
Squeal: SQL Access to Information on the Web

Ellen Spertus
Dept. of Mathematics and Computer Science

Mills College
5000 MacArthur Blvd.
Oakland, CA 94613
spertus@mills.edu

The World-Wide Web contains an abundance of
semi-structured information, including hyp¢-
links between pages, structure within hypertext
pages, and structure within the addresses of
pages (URLs). Because of the difficulty in h~t-
nessing this structural information, many Web
tools fail to make use of it, instead treating the
Web as though it were a fiat text collection. We
introduce Squeal, a SQL-like language for que-
rying the Web as though it were in a relational
database. We describe simple but powerful ~p-
plications built on top of Squeal, which we call
"ParaSites" because they make effective use of
this underutilized information on the Web, often
in ways unintended by the information’s authors.

Squeal
Relational databases provide a powerful abstra>
tion for manipulating data. The division of data
into relations helps users comprehend the data
and allows them to specify queries in Structured
Query Language (SQL). While the Web is too
large and quickly-changing to be stored in a ~-
lational database, it is useful to provide users
with the illusion that it is. We provide this
through the Squeal language and interpreter,
which allows users to make SQL queries h-
volving Web information. The Squeal interpreter
determines what information needs to be fetched
and parsed from the Web in order to answer the
question. The retrieved information is cached in
a local database in case it is needed again.

The Squeal schema includes relations for rep~-
senting the following types of Web information:

¯ the contents of a page
¯ hypertext links between pages
¯ different URL strings corresponding to the

same page
¯ the parsed version of a URL
¯ tags and attributes appearing on a page
¯ the header and list hierarchy on a page
¯ if a search engine reports that a page con-

tains a specified string
¯ if a search engine reports that a page con-

tains a specified link

For example, hyperlinks are expressed through
the link table, which expresses a relation be-
tween a source URL, anchor text, and a destina-
tion URL. In order to ask what pages are pointed
to by the MIT AI Lab home page, the user would
enter:

SELECT destination FROM link
WHERE source --- "www.ai.mit.edu"

The Squeal interpreter would retrieve the page,
parse it, then return a list of the destinations of
links on the page. Instead of (or in addition to)
specifying the source page, the user could p~a-
vide another field. For example, to ask for pages
containing hyperlinks with ’hrtificial inte~-
gence" as anchor text, the user would enter:

SELECT source FROM link
WHERE anchor = ’~artificial intelligence"

To answer this, the Squeal interpreter would ask
a search engine, such as AltaVista, what pages
contain "artificial intelligence" as anchor text.
Because no such engine can ensure returning all
such pages, the list is likely to be incomplete.
The Squeal interpreter then retrieves and exam-
ines the pages, returning to the user a list of
pages that it has verified as having the desired
anchor text. While recall will be less than 1, the
precision is guaranteed to be 1. A similar proc-
ess is used to request pages that link to both
"www.ai.mit.edu" and "www.lcs.mit.edu":

SELECT Ll.source FROM link L1, L2
WHERE Ll.destination = "www.ai.mit.edu"
AND L2.destination = "www.lcs.mit.edu"
AND Ll.source = L2.source

Queries involving multiple Squeal- and user-
defined tables are also possible and can be found
in the appendix.

ParaSites
We have built a number of ParaSites on top of
Squeal that exploit the Web~ structural infor-
mation, including a personal home page finder,
which uses the following algorithm to try finding
the home page of the person with name N:

155

From: AAAI Technical Report WS-98-14. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved. 



.

.

Generate a list of candidate pages from the
destinations of hyperlinks whose anchor text
is N.
Give bonus points to candidate pages where
one or more of the following conditions
hold:
¯ The full name appears within title or

header tags (e.g., "<title>Lynn Stein~
home page</title>")

¯ The URL is of the form
"... foo/foo.html" (e.g.,
"/users/las/las.html")

¯ The final directory name in the URL
starts with a tilde (e.g.,
"~las/home.html")

This algorithm, with additional heuristics d~-
scribed elsewhere, is quite effective.

