. Ltmch end dinner seven days. Beer end wine;
takeout; peeking. MC, V.

KILLER SHRIMP
413 N. Pedff¢ Coas(Hwy., Redondo Beacl~
010) ~-ooos

Food for the gods-- flesh, otTest, tender, =.cculent’ big L ouisiena ohrimp fles~ng in a
h esve.~/spicy o auto. You want it’ Killer’s got it, you des erva it. Around for eight yoees,
Killer Sbx~np is a popular hot opot end has become one of LA.’s landmark dining
experiences--tourists endaadves ell seem to know ~at thla is th* piece to satisfy aavbgs
for the reed thing. Indoor and patio dining Lunch and dinner seven days. Bees and wine;
takeout; perk~g. MC, V,

KILLER SHRIMP
4080 Codex Ave., Sttu~o C~F

Food for ~e gods--~esh, swe~t’ tendez, ouccelent’ big Louisien~ slu~mp floa~g in a
he ave.xOy spicy sauce. You went it, Killer’s got it. you deserve it. Around for eight years,
Y~ee Shrimp is a popular hot spot cad has become one of L.A.’s landmark dk~g
experiences--tourists and natives ell seem to know that 0~io is the place to oa~s~/aavings
to: the.. reel d’dng. Indoor ead patio dinmS. L~me.h end dinner seven days. B~.x end wine;
takeout; perking. MC, V.

Figure 1: Restaurant Descriptions provided by Zagat Guide and LA-Weekly

2 Describing the Content of a Page

Because Web pages are intended to be human readable,
there are some common conventions that are used to
structure HTML pages. For instance, the information
on a page often exhibits some hierarchical structure.
Furthermore, semi-structured information is often pre-
sented in the form of lists or tuples, with explicit sep-
arators used to distinguish the different elements. In
order to describe the structure of such pages, we have
developed the embedded catalog (£C) formalism, which
can be used to characterize the information on most
semi-structured documents.

The 8C description of a page is a tree-like structure
in which the leaves represent the information to be ex-
tracted. Each internal node of the £C tree denotes
either a homogeneous list (such as a list of names)
a heterogeneous tuple (e.g. a 3-tuple consisting of
name, address, and serial number). We use the terms
items and primitive items to designate the nodes and
the leaves of the tree, respectively. For instance, Fig-
ure 2 displays the EC description of the LA-Weekly
pages. At the top level, each page is a list of restau-
rant descriptions. Each restaurant description is a 5-
tuple that contains four primitive items (i.e., name,
address, phone, and review) and an embedded list of
credit cards.

LIST(LA-Weekllr restaurants)

TUPLE(LA-Wookly restaurant)

name address phone review LZSTlCrediCCards)

Figure 2: £C description of LA-Weekly pages.

3 Extracting Information from a Doc-

ument

In our framework, a document is a sequence of tokens
(e.g., words, numbers HTML tags, etc.). Given an
description of a document, a query specifying a set of
items to be extracted from that document, and a set of
extraction rules for each item in £C, a wrapper must
generate the answer to the input query. A key idea
underlying our work is that the extraction rules can be
based on "landmarks" that enable a wrapper to locate
a item x within the content of its parent item p.

For instance, let us consider the two restaurant de-
scriptions presented in Figure 3. In order to identify
the beginning of the restaurant name within a restau-
rant description, we can use the rule

75

<TITLE>LA Weekly Restaurants</TITLE><~Ir~>

Name: killer shrimp Location:
Any

 Cuisine: any

KILLER SHRIMP
 523 Washington
, Marina del Rey
<p> (310) 578-2293
<BLOCKQUOTE> Food for the gods--fresh, sweet,
tender, succulent, big Louisiana shrimp ...
Lunch and dinner seven days. Beer and wine;
takeout; no reservations. MC, V, AE, DIS.

CrITLE>LA Weekly Restaurants<ffrlTLE><Ch[]Thn>

Name: Hop Li Location: LA

 Cuisine: chinese

HOP LI
 10974 Pico Blvd., West
L.A.
<i> No phone number.</i><BLOCKQUOTE>
This branch of a venerable Chinatown seafood house
brings Hong Kong-style seafood to the Nestside ...
No alcohol; takeout; reservations accepted. V, AE.

