
Planning to guide concept understanding in the WWW

Seiji Yamada
CISS, IGSSE

Tokyo Institute of Technology
Midori-ku, Yokohama 226-8502, Japan

yamada@ymd, dis. titech, ac. j p
http://www, ymd. dis. titech, ac. j p/’yamada/

Yukio Osawa
Faculty of Engineering Science

Osaka University
Toyonaka, Osaka 560-8531, Japan

osawa©yachi-lab, sys. es. osaka-u, ac. jp
http ://w3. sys. es. osaka-u, ac. jp/’osawa/

Abstract

This paper describes a novel navigation planning
method that generates a plan (a sequence of Web
pages) guiding concept understanding in the WWW
(World Wide Web). It also has the ability to gen-
erate operators during planning from Web pages us-
ing keyword extraction methods. When a user wants
to understand a concept, it is useful to browse for
relevant Web pages in the WW’W. However, in gen-
eral, this task is very hard because the user does not
know where such Web pages are, and has to search
for them in the vast WWW search space. Even with a
search engine, this consumes the user’s energy. To deal
with this problem, we propose navigation planning to
automatically generate a sequence of Web pages by
which a user systematically understand a target con-
cept. First, with a planning framework, we formalize
the browsing task in the WWW. Action is defined as
the understanding of a Web page, and an operator for
a Web page consists of conditional/effect knowledge.
Unfortunately it is impossible to prepare operators for
all the Web pages. Hence we develop a method to
generate an operator from a Web page by extracting
condition/effect terms with keyword extraction tech-
niques. Then the whole planning procedure is de-
scribes. Finally we fully implement the navigation
planning system and make experiments by comparing
with methods using a search engine and link-tracing
(like a Web robot). As results, we found out navi-
gation planning is a promising approach to assist the
concept understanding in the WWW.

Introduction
The accessible information through the Internet
is increasing explosively as the WWW becomes
widespread. In this situation, the WWW is very useful
for a user who wants to understand a concept (called
a target concept). He or she can browse helpful Web
pages to understand a target concept. However, in
general, this task is very hard because he or she may
not know where such Web pages are, and has to search
them over the vast WWW search space, and this con-
sumes the user’s energy.

A practical and simple solution of the problem is
to use a search engine like MetaCrawler, AltaVista,

YaHoo, with the target concept as a query. The engine
provides a list of relevant Web pages. However, since
the retrieved Web pages are not filtered sufficiently, a
user has to select useful ones from them. Furthermore,
since in most cases the retrieved Web pages include
concepts that a user does not understand, he or she
must search the useful Web pages for them using a
search engine again. This task is repeated until a user
understands the target concept, and wastes time.

We consider the task as planning, and propose navi-
gation planning (NaviPlanning for short) to automati-
cally generate a sequence of Web pages which can guide
a user to understand a target concept. First, with an
AI planning framework, we formalize the browsing in
the WWW. Action is defined as the understanding of
a Web page, and an operator consists of conditional
knowledge and effect knowledge. Unfortunately it is
impossible to give NaviPlanning the operators for all
the Web pages. Thus we develop a method to gen-
erate operators from Web pages by extracting condi-
tion/effect terms with keyword extraction techniques.
Finally we fully implement the NaviPlanning system
and make experiments by comparing with methods us-
ing a search engine and link-tracing (like a Web robot).

There are studies on planning to generate procedures
for gathering information through computer networks.
The Softbot (Etzioni & Weld 1994) provides a frame-
work and a interface for describing operators. A com-
plete partial-ordering planner is used. Occam (Kwok 
Weld 1996) is also a planner for gathering information.
It is more efficient and able to reason about the capabil-
ities of different information sources. Sage (Knoblock
1995) was developed for integrating planning, execu-
tion, replanning, and sensing to gathering information
in distributed resources. The aim of these studies is to
generate a plan as a procedure of gathering informa-
tion, and a plan consists of UNIX commands, database
operations. In contrast with these studies, the aim of
NaviPlanning is to generate a plan which can guide a
user to understand a concept in the WWW, and its
plan is a sequence of Web pages.

Our research is concerned with the Web Robot
(Jamsa, Lalani, & Weakley 1996) which is used 

121

From: AAAI Technical Report WS-98-14. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



gather Web pages for a search engine database. How-
ever it is not controlled and traces to only linked pages.
NaviPlanning can trace to unlinked pages, and is con-
trolled for generating a plan.

