
Wrapper induction: Efficiency and expressiveness
(Extended abstract)

NICHOLAS KUSHMERICK
School of Computer Applications, Dublin City University

nick@compapp.dcu.ie

Abstract

Recently, many systems have been built that auto-
matically interact with Internet information resources.
However, these resources are usually formatted for use
by people; e.g., the relevant content is embedded in
HTML pages. Wrappers are often used to extract a
resource’s content, but hand-coding wrappers is te-
dious and error-prone. We advocate wrapper induction,
a technique for automatically constructing wrappers.
We have identified several wrapper classes that can be
learned quickly (most sites require only a handful of ex-
amples, consuming a few CPU seconds of processing),
yet which are useful for handling numerous Internet re-
sources (70% of Surveyed sites can be handled by our
techniques).

Introduction
The Internet presents a stunning variety of on-line in-
formation resources: telephone directories, retail prod-
uct catalogs, weather forecasts, and many more. Re-
cently, there has been much interest in systems (such
as software agents (Etzioni & Weld 1994; Kwok & Weld
1996) or information-integration systems (Chawathe et
al. 1994; Kirk et al. 1995)) that automatically access
such resources, manipulating their content on a user’s
behalf.

Unfortunately, this content is usually formatted for
people rather than machines, and no provision is made
for automating the process. Specifically, the content is
often embedded in an HTML page, and an information-
integration system must extract the relevant text, while
discarding irrelevant material such as HTML tags or
advertisements.

Fig. 1 provides an example of the sort of information
resource with which we are concerned. When the form
in (a) is submitted, the resource responds as shown
(b), which was rendered from the HTML source Pcc
shown in (c). A system seeking information about coun-
tries and their country codes must extract from Pcc the
label Lcc, shown in (d). A page’s label represents the
relevant content. One way to perform this extraction
task is to invoke the special-purpose wrapper proce-
dure ccwraPLR, shown in (e). ccwrapLa requires that the
site’s responses adhere to a uniform formatting conven-

tion: countries must be rendered in bold, while country
codes must be in italics, ccwrapT.a operates by scanning
the raw HTML document for particular strings (’’,
’’, ’<I>’ and ’</I>’) that identify the parts of the
raw HTML document to be extracted.

Where does the ccwrapLR wrapper come from? Few
Internet sites publish their formatting conventions, and
thus the designer of an information-gathering system
must construct such a wrapper for each resource. Un-
fortunately, this hand-coding process is error-prone and
time-consuming.

As an alternative, we advocate wrapper induc-
tion ((Kushmerick 1998; 1997; Kushmerick, Weld,
Doorenbos 1997); see also (Ashish & Knoblock 1997)),
a technique for automatically learning wrappers. Wrap-
per induction involves generalizing from a set of exam-
ples of a resource’s pages, each annotated with the text
fragments to be extracted. For example, given a set of
pairs such as (Pcc, Lcc~, our wrapper induction algo-
rithm generates ccwraPLR.

This extended abstract merely summarizes our work.
For details, see (Kushmerick 1998; 1997; Kushmerick,
Weld, & Doorenbos 1997).

Evaluation
In machine-learning applications, the key to effective
learning is to bias the learning algorithm. In this con-
text, biases correspond to particular wrapper classes.
We have identified six such classes. For example,
ccwrap~R is an instance of the Left-Right (LR) class.
For each class YY, we present an algorithm learnw for
learning wrappers in class 142. As we are interested in
tradeoffs between the classes, we compare them in sev-
eral ways:

I - EXPRESSIVENESS: How useful are the classes for
handling actual Internet resources? To what extent can
sites handled by one class be handled by another? We
answer these questions using a combination of empirical
and analytical techniques.

I-1 - COVERAGE: We conducted a survey of actual
Internet sites, to determine which can be handled by
each class. To summarize, our classes can handle 70%
of the sites in total; see Fig. 9.

82

From: AAAI Technical Report WS-98-14. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

(b)

[;I~ Nets~pe: So~ Country Cod,, II I’~1mI!