Figure 3: Fragments of two LA-Weekly answer-pages.

1%1 = SkipTo(<Ba>
) SkipTo(

The rule 1%1 has the following meaning: start from
the beginning of the restaurant description and skip
everything until you find two consecutive
 tags.
Then, again, skip everything until you find a tag.
An alternative way to find the beginning of the restau-
rant name is the rule R2 = SkipTo(
 HtmlTag)
SkipTo(), which uses the wildcard _HtmlTag_ as a
placeholder for any HTML tag. Similarly, the rules
Skip To(
) and SkipTo(_HtmlTag_) iden-
tify the address, while the rule SkipTo(<BLOCKQUOTE>)
finds the beginning of the review. We say that the
rules above match the examples in Figure 3 because
all the arguments of the SkipTo0 functions are found
within the restaurant description. By contrast, the
rule SkipTo(<HTML>) is said to reject both examples
because the restaurant descriptions end before the rule
matches.

The phone-number item is more difficult to extract
because the information source uses two different for-
mats: based on the phone number availability, the
phone information is preceded either by <p>, or by
<i>. In this case, the beginning of the phone-number
item can be identified by the disjunctive rule EI-
THER Skip To(<p>) OR Skip To(<i>) (a disjunctive rule
matches if any of its disjunct matches I).

The examples above describe extraction rules that
are used to locate the beginning of an item x within
its parent p. If the item x is a list, then a second
step is necessary to break out the individual members
of the list. For example, to extract the credit card
information, we first apply an extraction rule to get the
list of credit cards MC, V, AE, DIS; then we repeatedly
use the iteration rule SkipTo(,) to reach the start of
each credit card. More formally, an iteration rule can
be repeatedly applied to a list L in order to identify
each element of L.

Our approach to information extraction is based on
a very simple idea: in order to extract a set of items
X from a page, the wrapper starts from the root and
goes iteratively deeper into the gC tree. For each level

Iif more than one disjunct matches, and the two dis-
juncts disagree on the starting position, then we choose
nondeterministically among the matching disjuncts.

l in the tree, the wrapper extracts each item that is an
ancestor of an item from X. Our approach has two
important properties. First, the extraction process is
performed in a hierarchical manner (i.e., each item
is extracted from its parent p). The hierarchical ap-
proach is beneficial when the structure of the page has
some variations and the extraction ofp from Parent(p)
requires a disjunctive rule. Under such a scenario, the
process of extracting an item x from p is not affected
by the complexity of the process of extracting p from
Parent(p). Second, our approach does not rely on
there being a fixed ordering of items within a tuple.
We decided against relying on item ordering because,
in our experience, about 40% of the Web sources we
examined either had missing items or allowed items to
occur in different orders.

4 Extraction Rules as Finite Automata

We now introduce two key concepts that can be used
to define extraction rules: landmarks and landmark au-
tomata. In the rules described in the previous section,
each argument of a SkipTo0 function is a landmark,
while a group of SkipToOs that must be applied in a
pre-established order represents a landmark automa-
ton. In other words, any extraction rule from the pre-
vious section is a landmark automaton.

In this paper, we focus on a particular type of land-
mark: the linear landmark. A linear landmark is
described by a sequence of tokens and wildcards (a
wildcard represents a class of tokens, as illustrated
in the previous section, where we used the wildcard
HtmlTag). Linear landmarks are interesting for two
reasons: on one hand, they are sufficiently expressive
to allow efficient navigation within the £C structure of
the documents, and, on the other hand, as we will see
towards the end of this section, there is a simple way
to generate and refine landmarks during learning.