Some learning systems have been developed for in-
formation gathering and browsing in the WWW. Shop-
Bot (Doorenbos, Etzioni, & Weld 1997) learns the
text pattern indicating the price of CD-ROMs, and
searches for the cheapest one more efficiently than a
human. The purpose of ShopBot is different from our
research. WebWatcher (Armstrong et al. 1995) and
Letizia (Lieberman 1995) are able to indicate the Web
pages which a user wants to see next. Using brows-
ing history, they learn to predict useful Web pages
for a user. Unfortunately they indicate only related
Web pages to the current page, and do not generate
systematic guidance for understanding a concept like
NaviPlanning.

Navigation planning

In this research, navigation means a task that indicates
useful Web pages to a user for guiding his concept un-
derstanding. A sequence of useful Web pages is called
a plan, and navigation planning means the automatic
generation of the plan.

By using an AI planning framework, we formalize
the task that a user browses useful Web pages to un-
derstand a target concept. We can summarize the task
in the following. This procedure is repeated until ter-
minated by the user.

1. Search Web pages related to target concepts using a
search engine.

2. Understand the Web pages retrieved by the search
engine.

3. Select unknown concepts in the Web pages.

4. Go to Step l with unknown concepts as target con-
cepts.

The procedure above is considered planning (Fikes
& Nilsson 1971)(Russell & Norvig 1995) using the fol-
lowing correspondence.

¯ Action: understanding concepts described in a Web
page.

¯ State: A user’s knowledge state: a set of words de-
scribing concepts which he knows.

¯ Initial state: A user’s initial knowledge state.

¯ Goal state: a set of words which a user wants to
understand.

¯ Operator: U-Op(URL) describing action is defined
by the followings.

- Label: URL of the Web page
- Condition: C = {cl, -.-, ci}, where C means the

condition knowledge which is necessary to under-
stand the Web pages, and ck is an element (called
a condition word).

- Effect: E = {el, ..., ej}, where E is e~ect knowl-
edge which a user obtains by understanding the
Web page, and el is an element (called an effect
word).

The condition knowledge and effect knowledge are
described with a set of words describing the knowl-
edge. Using this formalization, we can apply a classical
planning framework (Fikes & Nilsson 1971)(Russell 
Norvig 1995) to navigation planning.

This NaviPlanning contains a significant problem
which has not been in planning thus far. It is that
the U-Op(URL) operators are not given in advance.
This is because it is impossible for a human designer
to generate the operators from all the Web pages in the
WWW. Hence the operators need to be automatically
generated from Web pages when they are necessary. In
next section, we develop the method.

Generating operators from Web pages

We develop a method to extract condition and effect
knowledge from a Web page in order to generate an
operator. Since the condition/effect words are assumed
to be written in the Web page, thus the problem is how
to extract condition/effect words from a Web page (an
html file).

Using TAG structure in a html-file

Various methods to extract keywords from text have
been studied (Salton & Buckley 1997). Though most
methods are based on frequency of words, one of the
most effective methods is to utilize the structure in
a text. Since a Web page is described in a HTML
format (Berners-Lee & Connolly 1995), we can utilize
TAG structures like <TITLE>, <Hn>, <h HREF=... >, for
extracting condition/effect knowledge.

Extracting condition words The prime candi-
dates for condition words are the words linked to other
Web pages, i.e. the words between <h HREF=URL> and
</A>, because an author explicitly indicates that the
words are important for understanding the Web page.
They have URL for a useful Web page to understand
the words.

However all the linked words are not meaningful. For
example, a commercial Web page may be linked to the
Web page of it’s sponsor company. Hence we filter the
candidates from <h HREF=URL> tag using KeyGraph as
mentioned later.

Extracting effect words Since the title of the Web
page describes words which a user acquires by reading
the page, the words between <TITLE> and </TITLE>
are candidates for the effect words. In the same way,
headings describe knowledge which a user obtains by
reading the section. Thus the words between <Hn> and
</nn> are also candidates for effect words.

122



Input

¯ Input file (html-file or plain text file) and it’s
URL

Control parameters

¯ Weight for <TITLE>: c~, Weight for <Hn>: /3,
Weight for <A HREF=URL>: 7

¯ The number of condition words: Nc
¯ The number of effect words: WE

Output

¯ An operator U-Op(URL) (URL, co ndition
knowledge, effect knowledge).