Congo 242
Egypt 20
Belize 501
Spain 34

<HTML><TITLE>Some Country Codes</TITLE><BODY>
Congo <I>242</I>

Egypt <I>20</I>
 (d)(c) Pea -- Bellze <I>501</I>

Spain <I>34</I><BK>
</B01)Y></HTML>

procedure ccwrapLR(page P)
while there are more occurrences in P of ’’

for each (£a,r~) 6 {(’’,’’I, .(’<I>’, ’</I>’)}(e) scan in P to next occurrence of ~k; save position
scan in P to next occurrence of rk; save position

return extracted pairs {..., (country, code),...)

(’Congo’, ’242’), }

(’Egypt’, ’20’),
Lcc = (’Belize’, ’501’),

(’Spain’, ’34’)

as start of k~ attribute
as end of k~ attribute

Figure 1: (a) A fictitious Internet site providing information about countries and their telephone country codes; (b)
an example response page; (c) the HTML page Pcc from which (b) was rendered; (d) Pcc’S label Lcc; and (e) the
ccwrsPLR procedure, which generates Lcc from Pcc.

L2 - RELATIVE EXPRESSIVENESS: A more formal
question is the extent to which wrappers in one class
can mimic those in another. The relationships turn
out to be rather subtle; see Theorem 1.

II - EFFICIENCY: Our expressiveness results demon-
strate the usefulness of our wrapper classes, but can
they learned quickly? We decompose this question into
two parts: how many examples are needed, and how
much processing is required per example?

ILl - SAMPLE COST: Intuitively, the more exam-
ples provided to the learner algorithm, the more likely
that the learned wrapper is correct. We assessed the
number of examples required both empirically and
analytically.

II-l-a - EMPIRICAL RESULTS: We measured the
number of examples needed to learn a wrapper that
performs perfectly on a suite of test problems. To
summarize, we find that 2-3 examples are needed
on average; see Fig. 9.
II-l-b - SAMPLE COMPLEXITY: We also devel-
oped a PAC (Kearns & Vazirani 1994) model of our
learning task, which formalizes the intuition that
more examples improves learning. We have derived
bounds on the number of examples needed to en-
sure (with high probability) that learned wrappers
are (with high probability) correct.

II-2 - INDUCTION COST: While sample cost mea-
sures the number of examples required, we are also
concerned with the per-example processing time.

II-2-a- EMPIRICAL RESULTS: When tested on ac-
tual Internet sites, our learning algorithms usually

require less than one CPU second per example; see
Fig. 9.
II-2-b - TIME COMPLEXITY: We have also per-
formed a complexity analysis on the [ear,)~ algo-
rithms. As stated in Theorem 2, most of our wrap-
per classes can be learned in time that grows as
a small-degree polynomial of the relevant problem
parameters.

The wrapper induction problem

We begin with a formal statement of the learning task
with which we are concerned. As shown in Fig. 2, an
information resource ,~ is a function from a query Q
to a response page P. Query Q describes the desired
information, in terms of an expression in some query
language Q. As we are concerned mainly with the re-
sponses, we ignore Q.

Response page P is the resource’s answer to the
query. We take P to be a string over some alphabet
~. Typically, ~ is the ASCII character set, and the
pages are HTML documents. For example, earlier we
saw the query response Pcc in Fig. l(c). Note that our
techniques are motivated by, but do not rely on, HTML;
our system does not use any HTML-specific knowledge
or constraints.

We adopt a simple relational data model. Associated
with egch information resource is a set of K attributes,
each representing a column in the relational model. In
the example, K = 2.

A tuple is a vector (A~,..., AK) of K strings; Ak
~* for each k. String A~ is the value of tuple’s k~ at-
tribute. Tuples represent rows in the relational model.

83

Figure 2: A simple model of information extraction: resources map queries to pages, and wrappers map pages to
labels.

Page Pcc’S label comprises four tuples, the first of which
is (’Congo’, ’242’).