The contrast between text-based and structure-
based approaches can be seen most directly in
different recommender systems for Web pages.
With either approach, a user specifies seed
pages. A text-based system, such as Excite, then
searches for pages that contain the same words,
and return these pages to the user. The ParaSite
approach is to find parent pages that point to the
seed URLs, then to return the pages pointed to
most frequently by the parents, i.e., the seed
pages’ siblings. The underlying philosophy is
that human beings are best at deciding what
pages are alike, so we should associate pages
with each other if they co-occur as destinations
of hyperlinks on multiple pages. This is entirely
analogous to mining citation indexes. A small
user study showed the ParaSite approach to be
superior in some ways to the purely text-based
approach. We predict the best system would
combine both approaches.

Conclusions
We have provided a taste of the Squeal pro-
gramming system for accessing structural inf~-
mation on the Web and have outlined some ef-
fective applications that can be easily written in
Squeal, demonstrating the utility of the Web~
structural information and how Web tools, such
as AltaVista, can be harnessed.

Bibliography
Spertus, Ellen. ParaSite: Mining the Structural
Information on the World-Wide Web. PhD The-
sis, Department of EECS, MIT, Cambridge, MA,
February 1998.

Spertus, Ellen and Lynn Andrea Stein. "Mining
the Web’s Hyperlinks for Recommendations’"
AAAI Workshop on Recommender Systems,
1998.

Appendix
This is a slightly-simplified version of the code
for a program to find and display possible home
pages for someone with name name. SQL key-
words are in capital letters, and Squeal tables are
in bold face.

CREATE TABLE candidate (url URL, score
INT);

//Generate candidates that are the destinations of
//hyperlinks whose anchor text isname, giving
//each of these pages 2 points.
INSERT INTO candidate (url, score)
SELECT L.destination, 2
FROM link L
WHERE L.anchor = name;

//Add 1 point to all of the candidate pages in
//which name appears as an attribute value for
//any tag
INSERT INTO candidate(url, score)
SELECT c.url, 1
FROM candidate c, tag t, attribute a
WHERE t.url = u
AND a.tag_id = t.tag_id
AND a.value = name;

//Add 3 points for pages named ’home.html" or
//’home.htm"
INSERT INTO candidate(url, score)
SELECT DISTINCT c.url
FROM candidate c, parse p
WHERE c.url = p.url
AND p.depth = 1
AND p.value LIKE ’home.htm%;

//Display results, best first
SELECT c.url, SUM(c.score) AS total
FROM candidate c
GROUP BY c.url
ORDER BY total DESC;

156



Handling Inconsistency for Multi-Source Integration

Sheila Tejada Craig A. Knoblock Steven Minton
University of Southern California/ISI

4676 Admiralty Way, Marina del Rcy, California 90292
{ tej ada,knohlock,minton } @ isi.edu,

(310) 822-1511 x799

Abstract
The overwhelming amount of information sources now

available through the internet has increased the need to
combine or integrate the data retrieved from these sources
in an intelligent and efficient manner. A desirable
approach for information integration would be to have a
single interface, like the SIMS information broker [1],
which allows access to multiple information sources. An
example application is to retrieve all the menus of
restaurants from Joe’s Favorite Restaurants site which
have been rated highly by the Department of Health.

This task, if performed manually, would require a
significant amount of work for the user. An information
broker, like SIMS, would allow access to multiple
information sources, abstracting away the need for the
user to know the location or query access methods of any
particular source. SIMS stores knowledge about the data
contained in each of these sources, as well as the
relationships between the sources in the form of a model,
called a domain model. The first step in creating the
domain model is to determine which data instances appear
in multiple sources, e.g. which restaurants from Joe’s web
site, like "Art’s Deli," also appears on the Health
Department’s site. Once the common data instances are
determined, the relationship between the data in the
sources can be modeled in the domain model as subset,
superset, equality, or overlapping

A special case for information integration is when data
instances can exist in inconsistent formats across several
sources, e.g. the restaurant "Art’s Deli" can appear as
"Art’s Delicatessen" in another source. For the integration
process each source can be seen as a relation; therefore,
integrating the sources requires performing a join on the
two relations by comparing the instances of the primary
keys. Since the instances have inconsistent formats, some
mapping information is needed to map one instance to
another e.g. ("Art’s Deli" from Joe’s source to "Art’s
Delicatessen" from the Department of Health site). This
information can be stored in the form of a mapping table,
or as a mapping function, if a compact translation can be
found to accurately convert data instances from one
source into another. Once a mapping construct is created
it can be modeled as a new information source. This

Copyright © 1998, American Association for Artificial Intelligence
(www.aaai.org). All fights reserved.

integration technique allows SIMS to properly integrate
data across several sources that contain inconsistent data
instances.