Landmark automata (L:.As) are nondeterministic fi-
nite automata in which each transition Si "--* Sj (i # j)
is labeled by a landmark li,j; that is, the transition
Si ",~ Sj takes place if and only if in the state Si the
input is a string s that is accepted by the landmark lij.
The Simple Landmark Grammars (S£:~s) are the class
of/:.As that correspond to the disjunctive rules intro-
duced in the previous section. As shown in Figure 5,

76

DI:
D2:
D3:
D4:

::W~lle:;:t~ark-’J.~g; res~Lv~ionssugges~od;all::credit:ca~ds ~ccep~ed.
full bar ; no reservations; m~or credit cards accepted.
full bar ; reservations accepted <i>no credit cards </i>.
beer ; valet parking ; reservations suggested <i>cash only </i>.

Figure 4: Four examples of simplified restaurant descriptions.

....)...

Figure 5: Definition of a k-disjunctive £A.

any SZ:G has the following properties:

- the initial state So has a branching-factor of k;

- it has exactly k accepting states A1, A2,..., Ak (i.e.,
the S/~G consists of k disjuncts);

- all k branches that leave the So are sequential £..As.
That is, from each state Si there are exactly two
possible transitions: a loop to itself, and a transition
to the next state.

- all non-looping transitions in the automaton are la-
beled by linear landmarks.

Now that we introduced the S/:G formalism, let us
consider the four simplified restaurant descriptions pre-
sented in Figure 4. It is easy to see that they have a
similar structure: available drinks, optionally followed
by parking information, followed by reservation and
credit card information. Despite the similarity of the
descriptions, writing an S/:~ that extracts the credit
card data is a non-trivial task for several reasons. First,
the formats for the restaurants that do and do not ac-
cept credit cards is slightly different. Second, there
is no unique landmark that immediately precedes the
credit card item in all four descriptions. Consequently,
even though the semicolon is the primary item sepa-
rator, there is no simple, semicolon-based extraction
rule for the credit cards. However, we can extract the
credit card data by using the disjunctive rule EITHER
SkipTo(<i>) oR SkipTo(reservations)SkipTo(;)

5 Learning Extraction Rules
In this section, we present an induction algorithm

that generates an 8/2~ rule identifying the start (or
end) of an item x within its parent p. The input to

STALKER(TrainingExs)
- AllDisjuncts = 0
- DO

- Terminals =GetTokens(TrainingExs) t9 Wildcards
- Disj =LearnDisjunct(TrainingExs, Terminals)
- AllDisjunets = AllDisjuncts t9 {Disj}
- TrainingExs = TrainingExs-CoveredCases(Disj)
WHILE TrainingExs ~ 0

- return SLG(AllDisjuncts)

LearnDlsjunct(TrainingExs, Terminals)
- Candidates = GetInltialCandidates(TrainingExs)
- WHILE Candidates ~ 0 DO

- D = BestDisjunct(Candidates)
- IF D is a perfect disjunct THEN return D
- Candidates =(Candidates- {D})U

UteTerminals ReflneDlsjunct(D, t)
- return best disjunct

Figure 6: The STALKER algorithm.

the algorithm is a set training examples, where each
training example consists of a sequence of tokens p and
an index indicating where x starts (or ends) in

The induction algorithm, called STALKER, is a cov-
ering algorithm. It begins by generating a simple rule
that covers as many of the positive examples as possi-
ble. Then it tries to create a new rule for the remaining
examples, and so on. For instance, let us consider the
training examples D1, D2, D3, and D4 from Figure 4
(in each training example, the italicized token denotes
the start of the credit card information). As there is
no unique token that immediately precedes the credit
card information in all four examples, the algorithm
generates first the rule 1%1::= Skip To(<i>), which has
two important properties:

- it accepts the positive examples in D3 and D4;

- it rejects both D1 and D2 (i.e., ILl does not generate
a false positive for D1 and D2).