The label of a page is the set of tuples it contains. For
example, the label Lcc of the example country/code
page is shown in Fig. l(d). The symbol L: in Fig.
refers to the set of all labels.

A wrapper W is a function from a page to a label;
the notation W(P) = indicates that th e result of ap-
plying wrapper W to page P is label L. At this level
of abstraction, a wrapper is simply an arbitrary proce-
dure. Of course, we will devote considerable attention
to particular classes of wrappers. A wrapper class)4; is
simply a set of wrappers.

Finally, we are in a position to state our task: we
want to learn a wrapper for information resource S,
and we will be interesting in wrappers from some class
)4;. The input to our learning system is a sample of
$’s pages and their associated labels, and the output
should be a wrapper W E)4;. Ideally, we want W to
output the appropriate label for all of S’s pages. In
general we can not make such a guarantee, so (in the
spirit of induction) we demand that W generate the
correct label for each training example.

More precisely, the wrapper induction problem (with
respect to a particular wrapper class W) is as follows:

input: a set E = {..., (Pn, L~),...} of examples,
where each Pn is a page, and each Ln is a label;

output: a wrapper W E]/Y, such that W(Pn)
Ln for every (P~, L,~) E

The LR wrapper class

The ccwrapLR procedure (Fig. l(e)) illustrates a "pro-
gramming idiom"--using left- and right-hand delim-
iters to extract the relevant fragments--that can be
generalized beyond the country/code site. The Left-
Right (LR) wrapper class is one way to formalize this
programming idiom. As shown in Fig. 3, LR is a gen-
eralization of ccwraPLR that allows (1) the delimiters
to be arbitrary strings (instead of the specific values ~1
= ’’, rt = ’’, etc.); and (2) any number K
attributes (A1,..., AK} (rather than exactly two).

The values of ~1, ..., ~K indicate the l_eft-hand at-
tribute delimiters, while rl, ..., rK indicate the right-
hand delimiters. For example, if eXeCLR is invoked
with the parameters K = 2, ~1 ~ ’’, rl = ’’,

~2 = ’<I>’ and r2 = ’</I>’, then execLR behaves like
ccwraoLR.

Notice that the behavior of ccwraPL R can
be entirely described in terms of four strings
(’’, ’’, ’<I>’, ’</I>’). More generally, any
LR wrapper for a site containing K attributes is

equivalent to a vector of 2K strings (~1, rt,..., ~K, rK),
and any such vector can be interpreted as an LR
wrapper.

The LR wrapper induction problem thus becomes one
of identifying 2K delimiter strings (ll, rl,..., ~K, rK),
on the basis of a set E = (..., (Pn, Ln),...} of examples.
Fig. 4 lists learnLR, an algorithm that solves problems
of this form.

{earnLR operates by considering each of the 2K de-
limiters in turn. For each delimiter, a set candsx of
candidates are considered, learnLR selects the first can-
didate satisfying validx.1

What are the candidates for each delimiter? Con-
sider ~1, which indicates the left-hand side of the first
attribute. ~1 must be a common suffix of the text frag-
ments that precede the first attribute. Thus the suffixes
of the shortest such fragment constitute a satisfactory
pool of candidates in which to find ~1. Candidates for
the other delimiters are obtained similarly.

Under what conditions are candidates valid? To en-
sure that the learned wrapper is consistent with every
example, we must ensure that when execLa searches for
~1, it finds the delimiter where it "belongs"--i.e., im-
mediately preceding each instance of the first attribute.
Thus tl must be a suffix of the text preceding each in-
stance of the first attribute, across all tuples in each ex-
ample. Moreover, ~1 must not occur "upstream" from
its correct position, and so we demand that !1 occur
only as a suffix of this text; we call such a suffix a
proper suffix.

Beyond LR
The LR wrapper class requires that resources format
their pages in a fairly simpler manner. Of course, not all
resources obey such restrictions. There may simply be
no LR wrapper that extracts just the relevant content.
For example, if page Pcc had contained bold text that is
not a country (perhaps in heading such as "...Some
Country Codes..."), then it is possible that no LR
wrapper exists which extracts the correct information
while not getting confused by this header.