Presently, mapping constructs are generated manually,
but we are developing a semi-automate approach. The
figure contains tuples from Joe’s Restaurant source and
the matching tuples from the Health Department:

Name Address Phone

1. (Art’s Deli, 342 Beverly Blvd, (310)302-5319)
(Art’s Delicatessen,342 Beverly Boulevard,310-302-5319)

2. (CPK, 65 La Cienga Blvd, 310-987-8923)
(California Pizza Kitchen,65 La Cienga Blvd,310-987-8923)

3. (The Beverly, 302 MLK Blvd, 213-643-2154)
(Care Beverly, 302 Martin Luther King Jr. Boulevard,645-4278)

Figure 1: Matched Restaurant Tuples

The key idea behind our approach for generating
mapping constructs is to compare all of the shared
attributes of the sources in order to determine which
tuples are matched, (Name with Name, Address with
Address, and Phone with Phone). Since the data
instances in the sources are represented in inconsistent
formats they can not be compared using equality, but
must be judged according to similarity. To determine the
similarity between strings we developed general domain
independent transformation rules to recognize
transformations like substring, acronym, and abbreviation.
For example, "Deli" is a substring transformation of
"Delicatessen." A probabilistic similarity measure is
calculated for each of the transformations between the
strings of the two data instances; and then they each are
combined to become the similarity measure of the data
instances for that attribute. When comparing the data
instance "Art’s Deli" with "Art’s Delicatessen," the
probabilities are calculated for the string transformations
of "Art’s" to "Art’s" and "Deli" to "Delicatessen." These
probabilities are combined to be the similarity measure
for the two instances. After the similarity measures are
determined for each of the attributes, Name, Address and
Phone, then they are combined to measure the similarity

157



for the two tuples. : The most probable matching between
the two sets of tuples is then determined. We are
employing a statistical learning technique in order to
iteratively refine the initial probability measures to
increase the accuracy of the matches. Once the mapping
is known then a mapping table or function can be created
using the instances from the primary key attribute.

Some related work has conducted by Huang & Russell
[2] on matching tuples across relations using a
probabilistic appearance model. Their approach also
incorporates the idea of comparing the tuples based on of
all of the shared attributes. To determine similarity
between two instances, they calculate the probability that
given one instance it will appear like the second instance
in the other relation. Calculating these probabilities
requires a training set of correctly paired tuples (like the
tuples in the figure). Unfortunately, appearance
probabilities will not be helpful for an attribute with a
unique set of instances, like Restaurant Name. Since
"Art’s Deli" only occurs once in the set of instances,
knowing that it appears like "Art’s Delicatessen" does not
help in matching any other instances. In our approach
the initial probability measures are calculated for the
strings of instances that match using a specific
transformation rule; therefore, having matched "Art’s
Deli" with "Art’s Delicatessen" will increase the
probability of "Deli" as a substring of "Delicatessen."
This will increase the probability for other instances
which use that specific transformation.

Other related work by Cohen [3] determines the
mappings by using the IR vector space model to perform
similarity joins on the primary key. In this work
stemming is used to measure similarity between strings;
therefore, in the figure "CPK" would not match
"California Pizza Kitchen." But, if the values from the
other attributes were taken into consideration, the tuples
would match. In experiments where an entire tuple is
treated as one attribute accruracy was reduced. As
illustrated by the third example, "The Beverly" from Joe’s
site would equally match the tuples for "Art’s
Delicatessen" and "Cafe Beverly." Our approach would
be able to handle all of these examples, because it
combines all of the measurements calculated individually
for each shared attributes to determine the correct
mapping.

[3] William W, Cohen.: Knowledge integration for
structured information sources containing text. The
SIGIR-97 Workshop on Networked Information Retrieval,
1997.

References

[1] Arens, et.al. Query Processing in the SIMS
Information Mediator. Advanced Planning Technology,
editor, Austin Tate, AAAI Press, Menlo Park, CA, 1996.

[2] Timothy Huang and Stuart Russell. Object
Identification in Bayesian Context. Proceedings of
IJCAI-97. Nagoya, Japan 1997.

158