During a second iteration, the algorithm considers
only the uncovered examples D1 and D2, and it gener-
ates the rule 1%2::= SkipTo(reservations) SkipTo(;).
In Figure 7, we show the disjunctive rule EITHER 1%1
oR 1%2, together with a more general rule that replaces
the landmark <i> by the wildcard _HtmlTag_

Figure 6 presents the STALKER learning algorithm.
To keep the presentation simple, the figure describes
only how STALKER identifies the beginning of x within
p. The complementary task of finding the end of x can
be easily solved based on the symmetry of the substring

77

..... ,,oo " -F7

Figure 7: Two 2-disjunctive rules for the credit card information.

identification problem. That is, given a substring X of
a string P, finding a rule that identifies the start of X
by looking leftward from the beginning of P is similar
to finding a rule that identifies the end of X by looking
rightward from the end of P. If we think of the strings
X and P as the contents of the items of x and p, it
follows that by simply "reversing" the strings X and
P, we can use STALKER to find a rule that identifies
the end of x within p. For instance, the end of the
address in Figure 3 can be found by applying the rule
SkipTo(<SR>) to the "reversed" restaurant descriptions
(i.e., the last token becomes the first one, and vice-
versa).

In order to create an extraction rule, STALKER has
to induce both the topology of the S~!7 (i.e., the num-
ber of disjuncts, and the number of landmarks in each
disjunct) and the landmarks that label the SL~’s tran-
sitions. STALKER’S input consists of pairs (Tokensi,
Starti), where Tokensi is the sequence of strings ob-
tained by tokenizing Pi (i.e., the i-th instance of p),
and Tokensi[Starti] is the token that represents the
start of x within Pi. A sequence S ::= Tokensi[1],
Tokensi[2], ..., Tokensi[Starti- 1] (i.e., all tokens
that precede the start of x in 1°/) represents a posi-
tive example, while any other sub-sequence or super-
sequence of S represents a negative example. STALKER
tries to generate an S/~ that accepts all positive ex-
amples and rejects all negative ones.

STALKER is a typical sequential covering algorithm:
as long as there are some uncovered positive examples,
it tries to learn a perfect disjunct (i.e., a sequential Z:.A
that accepts only true positives). When all the posi-
tive examples are covered, STALKER returns the solu-
tion, which consists of an 8£~ in which each branch
corresponds to a perfect disjunct.

The function LearnDisjunct 0 is a greedy algo-
rithm for learning perfect disjuncts: it generates an
initial set of candidates and repeatedly selects and re-
fines the best candidate until either it finds a perfect
disjunct, or it runs out of candidates. To find the best
disjunct in Candidates, STALKER looks for a disjunct
D that accepts the largest number of positive exam-
ples. In case of a tie, the best disjunct is the one that
accepts fewer false positives.

Each initial candidate is a 2-state landmark au-
tomaton in which the transition So "-~ $1 is labeled
by a terminal in the set of initial landmarks IL =

{tl3i, Tokensi[Starti - 1] = t} I.J{w E Wiidcardsl3t E
IL, Matches(w, t)} That is, a member of IL is either
a token t that immediately precedes the beginning of
x, or a wildcard that "matches" such a t. The ra-
tionale behind the choice of IL is straightforward: as
disjuncts that are not ended by IL terminals cannot
accept positive examples, it follows that STALKER can
safely ignore them.

In order to perform the landmark induction,
STALKER uses two types of terminals: tokens and wild-
cards. The former are the tokens that occur at least
once in each uncovered positive example, while the lat-
ter are one of the following placeholders: Numeric, Al-
phaNumeric, Alphabetic, Capitalized, AllCaps, Html-
Tag, and Symbol (i.e., any 1-character token that is not
a letter or a number). The terminals must be recom-
puted after each invocation of LearnDisjunct 0 be-
cause the cardinality of the uncovered cases decreases,
and, consequently, the number of tokens that occur in
each uncovered positive example may increase.