HLRT. The Head-Left-Right-Tail (HLRT) wrapper
class is designed to avoid getting confused by distract-
ing material in a page’s head and tail. An HLRT wrap-

1Earlier, we stated that a label is a set of K-tuples. The
attribs, heads, tails and seps procedures in Fig. 4 are stated
using an equivalent but more precise notation. A label for
page P is a collection of integers b,,~,~ and era,k, where b,,~,k
is the index into P of the beginning of the m~ value for
attribute Ak, and em,k is the end index.

84

procedure execL~(wrapper (£1, rl,..., £K, rK), page P)
while there axe mare occaLreacesLu ~, of.t~
¯ for each (£~,rk) :[(~l,rl),...,(£K,rK)}

scan in P to next occurrence of £k; save position as s~ax~ o~ next value -~k
scan in P to next occurrence of rk; save position as end of next value Ak

return extracted tuples {..., (At,..., Ak),...}

Figure 3: The eXeCLR procedure specifies how an LR wrapper is executed.

procedure learnLR(_examples £)
for each 1 <: k < K

for each ~-E ca-ndst(k, £): if valid~(u, k, £) then £~ +-u and terminate this
for each l<k<K

for each u-E cS-ndsr(k, £): if validr(u, k, £) then rk ~-u and terminate this
return LP~ wrapper (£1, rl,..., £g, rg)

procedure candst(index k, examples t:)
return the set of all suffixes of the shortest string in neighborst(k, £)

procedure candsr(index k, examples £)
return the set of all prefixes of the shortest string in neighborsr (k, £)

procedure validt(candidate u, index k, examples E)
for each s E neighborst(k, £): if u is not a proper suffix_of s then return FALSE
if k = 1 then for each s E tails(C): if u is a substring of s then return FALSE
return TRUE

procedure valid~(candidate u, index k, examples £)
for each s ¯ attribs(k, £): if u is a substring oi s then return FALSE
for each s ¯ neighbor%(k, £): if u is not a prefix of s then return FALSE
return TRUE

procedure attribs(index k, examples
return U(p~,L~)ee{Pn[bm,k,em,k] [(.).., (bm,k,em,k),...) ¯ E

procedure neighborst(index kLexamples £)
if k = 1 then return seps(K, 5") U heads(C) else return seps(k-1,

procedure neighbors.(index k, examples £)
if k = K then seps(K, £) U tails(C) else return seps(k,

procedure heads(examples £)
return {P~[1,bt,1] [(P~, {((bl,l,el,1),...),...})

procedure tails(examples £)
return {Pn[eILI,K , [P~[] [(P~, {..., (..., (blLI,K,elLI,K))}) £}

procedure.seps(index k, examples £)
if k = K then

return U(V,~,L,~)e£{Pn[em,g,bm+l,1] [(...,(bm,K,em,g)) ¯ L,~ A [Ln[}
else

return U(p~,L,)~e(P,~[em,k,b,,~,~-l] [(..., (b,n,k,em,k),...)

Figure 4: The learnLR algorithm.

per is a vector of 2K + 2 strings (h, t, gt, rz,. ¯., £K, rK).
Like LR, HLRT wrapper use 2K delimiters to deter-
mine the left- and right-hand sides of the fragments to
be extracted. In addition, HLRT wrappers include a
h_ead delimiter h and a tail delimiter t. The wrapper
starts processing the page after h, and stops when t
is encountered. The exeCHLFtW procedure specifies the
execution of an HLRT wrapper, while [earnHLRW is the
class’s learning algorithm; see Fig. 5.

OCLR. The Open-Close-Left-Right (OCLR) wrap-
per class is designed to avoid distracting material be-
tween tuples. An OCLR wrapper is a vector of 2K + 2
strings (o,c,~l,rl,...,~K,rg). OCLR operates like
LR, except that the wrapper skips forward to the
opening delimiter o before processing each tuple, and
also skips forward to the closing delimiter c after each
tuple. The OCLR class is captured by the eXeCoCLR
and learnocLR procedures; see Fig. 6

HOCLRT. The HOCLRT class combines the func-
tionality of HLRT and OCLR; see Figure 7.

