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Abstract

In this paper we propose an approach to knowledge
intensive CBR, where explanations are generated from a
domain model consisting partly of a semantic network and
partly of a Bayesian network (BN). The BN enables
learning within this domain model based on the observed
data. The domain model is used to focus the retrieval and
reuse of past cases, as well as the indexing when learning a
new case. Essentially, the BN-powered submodel works in
parallel with the semantic network model to generate a
statistically sound contribution to case indexing, retrieval
and explanation.

1. Introduction and background

In knowledge-intensive CBR a model of general domain
knowledge is utilized to support the processes of retrieval
and reuse of past cases, as well as to learn new cases. The
role of the general domain knowledge is to explain why two
cases are similar based on semantic and pragmatic criteria,
how a past solution may be adapted to a new problem case,
and/or what to retain from a case just solved (Porter et. al,
1990; Branting, 1991; Aamodt, 1994; Leake, 1995). Given
this master-slave relationship between CBR and some kind
of model-based reasoning, a particular problem is how to
develop and maintain the general domain knowledge
needed. The usual way is to rely on manual knowledge
acquisition. Taking the well-known problems of updating
general knowledge by automated means into account, this
model is often regarded as static, or only occasionally
revised. The automated learning is then taken care of at the
level of specific domain knowledge, i.e. the collection of
cases (Aamodt, 1995). Due to this problem, reasoning from
general domain knowledge is by many CBR researchers
seen as counterintuitive to the very idea of CBR.

Still, problem solving and learning by combining general
and case-specific knowledge seems to be what people do.
Those of us who study the integrated utilization of the two
knowledge types are therefore continuously looking for
approaches and methods that reduce the problems just
mentioned. In particular, our research addresses the
problem of sustained (continuous) learning, which ensures
that the system learns and correspondingly updates its
knowledge after each problem solving session. Our
reference model is the Creek model (Aamodt, 1994), 

densely connected semantic network of prototypical
concept definitions and their different relationships, in
which cases are integrated. An approach that seems
promising for learning of general knowledge in this type of
structure is belief network learning, also referred to as
Bayesian networks (BN). Significant distinctions from
other learning methods include its strong statistical basis,
that it maintains a symbolic representation in terms of a
dependency network, and that the relations in the network
may be given meaningful semantic interpretations, such as
causality. BN is a heavily studied approach in the ongoing
research on data mining; where the discovery of knowledge
from large collections of data is addressed.

The next section describes the scope of our research within
a larger perspective of data mining and CBR integration.
This is followed by a summary of related research. Sections
4 and 5 describes the essence of our approach to BN and
CBR integration, by explaining how BNs and semantic
networks are combined in the general domain model (4),
and how the BN-generated knowledge contributes to case
retrieval.

2. Data mining and CBR

Within a larger scope, we are studying the combination of
CBR and statistical and AI-based data mining methods.
Bayesian networks provides a data mining method to the
learning of a partial general knowledge model from
observed data, and it utilizes already existing domain
knowledge in doing so (Heckerman et al., 1995). Since the
method is based on statistical treatment of data, it is a
bottom-up approach complementary to the top-down
approach of manual knowledge acquisition.

Our research is undertaken within the scope of the
NOEMIE project (EU Esprit IV), in which data mining and
CBR are combined in order to improve the transfer and
reuse of industrial experience. Data mining provides a
data-oriented view to this task, i.e. it captures potentially
useful relationships based on the analysis of existing data
in databases. The main role of CBR, on the other hand, is
to capture, in an experience case base, past experiences that
the users have had, which then represents a user-oriented
view of the domain world. The aim of the project is to
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capture the knowledge structures representing these two
views and develop methods that utilize them in a combined
way for decision support and for information retrieval
across multiple databases.

In the NOEMIE project two types of data mining methods
are explored: BNs and other statistical methods such as
trend analysis, clustering and factorial analysis
(Casella&Berger, 1990; Diday, 1993). Bayesian networks
has a primary role in maintaining the general domain
knowledge, while we are investigating the possible
contribution to the generation of cases from the other
methods. In Figure 1, this scheme is illustrated. The arrows
labeled dm(bn) and dm(other) show the primary role of 
and methods such as clustering, etc. related to the general
knowledge model and the cases, respectively.
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Figure 1. Knowledge/data structures and methods

The general domain knowledge consists of both human
generated knowledge (product of manual knowledge
acquisition) and knowledge generated from data by
Bayesian methods. The first will typically be static
knowledge such as high-level ontologies, essential
textbook knowledge, and facts and heuristics commonly
agreed upon among domain specialists. The latter
knowledge type is dynamic in nature; i.e. suited to capture
the changing aspects of a problem domain. The case base
captures user experiences via support from the general
knowledge model, but may also get support from the
databases. An example of the latter is to use data mining
for reconstruction of past user experiences from data in
legacy databases (utilizing textual as well as formatted
data).

