Query Optimization and Caching

Research Interests and Related Publications

Jarek Gryz
Department of Computer Science
York University, Toronto, Canada

jarek@cs.yorku.ca

e Semantic Query Caching

Query caching can play a vital role in heterogeneous,
multi-database environments. Answers to a query
that are available in cache at the local client can
be returned to the user quickly, while the rest of
the query is evaluated. The use of caches can op-
timize query evaluation. By caching certain sensitive
data locally, caches can be used to answer the parts
of queries that involve the sensitive data, so it need
not be shipped across the network. Most prior cache
schemes have been tuple-based or page-based. It is
unclear, however, how these might be adapted for
multi-databases. We explore a more flexible ”seman-
tic query caching” (SQC) approach. In SQC, a cache
is the answer set of a previous query, labeled by the
query expression.

We designed a logical framework for SQC in which
caches are formally defined and by which one can de-
termine when a query can be answered via cache. We
specified the conditions to determine when answers,
or partial answers, to a query are present in cache,
and whether they can be retrieved from cache. These
tests are complete in that all answers that can be re-
trieved through any combination of cache expressions
will, in fact, be found. Based on this framework,
we explore algorithmic solutions for the case when a
query, possibly involving view predicates, is answer-
able entirely from cache. We are also interested in
extending this framework to several new applications
of SQC.

[1] P. Godfrey and J. Gryz, “Answering Queries by
Semantic Caches” (in progress)

[2] P. Godfrey and J. Gryz, “Semantic Query Caching
in Heterogeneous Databases”, In Proceedings of the
4th KRDB Workshop, Athens, Greece, Aug. 1997,

14]9

pages 6.1-6.6.

o View Disassembly

We explore a new form of view rewrite called view
disassembly. The objective is to rewrite views in or-
der to “remove” certain sub-views (or unfoldings) of
the view. This becomes pertinent for complex views
which may defined over other views and which may
involve union. Such complex views arise necessarily
in environments as data warehousing and mediation
over heterogeneous databases. View disassembly can
be used for view and query optimization, preserving
data security, making use of cached queries and ma-
terialized views, and view maintenance.

We provide computational complexity results of view
disassembly. We show that the optimal rewrites for
disassembled views is at least NP-hard. We also pro-
vide an approximation algorithm that has much bet-
ter run-time behavior. We show a pertinent class of
unfoldings for which their removal always results in
a simpler disassembled view than the view itself. We
also show the complexity to determine when a collec-
tion of unfoldings cover the view definition.

[1] P. Godfrey, J. Gryz, “View Disassembly” (submit-
ted)

[2] P. Godfrey, J. Gryz, “Overview of Dynamic Query
Evaluation in Intensional Query Optimization”, In
Proceedings of 5th DOOD, Montreux, Switzerland,
Dec. 1997

[3] P. Godfrey, J. Gryz, “A Framework for In-
tensional Query Optimization”, In Proceedings of
DDLP, Bonn, Germany, September 1996, pp. 57-68.



¢ Query Containment via Resolution

The problem of query containment received a lot of
attention in the context of information integration.
Several algorithms for testing containment for differ-
ent types of queries have been considered and several
complexity results established. We are exploring the
issue of expressing the problem of query containment
and query folding in logic programming, and using
resolution to test for containment.

[1] 3. Grant, J. Gryz, J. Minker, “Query Containment
via Resolution” (in progress).

[2] 3. Gryz, “Query Folding with Inclusion Dependen-
cies”, In Proceedings of the 1/th ICDE, pp. 126-133,
Orlando, FL, Feb. 1998.

[3] J. Gryz, “An Algorithm for Query Folding with
Functional Dependencies”, To appear in Proc. of the
7th Int. Symposium on Intelligent Information Sys-
tems, Malbork, Poland, 15-19 June, 1998.

e Semantic Query Optimization

Relational database systems became the predomi-
nant technology for storing, handling, and querying
data only after a great improvement in the efficiency
of query evaluation in such systems. The key fac-
tor in this improvement was the introduction and
development of query optimization techniques. In
the late 1970’s and early 1980’s, researchers recog-
nized that the semantics of a database could be ex-
ploited for further query optimization, and developed
a new set of techniques called semantic query opti-
mization (SQO). SQO uses integrity constraints as-
sociated with the database to improve the efficiency
of query evaluation. Although several different tech-
niques for SQO have been developed, only simple pro-
totypes have been built. To the best of our knowl-
edge, no commercial implementations of SQO exist
today. We are exploring ways to implement and test
exisiting SQO techniques within the DB2 query opti-
mizer developed by IBM. We are also working on ex-
tending exisiting SQO techniques to heterogeneous,
multi-database environment.

[1] P. Godfrey, J. Grant, J. Gryz, and J. Minker, “In-

tegrity Constraints: Semantics and Applications”. In
Logics for Databases and Information Systems, eds.
G. Saake and J. Chomicki, 1998, pp. 265-307.

[2] J. Grant, J. Gryz, J. Minker, and L. Raschid. “Se-
mantic Query Optimization in Object Databases” In
Proceedings of the 13th ICDE, pages 444453, Birm-
ingham, UK, Apr. 7-11 1997.

[3] P. Godfrey, J. Gryz and J. Minker, “Seman-
tic Query Optimization for Bottom-Up Evaluation”.
In Proceedings of the 9th ISMIS, Zakopane, Poland,
June 1996, pp. 561-571.

150