Procedure

1. By KeyGraph, generate candidates C for con-
dition knowledge and candidates E for effect
knowledge from an input file. The candidates
have weight within [0, 1].

2. Add the words between <Sn> and </Hn> with
weight/3 to E.

3. Add the words between <TITLE> and </TITLE>
with weight c~ to E.

4. Change the weight of the overlaping words
between C and the words between each <A
HREF=URL> and </A> to 7.

5. Select the Arc maximum weighted words in C
for conditional knowledge and the ArE max-
imum weighted words in E for effect knowl-
edge, and generate an operator U-Op(URL). If
a word in condition knowledge is extracted by
<A HREFfURL> and has a URL, the URL is as-
signed to the condition word.

Figure h Ext-OP: procedure of generating an opera-
tor

KeyGraph: a keyword extraction method

The extraction of condition/effect words using only the
tag structure is not sufficient. All the linked words are
not candidates for condition words, and all the condi-
tion words are linked. Thus we need to utilize another
method to assist it, and KeyGraph is used.

KeyGraph is a fast method for extracting keywords
representing the asserted core idea in a document (Oh-
sawa, Benson, & Yachida 1998). KeyGraph composes
clusters of terms, based on co-occurrences between
terms in a document. Each cluster represents a concept
on which the document is based (i.e. condition words),
and terms connecting clusters tightly are obtained as
author’s assertion (i.e. effect words). Furthermore the
likelihood for condition/effect words can be computed
by KeyGraph, and used for weight of an operator.

Another merit of KeyGraph is that it does not em-
ploy a corpus. Generally speaking, corpus-based meth-

ods such as TFIDF (Salton ~ Mc~ill 1983) have to
revise the corpus when new documents occur. Accord-
ingly, keywords of all the documents already indexed
have to be revised again - an enormous loss of time
especially in the WWW, where many new and pro-
gressing topics appear in new Web pages everyday.

The extraction of condition/effect words using tag
structure and KeyGraph are integrated, and the de-
tailed procedure Ext-OP is shown in Fig.1.

Planning procedure

We now develop NaviPlanning procedure. Fig.2 shows
the overview of NaviPlanning. It uses backward beam
search (Russell & Norvig 1995) from a goal state
(Fig.2(a)). The node expansion (Fig.2(b)) includes 
search for related Web pages with a search engine and
the generation of operators with Ext-OP.

The detail of input, output and a procedure for the
NaviPlanning is shown in Fig.3 and Fig.4. In this re-
search, the evalution function H for a node is defined
with the following formula.

H = E Weight of a satisfied subgoa!

+ ~ Weight of effect words satisfying subgoa!

Fig.5 shows a plan (limited depth I = 4) generated
by NaviPlanning with the target concept "Turing test
" and context "Turing". Four useful Web pages are
indicated with hyperlinked titles and URLs.

Pruning and caching Web pages

Additional procedures: pruning and caching Web
pages are introduced to accelerate NaviPlanning. We
experimentally found that many Web pages have little
information to understand something. For example,
the Web page having only linked URLs or references,
or extremely short or long pages. Since the operator

Width of beam search

(a) Navigation planning as
backward beam search

Subgoal of node-i )

;quew

I Asearch#ngi~e I

(b) Node expanding from nodc-i

Figure 2 Navigation planning (overview)

123



Input

¯ Goal state (= target concepts) Go : a set of the
words which a user wants to understand.

¯ Context GC : a set of the words describing the
background domain of the goal state.

Control parameters

¯ Initial state IS : a user’s initial knowledge state.

¯ Limited depth l : planning stops at depth I.
¯ Limited number of Web page w : the number of

the Web pages obtained from a search engine.
¯ Width b for beam search.
¯ Evaluation function H : evaluating the states

in planning.

Output

¯ A plan P : a set of sequences of U-Op(URL).

Figure 3 Input and output for Navigation planning

generated from a meaningless Web page is meaningless,
such Web pages are pruned in Step3d of Fig.4.

Caching is also done by storing the Web pages ob-
tained in Step3c of Fig.4. If a cached Web page is
available in Step3c of Fig.4, it is used and planning is
accelerated more than two times.

Experiments and Results

Accuracy of operators formation

In the first phase of experiments, we investigated how
accurately the operators in the navigation planing were
formed. The procedure in this experiment is as follows:

1) Take a document (a Web page) D, from a plan 
a query (the goal state and context). Let Cond and
Elf denote the sets of words obtained from D, as
the condition words and effect words respectively.