The methods and tools resulting from the NOEMIE project
will be evaluated by two pilot applications, one of which
addresses problems of unwanted events in offshore drilling
related to problems of lost circulation material, kicks and
blowouts. The domain model contains relationships such
as:

Very high mud density sometimes leads to lower fracture
resistance.

A database consisting of about 1200 blowouts from the
Gulf of Mexico since 1960 has been prepared (Skalle 
Podio, 1998). This database will serve as a basis for the BN
generated knowledge. An example:

RigType = Jacket and Outer Diameter of Casing <= 10.75 implies
probability distribution of primary barrier failed equals (Swabbing
75%, Unexpected well pressure/ddlling break 15%, Others 10%).

A heavily researched area within the field of Bayesian
networks is to find algorithms for generating plausible
network representations from data (Heckerman & al.,
1995). As the problem is NP-complete, most algorithms
lend themselves to some standard search method, and the
problem reduces to finding a suitable search metric. The
aim is to find the model with the highest probability of
being correct, given the data. Through Bayes’ rule, this is
changed into calculating the probability of actually seeing
the observed data given each model, and selecting the
model with the highest score. That is, the score for a given
model M is calculated as

P(Observed data I Model M)

For complete datasets (i.e., no missing attributes in any
data record) this calculation is straightforward. Values can
be calculated locally, and each record of the database is
independent. Most real-life databases are, however, not
complete. Various methods are proposed for mending this
problem; we use the Bayesian Knowledge Discoverer
(Ramoni & Sebastini, 1996). The software uses the metric
above to guide the search for a network representation, but
is enhanced with a method termed "bound and collapse"
to handle missing attributes in the data set.

If the domain model is properly built, (most of) the
relationships found by BKD will already be in the model.
In this case, the Bayesian network generated connections
are only a verification of the generated model, with a
quantification of the strength of each connection. Another
feasible approach is to let the expert generated domain
model be the a priori network, and use the data to generate
the a posteriori network from this system.

The rest of this paper will focus on BN for support of
general knowledge maintenance and the impact this may
have on the CBR process.

3. Related research

Ongoing research, addressing master-slave combinations
of CBR and BN, include (DingsCyr, 1998):

¯ Microsoft Research has developed a three-layer
Bayesian network for fault diagnosis (Breese 
Heckerman, 1995) called Aladdin. The network,
which is constructed by an expert, represents the cases
in the case base. The BN is updated each time a new
case is seen.

¯ The University of Helsinki has developed D-SIDE, a
tool designed for data-intensive domains (Tirri et. al.,



1996). Cases are viewed as multi-dimensional
stochastic vectors where input noise may be present.
During Retrieve they use a Bayesian network to select
the most similar case. Missing feature values are filled
in using the MAP estimator.
Aha & Chang (1996) uses a Bayesian network 
select a maximum feasible plan in multiagent soccer,
given the current situation. CBR is used to retrieve a
case with the plan implemented. This paper also gives
a review of similar research.
At the University of Salford, two BNs are used in an
exemplar-based CBR system (Rodriguez et. al., 1997).
The first is used to index categories of cases with some
similarity, the other to index cases within each group
of similar cases.

In Table 1 these systems are compared with respect to their
role in the four main CBR processes (extended from
(Dings0yr, 1998)).

Table 1: Related systems

System
MS
Research

Aha&Chang Helsinki iSalford
Retrieve Use BN to Use BN to Use BN to Identify

select case select select case
category of case1) in BN
cases

Reuse Not Independent Not Not
addressed of the BN addressedl) addressed

Revise Not Independent Not Not
addressed of the BN addressed addressed

Retain Update Update BN, Not Index
BN (add add case addressedcases
case) using BN

1) The Helsinki group uses the term "reuse" for the sub-process, which we

name "retrieve" in our terminology.

Additional activities: Chang & Harrison (1995) use several
data mining techniques including Bayesian networks to
assist the CBR process. Daphne Koller and colleagues
(Koller et. al., 1997; Boutlier et. al., 1996) are working 
Bayesian networks as a functional programming language
in stochastic domains. Their work includes machinery for
object oriented Bayesian networks and a method to extract
context specific acyclic subgraphs for specific inference
tasks.

Our proposed system uses a BN to select a set of cases
during Retrieve. Reuse and Revise are independent of the
BN. During Retain the BN is updated and the case is
added. Hence, Microsoft Research’s Aladdin and Salford
system are most similar to our approach. The main
difference between our method and the two cited is in the
role of the cases. Opposed to Aladdin our system makes
explicit use of the cases in the user interaction. In Aladdin,
each user query is only answered with the results from a
BN inference task. The system generated at Salford also
uses a more shallow case definition than our.