Intuitively, RefineDisjunct0 tries to obtain (po-
tentially) better disjuncts either by making its land-
marks more specific (landmark refinements), or by
adding new states in the automaton (topology refine-
ments). Given a disjunct D, a landmark I from D, and
a terminal t, a landmark refinement makes I more spe-
cific by concatenating t either at the beginning or at
the end of 1. By contrast, a topology refinement leaves
the existing landmarks unchanged and modifies only
the number of states. That is, if D has a transition
A ---* B labeled with the landmark 1, a topology refine-
ment adds a state S by replacing A -,-* B with A ",-* S
(labeled by t), and S ",-* B (labeled by

6 Example of Rule Induction

Let us consider again the four restaurant descriptions
from Figure 4. In order to generate extraction rules
for the start of the credit card information, we invoke
STALKER with the training examples (D1, D2, D3,
D4 }. In the first DO...WHILE iteration, GetTokens0
returns { ; reservations } because only the semicolon
and the word reservations occur at least once in each
positive example. The function LearnDisjunct 0 is
invoked with two parameters: the training examples
and the terminals { ; reservations _Symbol_ _Word_
} (i.e., the two tokens above together with all the
wildcards that "match" them). LearnDisjunct0 corn-

78

j~ /. lj ~\

i R2 (!i0))- =i R3 i~-Symb°l.~L~-~
...................................... °

Figure 8: Initial candidate-rules generated in the first DO...WIIILE iteration.

Initial Candidates: R5 i(O i)- > 1 1
,_j

Topology Refinements -

r~

R7 (! 0))----~ 1)--~? 2 1

...

,. reservations ~ ;
R8 ’c 0)) >(1)-.--~ 2 ’,

............ ?..~.~c-.: ..

L"-=~:~, _Symbol_ ~<~ ,
R9 ,(0 !)-----~ 1)-~

Landmark-Refinements

¯ o

Rll ~O’i’) ’ ’ -~

.;’~<~;:reservations ;

L~ Symbol_ ;

R14 ~) Word ; >~

Figure 9: Second DO...WHILE iteration.

R6

putes the set IL = { ; <i> _Symbol_ _H~mlTag. } ,
which consists of the tokens that immediately precede
the start of the credit card item and all the wildcards
that "match" them (the corresponding initial candi-
dates are showed in Figure 8). The rules R2 and R4
represent perfect disjuncts: they both recognize the
start of the credit card item in D3 and D4 and reject
D1 and D2. Consequently, LearnDisjunct 0 does not
have to refine the initial candidates, and it just returns
both R2 and R4.

In the second DO... ~4HILE iteration,
LearnDisjunct0 is invoked with the following param-
eters: the uncovered training examples { D1, D2)
and the terminals { ; reservations _Symbol_ _Word_ } .
LearnDisjunct0 finds the set IL = { ; _Symbol_ } and
generates the initial candidate-rules R5 and R6 (see
Figure 9). Neither candidate-rule is better than the

other one because both accept the same false positives:
"wine ;" and "full bar ;", respectively. Consequently,
LearnDisjunct0 randomly selects the rule to be re-
fined first - say R5. By refining R5, STALKER creates
the topological refinements R7, RS, Rg, and R10, to-
gether with the landmark refinements Rll, R12, R13,
and R14. LearnDisjunct 0 returns the perfect dis-
junct R8, which covers both remaining examples D1
and D2. At this moment, all four training examples are
covered by at least one rule, and, consequently, there
is no need for additional iterations. FinMly, STALKER

completes its execution by returning two equivalent
disjunctive rules: EITHER R2 OK R8 and EITHER R4
OR R8 (see Figure 7).

79

Source URL i~ Pt Missings Unordered ¯ WIISN STALKER

Okra okra.ucr.edu 4 4
BigBook www.bigbook.com 6 4
Address Finder www.iaf.net 6 ¢
Quote Server qs.secMp.com

4
18 4

LA Weekly www.laweekly.com 5 4 4

Table 1: Illustrative Web-based information sources.

Source Training Examples Number of Refinements CPU time
Okra 2 4892 30
BigBook 4 4026 2:25
Address Finder 5 10946 9:02
Quote Server 4 334349 39:10
LA Weekly 4 4946 1:08

Table 2: Experimetal data for the wrapper induction task.