2) For Cond : Count C, the number of words in
Cond, and c, the number of really necessary condi-
tion words of D, i.e. words in Cond without under-
standing which the reader cannot understand doc-
ument D. Also count Ce, the number of words in
Cond which seem to actually be effect words.

3)For Eff : Count E, the number of words in E f f,
and e, the number of effect words understandable by
reading D. Also count Ec, the number of terms in
Eff which seem to actually be condition words.

The results from 23 Web pages &re: C = 494, c =
367, E = 331, e = 228, Ce = 15, Ec = 25.

From these values, we obtain c/C = 0.74 and e/E =
0.68, which mean the accuracy of condition words and
effect words respectively. We have no previous meth-
ods to compare with these values, because no previ-
ous indexing method obtains condition or effect words.

1. Initialize No = [no] = [(G0,[])], i - 0. (Ni
is a sequence of nodes at depth i. A node is
described as nl = (Gi,Pi), where Gi is a set
of the words for a subgoal, and a plan P~ is a
sequence of operators.)

2. If i = I or Ni is null then this procedure outputs
P and stops.

3. Apply the following procedures to all the nodes
n in Ni, and initialize Ni+l = [].

(a) Extract D (called difference): a subset of G
which is not included in IS.

(b) Obtain w Web pages’ URLs by inputing D U
GC as query to a search engine.

(c) Get the Web pages (html files) of the obtained
URL through a TCP/IP connection.

(d) Generate operators from the obtained Web
pages using the Ext-OP procedure. Then
apply the following procedure to the opera-
tors which the intersection between its effect
knowledge E and n’s subgoal G is not empty.
Get G’ by eliminating the operator’s E from
n’s G and adding the operator’s C. Getting
P’ by adding the operator to the head of n’s
plan P. Then a new node (G’, P’) is added
to Nn+x.

4. Evaluate all node in Nn+I using an evaluation
function H, and update Nn+a with the best b
nodes.

5. Set i = i + 1 and go to Step2.

Figure 4 Navigation planning procedure

However, we can at least say that words separated into
Cond and Eff as expected, because the overall rate
of real conditional and effect terms are much less than
0.74 and 0.68, i.e. (c + Ec)/(c + Ec + e + Ce) = 0.62
and (e + Ce)/(c + Ec + e + Ce) = 0.38.

Operators are further evaluated in the next exper-
iment, considering the practical utility of NaviPlan-
ning.

Efficiency of understanding goal terms

In the second experiment, the utility of NaviPlan-
ning was directly evaluated. The Me.taCrawlerX(Sel-

berg & Etzioni 1995)(Selberg & Etzioni 1997) search
engine was employed for node expansion (Fig.2(b)) 
NaviPlanning, and also used for the purpose of user’s
understanding of a target concept. The performances
of these two methods, combined with link-tracing (like
a Web robot) or not, were compared. In all experi-
ments, the control parameters (Fig.3) in NaviPlanning
were set as IS = [], l = 4, w = 8, b = 4, and the control

1 http://www.metacrawler.com/

124



¯ TARG~ CONCEtC = "TucinK test"
¯ CO~EXT = Turing

1..Eval = 1.75 SUB-GOAL (21) = kosaza::a~clcan::critici~::human
~lligan~: :c~p~em:: years:: 19~o1885: :tmive~sity:: 20:: first: :haltir~: :au
~orld [I] : :squ~’es[l]: :design[I] ::

1. Turfng Test [ac.,at]
http://stttc[2, tt~ien, ac, at~e9425704/turln{~ ht~l
(~ = m~tL8] tucing[B]kos~aCT.5] am~icm~[7] ¢rit3cJ~[~ hum~
in~Z~nce[~
EFFECT = ¢cit~i~rl] t~ tuzing te~[1] t~[0.50~52]
~gence [E 3?8757]

2. ACM Iutln~ A~atd Lectures: The First 20 Years (18~-1985)
http;//Jnfo, ac~ or~/oatalog/books/70287 O. html
COND = compu~.r[O. 00203458788593082] years[O. 00101729399796~I]
196B-19~5 [0. 001017293997965411 tmiversity(O, 0010172939979(~ 
20[0. 00101729399786~1] flrst((k O0101729~q/8(go41]

i~ EFFECT = acre ~urir~ a#erd lecture~: the first 20 years (1966-1985) [2]
order[0.304977] acm[O. 2/168] book[{). 24961]
91.htm1: Restricted llaltin~ Problem?
http://&life, santMe, edt~alife/topics/c~/~xchi~s/91/Ol71, html

exist[0.751 turing ~him[g751
=:) EFFECT = 91.html: rest;rioted balt3~ problea?[2] robert[l] restricted
¯ ’ halting problem?[l] black[0.619148]