N-LR and N-HLRT. The classes discussed so far
concern "tabular" resources, but our techniques can be
applied to non-tabular resources as well. One example
of non-tabular structure is a nested page, in which at-
tributes are organized hierarchically, like a book’s table
of contents. The Nested-Left-Right (N-LR) and Nested-
Head-Left-Right-.Tall (N-HLRT) wrapper classes are
straightforward extensions of LR and HLRT to handle
nested resources.

Space limitations preclude further details. The point is
that we have defined several wrapper classes, all based
on the idea of delimiter strings. Each class)4; is spec-
ified in terms of the exec~v procedure, and the learnw
learning algorithms are derived by reasoning about the
behavior of execw. In each case, learner is similar to

85

procedure execHLRT(wrapper (h, ~, £1, rl, ¯ ¯ ¯, £K, rK), page
scan in P to the firs~ occurrence of h
while the next occurrence of t in P occurs before the next occurrence of £1

for each (£k,rk) E {(£1,rl),..., (~K,rK)}scan in P to the next occurrence of ~k;saVes.~ve position as start of next Ak

scan in P to the next occurrence of rk; position as end of next Ak
return extracted label {..., (A1,. . . , AK), ..

procedure learnHLRT(examples E)
(., rl, ¯ ̄ . , £K, rK) 4--/earni~R(C)
for each ull 6 candse(1, C)

for each Uh E candsh(Z)
for each ut E candst(C) .

if validl, h t.(utl, Uh. Ut, £) then
£1 +-u~’~ ~ li +-Uh, t ~--ut, and terminate these three loops

return HLRT wrapper (h, t, gl, rl,..., £g, rg)

Figure 5: The eXeEHLRT and learnHLRT procedures.

procedure execocLR(wrapper (o, %£1, rl,.: ¯ ¯, £K, rK), page P)
while there are more occurences o~ o in ~"

scan to the next occurence of o in P
for each (tk, rk).a {(£1, rl),..., (£g,

scan in P to the next occurence of £k; save position as start of next Ak
scan in P to the next occurence of rk; save position as end of next A~

scan to the next occurence of c in P
return extracted label {..., (A1,..., AK),...}

procedure learnocLR(examples E)
(’, rl,..., £K, rK) +- learnLR.(E)
for each u~1 E cands.t(1, E~

" for each Uo E candso c(~)
for each Uc E cand~o c(~)

if va de1 o ¢(utl, Uo’, u¢, £) then
£1 +-ue’~ ~ o+--uo, c+--uc, and terminate these three loops

return OCLR wrapper (o, c, £1, rl,..., gg, rK)

Figure 6: The execocLrt and learnocLR procedures.

procedure execHocLRT(wrapper (h, t, o, c, £z , rz , . . . , ~K , rK), page P)
scan to the first occurence i5 P of h
while the next occurence of o in P occurs before the next occurence of t

scan to the next occurence of o in P
for each (£k,rk).E {<£1,rl),..., (eK,rK)}

scan in P to the next occurence of_ £k; save poskion as start of next Ak
scan in P to the next occurence of rk; save position as end of next Ak

scan to the next occurence of c in P
return extracted label {..., (A1,..., AK),...}

procedure learnHocLRT(examples ~:)
(’, rl,..., £K, rK) +-- learnLR(E)
for each utl E candst(1,f..~

for each uo 6 candso c(~)
for each Uc E cand~;o, c(’E],

for each Uh E cand~h(~l.
for each u~ 6 candst(t:) _..

if validlz, h,~ (u~1, uh, u~, Uo, u¢, ~) then
£z ~--ut,, o ~--Uo, c <--u¢, h +-Uh, t +-u~ and terminate these five loops

return HOCLR.T wrapper (h, t, o, c, £1, r~, ..., £K, rK)

Figure 7: The e×eCHOCLRT and learnHocLRT procedures.