7 Experimental Results
In Table 1, we present five illustrative sources that
were successfully wrapped based on the extraction
rules learned by STALKER. The first four sources were
taken from Kushmerick’s thesis, for purposes of com-
parison. These four sources were relatively hard for
the WIEN system (Kushmerick 1997). Specifically,
the Address Finder and the Quote Server were beyond
WIEN’s wrapping capabilities, while Okra and BigBook
required the largest number of training cases. We also
show our results for LA Weekly, which can not be
wrapped by Wren because it has both missing items
and multiple levels of embedding. For each source, Ta-
ble 1 provides the following information: the URL2, the
number PI of primitive items per page, and whether
it allows missing or unordered items.

In Table 2 we present the experimental data col-
lected while using STALKER to learn the extraction
rules for the sources above. For each source, we pro-
vide the following information: the number of training
examples, the total number of refinements performed
during the learning process, and the CPU time re-
quired to learn the rules

Based on the data in Table 2, we can make several
observations. First, STALKER needs only a few train-
ing examples to wrap Okra and BigBook, as opposed
to WIEN, which requires almost two orders of magni-
tude more examples. Second, even for hard sources like
the Address Finder and the Quote Server, STALKER
requires extremely few training cases (5 and 4, respec-
tively). Finally, STALKER is getting slower as both
the number of necessary refinements and the number
of primitive attributes increase. Even though 39 min-
utes is not a prohibitive running time (after all, the
only alternative would consist of manually writing the
rules, which would take significantly longer), we hope

2Even though the Okra service has been discontinued,
there is a large repository of cached pages at the URL
http: / / www.cs, washington.edu /homes /nick /research /
wrappers/okra-list.ht ml

to dramatically speed up the learning process by using
simple unsupervised learning methods to detect poten-
tial landmarks (i.e., the regularities on the Web page)
prior to the rule induction phase.

8 Related Work
With the recently increasing interest in accessing Web-
based information sources, a significant number of
research projects deal with the information extrac-
tion problem: Ariadne (Knoblock el al. 1998), WreN
(Kushmerick 1997), TSIMMIS (Chawathe el al. 1994),
ARANEUS (Atzeni, Mecca, & Merialdo 1997) and
Knowledge Broker (Chidlovskii, Borghoff, & Cheva-
lier 1997). All these research efforts rely on one of the
following wrapper-generation techniques: manual, ex-
pert system based, or inductive. As several projects
(e.g., TSIMMIS, Knowledge Broker, ARANEUS) rely on
manual wrapper generation (i.e., the extraction rules
are written by a human expert), there is a wide variety
of such approaches, from procedural languages (Atzeni
& Mecca 1997) to pattern matching (Chawathe el al.
1994) to LL(k) grammars (Chidlovskii, Borghoff,
Chevalier 1997). Usually, the manual approaches of-
fer an expressive extraction language, and they repre-
sent an acceptable approach when there are only a few
relevant sources, and, furthermore, the format of the
sources rarely changes. When the number of applica-
tion domains increases, and each domain uses several
sources that might suffer format changes, a manual
approach becomes unacceptable because of the high
volume of work required to update the wrappers.

At the other end of the spectrum, the inductive
wrapper generation techniques used by Wren (Kush-
merick 1997) is better fit to frequent format changes
because it relies on learning techniques to induce the
extraction rules. While Kushmerick’s approach dra-
matically reduces the time required to wrap a source,
his extraction language is significantly less expressive
than the ones provided by the manual approaches.
Finally, Ashish and Knoblock ((Ashish & Knoblock

8O

1997)) made a compromise between the manual and
the inductive approaches by introducing an expert sys-
tem that uses a fixed set of heuristics of the type "look
for bold or italicized strings".

The STALKEI~-based approach presented in this pa-
per combines the expressive power of the manual ap-
proaches with the wrapper induction idea introduced
by Kushmerick. Our S/:G language is more expressive
than the one used by TSIMMIS, which is the equiva-
lent of the 1-disjunctive £.4 that does not use wild-
cards. Similarly, the WIEN extraction language is a
1-disjunctive/:.4 that has exactly two states and does
not allow the use of wildcards.