~.~
1 ht tp://cs~-~w, stanfot~d, edu~p/Tuc~l, html

COND = cs].i.[1.25] logic[l.25] soft~am[1.~5] turing ~orld[t]
I sqvares[l] desisn[l]

=i
EFFECT = tt~in~s e)rld: more ~fomat~on (1) [2] tuzln~ machine~[l] 

) s~mbo~ [0. 69~06] ma=~ [0. 6,T/Gmj

)
Figure 5 Plan for "Turing test"

parameters (Fig.l) in Ext-OP were set as weights 
= 2, ~ = 1, "y = 1, NC = 6, WE = 4. Since IS is null,
NaviPlanning stopped at depth = 4, and only 4-step
plans were generated. The time taken to generate a
plan by NaviPlanning was 2 ~ 3 hours (the most part
was taken for getting Web pages). Additionally exper-
iments with depth = 8 were made, however planning
was not completed in most cases.

In more concrete words, we compared the following
five methods.

Method-l: Search engine Goal state and context
terms were given as a query, constraining that the
goal must be included in each page to be retrieved.
The user read only the retrieved pages in the order as
sorted by MetaCrawler, until he or she understood
the goal term clearly.

Method-2: Search engine ~- Tracing links
Queries were given as in Method-1. Then the user
read the retrieved pages in the order as sorted by
MetaCrawler, being allowed to trace links from the
pages being read, until he or she understood the goal
term explicitly.

Method-3: NaviPlanning The user gave the goal
term and context terms separately to NaviPlanning.
Then, he or she read the retrieved pages in the order
as sorted by NaviPlanning.

Method-4: NaviPlanning -{- Tracing links
Queries were given as in Method-3. Then, he or

she read the x~txleved pages in ~t~ order as ~orted
by NaviPlanning, being allowed to trace links from
the pages being read, until he or she understood the
goal term explicitly.

Methodo5: The user traced links only from the top-
page of MetaCrawler. The user was not allowed to
start from other retrieved pages of MetaCrawler.

43 queries were tested for each method. The number
of clearly understood goals by Method-1 and Method-3
was both 26 goals. Method-5 did the far poorest, mak-
ing the user understand only 13 goals. These values
may sound as though MetaCrawler and NaviPlanning
performed equally fine, and tracing links was of no use.

However, let us consider one more significant factor
- the effort of the user in each procedure. This factor
may clarify the difference of tested methods. The first
effect we observed was that NaviPlanning remarkably
helps the user in understanding goal terms efficiently.
For 9 queries, the user of Method-3 was satisfied with
his or her own understanding by the first page read,
while Method-1 users were in only 6 cases. This fact
implies that operators were obtained quite well, i.e.
effect words of the start (top) page of NaviPlanning
corresponded to the assigned goal.

The second effect observed was that tracing links
helped in understanding pages which were not under-
stood without tracing links. In total, 13 goals were
newly understood by adding link-tracing (i.e., in Meth-
ods 2 and 4), among 34 goals which failed to be under-
stood without tracing links.

Due to all these effects, Method-4 was be the most
effort-saving approach for the user. Fig.6 compares
user effort in the two most effective methods, i.e.,
Method-2 and 4. Two features are remarkable in Fig.6.
One is that Method-4 (NaviPlanning + Tracing Links)
enabled a user to understand goals while reading many
fewer pages than Method-2 (Search engine + Tracing
Links). The other feature is that Method-2 requires
greater effort of the user for a larger number of pages
retrieved by MetaCrawler. This means that, for a pop-
ular term (e.g. "MIDI" in digital music, or "genetic al-
gorithm" in the AI area) which is already prevalent in
the WWW, it is relatively rare that a page is devoted
for defining the term. In other words, common-sense
terms are not desired or intended to be defined.

Discussion

In the experiments above, NaviPlanning was verified
to help a user in efficiently understanding a target con-
cept. The only observation above which may look
discouraging for NaviPlanning is that the number of
successfully understood pages were almost equal for
NaviPlanning and MetaCrawler.