86

learnLR: a set of candidates candsx is identifying for
each d~Jimit~r~ and then ~.he r~mc~cla~es are evaluat, ec]
using validx.

However, there is an important difference. For LR,
all of the delimiters are mutually independent: the va-
lidity of a particular candidate for any delimiters does
not depend on the choice of any other delimiters. For
example, whether ’’ is valid for el does not depend
on the validity of ’</I>’ for r2.

This independence property does not hold for the
other five classes. Specifically, in HLRT, h, t, and gl
interact; o, c and ~1 interact in OCLR; h, t, o, c and
gl interact in HOCLRT; and all delimiters interact in
N-LR and N-HLRT. Thus rather than evaluating these
delimiters’ candidates separately, the learnw procedures
must enumerate all combinations of candidates for these
delimiters. An important theoretical implication of this
observation is that the classes differ with respect to how
quickly they can be learned; see Theorem 2.

Empirical results
Our learning algorithms have been fully implemented;
our experiments were run on a 233 MHz Pentium II
using Allegro Common Lisp. We ran our algorithms
on a collection of 30 Internet sites randomly selected
from "www.search.com". We retrieved a sample of each
site’s pages, and then repeated the following process 30
times. We split the sample pages into a training and
test set, and then provided each learning algorithm with
one training example, then two, then three, etc., until
the resulting wrapper performed perfectly on the test
pages.

Our empirical coverage, sample cost and induction
cost results are shown in Fig. 9. For each of the
30.6 = 180 site/class combinations, we indicate whether
the class can handle the site, and if so the number of
examples and CPU time needed for perfect learning.
With respect to coverage, our wrapper classes can han-
dle between 13% and 57% of the sites, with 70% of the
sites handled in total.

With respect to efficiency, in nearly all cases, just a
few examples axe required to learn a wrapper that works
perfectly on the test pages, and each example consumes
a fraction of a CPU second per example; overall, each
learning episode usually takes less than one second.

In some cases (a few sites for HLRT and HOCLRT,
and all sites for N-LR and N-HLRT), learnw run very
slowly. Specifically, while HOCLRT wrapper can usu-
ally be learned rapidly, the average HOCLRT pro-
cessing time in Fig. 9 must be taken with a grain of
salt, since two sites where our implementation performs
poorly are excluded.

There are two explanations for these results. First,
our learning algorithms require exponential time for N-
LR and N-HLRT; see Theorem 2. Second, wrapper
induction is essentially problem of search in the space
of possible wrappers. This space is huge, often contain-
ing 1015 potential wrappers. Our learning algorithms
implicitly use a particular search control policy, and

our negative results indicate that it probably could be
improved. (Our algorithms w~rk as well as they do be-
cause the space of potential wrappers usually contains
many valid wrappers.)

Analytical results
Relative expressiveness. We have explored the ex-
tent to which wrappers from one class can mimic
another. To formalize this investigation, let 11 =
{..., (P, L),...} be the set of all page/label pairs. Note
that a wrapper class is equivalent to a subset of II: a
class corresponds to those page/label pairs for which
a consistent wrapper exists in the class. The notation
II(PP) indicates the subset of 11 which can be handled
by PP: II(PP) = {(P,L) e II 3weww(e) = L}.

II(PP) is a natural basis on which to reason about
relative expressiveness: if II(PP1) C II(PP2), then PP2
more expressive than PP1, because any page that can
be wrapped by PP1 can also be wrapped by PP2- Our
analysis indicates that the relationships between the six
classes are fairly complicated:

THEOREM 1 The relationships between II(LR),
II(HLRT), II(OCLR) and II(HOCLRT), and between
II(LR), H(IILRT), II(N-LR) and II(N-HLRT), are as
shown in Fig. 8.

Induction time complexity. We are interested in a
complexity analysis of the [eamw algorithm. That is,
if £ = {..., (Pn, L,),...} is a set of examples, we are
interested in the time to execute [eamw(g), for each
class PP.