There are several other important differences be-
tween STALKER and WIEN. First, as WIEN learns the
landmarks for its 2-state Z:‘4s by searching common
prefixes at the character level, it needs more train-
ing examples than STALKER. Second, given a tuple
p with n items al, a2,..., an, WIEN narrows the search
space by learning rules that extracts ai+l starting from
the end of al. It follows that WIEN can not wrap
sources in which the order of the items as is not fixed,
or the pages may have missing items (e.g., the Inter-
net Address Finder and the Quote Server). Last but
not least, STALKER can handle EC trees of arbitrary
depths, while WIEN can generate wrappers only for
sources of depth three (i.e., a single list of tuples),

9 Conclusions and Future Work

In this paper, we presented STALKER, a wrapper in-
duction algorithm for semi-structured, Web-based in-
formation sources. The rules generated by STALKER
are expressed as S£:Gs, which are a generalization of
the extraction languages currently in use. Based on
just a few training examples, STALKER is capable of
learning extraction rules from documents with an arbi-
trary number of embedding levels, and the experimen-
tal results show that our algorithm generates correct
extraction rules for information sources that can not
be wrapped based on other approaches.

The primary contribution of our work is to turn a
potentially hard problem - learning extraction rules -
into a problem that is extremely easy in practice (i.e.,
typically very few examples are required). The number
of required examples is small because the SC descrip-
tion of a page simplifies the problem tremendously: as
the Web pages are intended to be human readable,
the ~:C structure is generally reflected by actual land-
marks on the page. STALKER merely has to find the
landmarks, which are generally in the close proximity
of the items to be extracted. In other words, given our
S/:~ formalism, the extraction rules are typically very
small, and, consequently, they are easy to induce (in
the worst case, the algorithm is exponential in length
of the parent item).

In terms of future research, we plan to continue our
work on several directions. First, we plan to use un-
supervised learning in order to narrow the landmark

search-space. Second, we would like to investigate al-
ternative /:‘4 topologies that would improve the ex-
pressiveness of the extraction language. Third, we plan
to provide PAC-like guarantees for our wrapper induc-
tion algorithm.

References

Ashish, N., and Knoblock, C. 1997. Semi-automatic
wrapper generation for internet information sources.
Proceedings of Cooperative Information Systems.

Atzeni, P., and Mecca, G. 1997. Cut and paste. Pro-
ceedings of 16th ACM SIGMOD Symposion on Prin-
ciples of Database Systems.

Atzeni, P.; Mecca, G.; and Merialdo, P. 1997. Semi-
structured and structured data in the web: going back
and forth. Proceedings of ACM SIGMOD Workshop
on Management of Semi-structured Data 1-9.

Chawathe, S.; Garcia-Molina, H.; Hammer, J.; Ire-
land, K.; Papakonstantinou, Y.; Ullman, J.; and
Widom., J. 1994. The tsimmis project: integration
of heterogeneous information sources. Proceedings of
lOth Meeting of the Information Processing Society of
Japan 7-18.
Chidlovskii, B.; Borghoff, U.; and Chevalier, P. 1997.
Towards sophisticated wrapping of web-based infor-
mation repositories. Proceedings of 5th International
RIAO Conference 123-35.

Doorenbos, R.; Etzioni, O.; and Weld, D. 1997.
A scalable comparison-shopping agent for the world
wide web. Proceedings of Autonomous Agents 39-48.

Kirk, T.; Levy, A.; SAgiv, Y.; and Srivastava, D.
1995. The information manifold. AAAI Spring Sym-
posium: Information Gathering from Heterogeneous
Doistributed Environments 85-91.

Knoblock, C.; Minton, S.; Ambite, J.; Ashish, N.;
Margulis, J.; Modi, J.; Muslea, I.; Philpot, A.; and
Tejada, S. 1998. Modeling web sources for informa-
tion integration. Accepted at AAAI 1998.
Kushmerick, N. 1997. Wrapper induction for informa-
tion extraction. Ph.D. Dissertation, Department of
Computer Science and Engineering, Univ. of Wash-
ington. Technical Report UW-CSE.97-11-O~.

81