However, the content of the pages which failed to be
understood were quite different between the two meth-
ods. This implies that there are both advantages and
disadvantages in the current version of NaviPlanning.

125



The number of pages accessed
before understandir)g goal terms

i
+ : Search Engine (MetaCrawler) + Tracing links 
o : Navigation Planner + Tracing links I

4" +4"+ 4" 4"

4"4" +O++

+ + +O@++Q +O +O

O O +OOO O +O O

O QQO QO 4" O

10 20 30 40 50
The number of pages
retrieved by MetaCrawler

Comparison of the performance of two bestFigure 6:
methods.

The major advantage is that NaviPlanning enables ef-
ficient planning for understanding a target concept, by
finely formed operators. On the other hand, according
to more detailed data, the disadvantage was that be-
cause of the width of beam search, it does not retrieve
so many pages directly concerned with the target con-
cept as search engines do. Here is the risk of leading
to a misguided plan beginning from a badly retrieved
start page (the top page of NaviPlanning). Currently
we are thinking of letting a user select the start page,
as the next stage of this research.

Conclusion

We proposed a novel navigation planning method that
generates a plan guiding understanding of a concept in
the WWW. It also has the ability to generate operators
during planning from Web pages using keyword extrac-
tion methods. The search for useful Web pages for a
user to understand goal concepts was formalized using
a planning framework, and an operator correspond-
ing to the understanding of a Web page was defined
with conditional/effect knowledge. Then we described
the whole planning procedure. Finally we fully imple-
mented the navigation planning system and made ex-
periments by comparing with methods using a search
engine and link-tracing (like a Web robot). As results,
we found NaviPlanning a promising approach to assist
information retrieval in the WWW.

Armstrong, R.; Freitag, D.; Joachims, T.; and
Mitchell, T. 1995. WabWatcher: A learning appren-
tice for the World Wide Web. In The 1995 AAAI
Spring Symposium on Information Gathering from
Heterogeneous, Distributed Environment. AAAI.

Berners-Lee, T., and Connolly, D. 1995. Hypertext
Markup Language - ~.0. RFC 1866.

Doorenbos, R. B.; Etzioni, O.; and Weld, D. S. 1997.
A scalable comparison-shopping agent for the World-
Wide Web. In Proceedings of the First International
Conference on Autonomous Agent, 39-48.

Etzioni, O., and Weld, D. 1994. A SoftBot-based
interface to the Internet. Communication of the A CM
37(7):72-76.

Fikes, R. E., and Nilsson, N. J. 1971. STRIPS: A
new approach to the application of theorem proving
to problem solving. Artificial Intelligence 2:189-208.
Jamsa, K.; Lalani, S.; and Weakley, S. 1996. Web
Programming. Jamsa Press.
Knoblock, C. A. 1995. Planning, executing, sensing,
and replanning for information gathering. In Proceed-
ings of the Fourteenth International Joint Conference
on Artificial Intelligence, 1686-1693.
Kwok, C. T., and Weld, D. S. 1996. Planning to
gather information. In Proceedings of the Thirteenth
National Conference on Artificial Intelligence, 32-39.

Lieberman, H. 1995. Letizia: A agent that assists
Web browsing. In Proceedings of the Fourteenth Inter-
national Joint Conference on Artificial Intelligence,
924-929.

Ohsawa, Y.; Benson, N. E.; and Yachida, M. 1998.
KeyGraph: Automatic indexing by co-occurrence
graph based on building construction metaphor. In
Advanced Digital Library Conference. to appear.

Russell, S., and Norvig, P. 1995. Artificial Intelligence
-A Modern Approach-. Prentice-Hall.
Salton, G., and Buckley, C. 1997. Term-weighting ap-
proaches in automatic text retrieval. In Jones, K. S.,
and Willet, P., eds., Readings in Information Re-
trieval edt.), Morgan Kaufmann. Morgan Kaufmann.
323-328.

Salton, G., and McGill, M. J. 1983. Introduction to
modern information retrieval. McGraw-Hill.
Selberg, E., and Etzioni, O. 1995. Multi-service
search and comparison using the metacrawler. In the
1995 World Wide Web Conference.
Selberg, E., and Etzioni, O. 1997. The metacrawler
architecture for resource aggregation on the Web. In
IEEE Expert, volume January-February. 11-14.

126