THEOREM 2 The running-time complexity o] the learn-
ing algorithms is as follows:

wrapper class complexity
LR 0 KM21g[2V2)

HLRT 0 KM2I£[4V6)

OCLR 0 KM41£12V6)

HOCLRT 0 KM4Ig[4V1°)
M2K [~[2K+1 v2K+2)N-LR 0 M2K+2[~]2K+3V2K+4)

N-HLRT O

where K is the number of attributes per tuple, [g[is the
number of examples, M = ~-’]~n [Ln[is the total number
of tuples, and V = maxn [Phi is the length of the longest
example.

While these bounds involve high degree polynomials,
our empirical results indicate that (except for execN.LR
and eXeCN.HLRT) our algorithms are usually fast in prac-
tice.

Discussion
We have defined the wrapper induction problem, and
identified a family of six delimiter-based wrapper
classes. Each class is defined in terms of a vec-
tor of delimiters used to identify the text fragments
to be extracted. Learning wrappers for each class

87

l-I

(a) (b)

Figure 8: The relative expressiveness of (a) LR, HLRT, OCLR and HOCLRT; and (b) LR, HLRT, N-LR
N-HLRT.

involves enumerating and validating a set of candi-
dates for each delimiter. We have demonstrated--
both empirically and analytically--that most of our
classes are reasonably useful, yet can be learned quickly.
While wrapper induction constitutes the main techni-
cal focus of our work, we have also investigated re-
lated issues, such as automatically labeling the exam-
ple pages using noisy heuristics; see (Kushmerick 1997;
Kushmerick, Weld, & Doorenbos 1997) for details.

Our approach is most closely related to (Ashish
& Knoblock 1997); their system uses HTML-specific
heuristics and can handle more complicated pages,
while we do not rely on HTML but our wrapper classes
are less expressive. (Soderland 1997) describes
HTML-specific information-extraction system. Our ef-
fort is also allied with oth@r work on learning to in-
teract with Web sites; see (Doorenbos, Etzioni,
Weld 1997; Perkowitz & Etzioni 1995). At the high-
est level, we are influenced by the huge literature
on information-gathering systems and software agents,
such as (Chawathe et al. 1994; Etzioni & Weld 1994;
Kirk et al. 1995; Kwok & Weld 1996).

Many problems remain. Earlier we mentioned search
control. Also, while fairly expressive, our wrap-
per classes lack some of the sophistication needed by
information-integration systems, such as handling miss-
ing attributes. Finally, it would be interesting to extend
our results to the wrapper classes identified by others
in the wrapper community.

Acknowledgements. Much of this research was con-
ducted in collaboration with Dan Weld in the Depart-
ment of Computer Science and Engineering at the Uni-
versity of Washington, and was funded by ONR Grant
N00014-94-1-0060, NSF Grant IRI-9303461, ARPA /
Rome Labs grant F30602-95-1-0024, and a gift from
Rockwell International Palo Alto Research.

References

Ashish, N., and Knoblock, C. 1997. Semi-automatic
wrapper generation for Internet information sources.
In Proc. Cooperative Information Systems.

Chawathe, S.; Garcia-Molina, H.; Hammer, J.; Ire-
land, K.; Papakonstantinou, Y.; Ullman, J.; and
Widom, J. 1994. The TSIMMIS project: Integration
of heterogeneous information sources. In Proc. lOth
Meeting of the Information Processing Soc. of Japan,
7-18.

Doorenbos, R.; Etzioni, O.; and Weld, D. 1997. A scal-
able comparison-shopping agent for the World-Wide
Web. In Proc. Autonomous Agents, 39-48.

Etzioni, O., and Weld, D. 1994. A softbot-based in-
terface to the Internet. C. ACM 37(7):72-6.

Kearns, M., and Vazirani, U. 1994. An introduction
to computational learning theory. MIT.

Kirk, T.; Levy, A.; Sagiv, Y.; and Srivastava, D. 1995.
The Information Manifold. In AAAI Spring Sym-
posium: Information Gathering from Heterogeneous,
Distributed Environments, 85-91.

Kushmerick, N.; Weld, D.; and Doorenbos, R. 1997.
Wrapper Induction for Information Extraction. In
Proc. 15th Int. Joint Conf. AI.
Kushmerick, N. 1997. Wrapper Induction for Infor-
mation Extraction. Ph.D. Dissertation, Univ. of Wash-
ington.
Kushmerick, N. 1998. Wrapper induction: Efficiency
and expressiveness. Submitted to Artificial Intelli-
gence.

Kwok, C., and Weld, D. 1996. Planning to gather
information. In Proc. 13th Nat. Conf. AL
Perkowitz, M., and Etzioni, O. 1995. Category trans-
lation: Learning to understand information on the In-
ternet. In Proc. 14th Int. Joint Conf. AI, 930-6.
Soderland, S. 1997. Learning to Extract Text-based
Information from the World Web. In Proc. 3rd Int.
Conf. Knowledge Discovery and Data Mining.

88

X xx~x~xxx~x~x~x~x~x~xxx

~xxx~xxxxxxxxxxxxxx~xxxxxxx~xx

~C

©

~oo ~ . ~ o ~ o ~ .~ x~x~xO~ox o o ox~.x.~x.x.x X~X . . . X¯ _ ._0°e°_X

°°° ~x?xx~x?xxx..x x~. x... xx " °° °° ° ~

X°.°

.X...

~ ~
~° ~ ° ~ x~xx~ ° °~° x~x~?x~x~xX,X.0.0XX 0

¯ . .oo.oo o oo
XX X XX X~XX~.. ~ . . X . X.. X

Q; Q; .
~ ~ ~-~ ~ ~ ¯ ¯

~ ~..~ ~ ~ ~ ~.~..

~.~ ~ ~C.)~o ~ ~ ~ ~ .m ¯

I=1 ~ ~ ~ 0 1~ -~ 0,.~ ~ ~r#’~o~.~...=1 ~ m.- cl ~ ~.. o~..cl ~ o .1:1 ~ o

cOOb

O0

0
~

~1 ~) 1=1 i=l-PI t~ ¯ ~ I.i U II

I=1 ~ u E] .~ w ,~ .,-4 o I~ o ~ ~ ta .~ .-~ I~ I
0 I~ 1.4 o ~ ~1 ~ h -,-~l~u t.~ ~ ~ :::1 ̄ Ol ~a

m o ~l~ll:lu El o EIo~-.bO0 .W ~ Eiu ¯ uo0 ~1QJ u~..IEl.~ ¯ ¯ o u o u =1 ~.,--~ m ..~1 o ..Q ¯ U~ IEI W l
I~ ¯ ~ o..=,.~.~i~ u .u -’x~ o m ~.~ ~lu ~ ~ -I=1O,-tl
Q~ m o u u ~) ~) 04.~ .4a ~1 ̄ I’-I W .,.~ ~.,"1,,’-I ¯ ~r-I,,~ ~l.e,I V ~ll~a u u ¯ m I~ ~ u ¢) 1,4 ¢).H I-4 w ̄ ~.,o h I~ toOl.~ w,d :~.r4 ¯ ¯ o"1::I.H ¯ o E] E] el ¯ I:1 q) i:l’T:l e).la’T:l O-"~ 4.) U ̄ ;..i W~-I smt-i’T:l 4)PI

O~-I.~c~.H,.cl~-Ie~4a.~ 1.4.~O =10 O O .WW ..~ ~10"~1M.~I ~JO~l
¯ ~., ,.el ¯ .,z:l .4a ¯ ¯ -I:~ ¯ I M,=I W c~ Wl

~o..~ .~ ~

..~. ~

~.~ ~

I:::~ ’~ "N.’’~

N ~ag
~ 0 ~ B.~ ~.,~

¯ ~ ~m C.) ,.~
"~, ff

..

El ~ ’L)
r~ i~°.~

~ C:u L’~ o,..,
m ~

~ ~~’~

89