4. Combining Bayesian and semantic networks

Bayesian networks are constructed using the vast amount
of background data stored within the company. Our goal is
to generate a Bayesian network containing the observable
attributes of the domain model both to discover new
relationships between them, and to verify the dependencies
already entered by the domain modeler. The result is a
submodel of statistical relationships, which will live their
own life in parallel with the "classic" model. The BN
generated submodel is dynamic in nature i.e. we will
continuously update the strengths of the dependencies as
new data is seen. This is opposed to the static relationships
of the classic domain model. The dynamic model suffers
from its less complete structure (we will only include
observable terms in this model) but has an advantage
through its sound statistic foundation and its dynamic
nature. Hence, we view the domain model as an integration
of two parts:

A "static" piece consisting of relations assumed not -
or seldom - to change (like has-subclass, has-component,
has-subproeess, has-function, always-causes, etc).
A "dynamic" part, which is made up of dependencies
of a stochastic nature. In changing environments, the
strengths of these relations are expected to change
over time. (Example: causes - in a more general sense)

A semantic network handles the static part. The Creek
system (Aamodt, 1994) for explanation-driven CBR
represents general domain knowledge as a densely coupled
network of concepts and relations. Figure 2 gives a visual
impression of a part of such a network in the domain of car
starting problems.

Figure 2: A tangled network of CreekL concepts

Each node and each link in the network is represented as a
frame object. As shown, a case is also a node in the
network, linked into the rest of the network by its case
features. Below is a frame showing a representation of a
solved case, described by its feature names (slot names)
and values.
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case#54
instance-of value car-starting-case diagnostic-case
has-task value find-car-starting-fault
has-status value solved
of.car value N-DD-234567
has-fault value broken-carburetor-membrane
has-fault-explanationvalue (.....)
has-repair value replace-carburettor-rnembrane
has-electrical-status value battery-low starter-motor-tums
has-engine-status value engine-turns engine-does-not fire
has-ignition-status value spark-plugs-ok
has-weather-condition value low-temperature sunny
has-driving-history value hard-driving

The has-fault-explanation slot (left out for clarity reasons)
contains an explanation of the fault as a path - or set of
paths - in the domain model, linking the fault to the
observed findings (see below).

The dynamic portion of the domain model extends the total
model with a new relation, which we name bn-influenees.
This relationship is learned from the data through a data
mining process as described above. BN inference methods
are subsequently used to make similarity calculations by
following the corresponding links in the domain model.
The result is an additional calculation method to compute
similarities, generate indexes, and guide the user when
entering information. Supplementary explanations can also
be generated (Chajewska & Halpern, 1997).

Empirical results from using BNs in different domains
indicate that classification is surprisingly robust when it
comes to errors in both network structure and local
distribution functions (Heckerman et al. 1995, Henrion et
al, 1996). Hence, the case retrieval process (which is 
inference task in our setup) is assumed stable.

Note that the set of vertices building up the Bayesian
network consists of more than the dynamic domain model.
We include a superstructure consisting of vertices
necessary to make sufficiently advanced inference in the
Bayesian network. Our proposed algorithm is as follows:

¯ Include all observable nodes. These can be symptoms
(leaf nodes) or influence factors ("top nodes")

* Include all target nodes, i.e. nodes which hold the
(concealed) information we are searching for

¯ Any node on an influence path from the influence
factors via the target nodes to the leaf nodes.

¯ A superstructure is made when two or more siblings
(vertices with a common parent in the static domain
model) have strong similarities, but are not connected
in the dynamic model. We then add the parent to the
Bayesian network vertices. As an example, fuel-system-
fault is included in the dynamic model (see Figure 3),
because the analyst felt there is a resemblance between
carburetor-fault and water-in-gas-tank.

¯ Cases are represented as binary variables, with their
relevance given as the probability of being "On".
Cases are leaf nodes (i.e. they have no children), and
their parents are given by the set of relevant findings
for this case.

In Figure 3 a causal explanation structure for the car
domain, derived from the model illustrated in Figure 1, is

shown. A simplified Bayesian knowledge structure for the
same domain was found by following the steps described
above. The result is superimposed in the picture. Vertices
that are both in the Bayesian and "classic" domain models
are black; vertices only in the classic model are white.

""tS’.--
/~s-f*~ ,,’ ~’’0 carburellor ocondenutlon.ln.gM.tank

hsc ~.~*-t~/tcarburettor.fault / obtervoblHtol°
f"°~’Y’t’m’n2=~.~ . =’~,, ..-O

muse /
too.rlc h.ga~;xtu re.ln .¢yl, rider m~’dN~ ~.~ 0

- " no-chamber-Ignition ~ onlgm~lurns
engine-does-not-fire

Figure 3: Partial knowledge structure from the ear
domain. The Bayesian network is superimposed

Edges included in both the Bayesian network and the
classic domain model (these are the relation types hsc and
causes for this simple example) are black; edges only in the
classic domain model are dotted. Hence, the causes
relations along full, black lines should be interpreted as
causes + bn-influences. The network only identifies which
nodes that are part of the BN. Since no data has been seen
yet, there are no conditional dependency tables attached to
the bn-influences links.

The network structure predefined in this manner may in
principle also be altered by the data mining part. The
dynamic domain model is incrementally monitored and
updated as new data is given to the system. This Bayesian
learning, which is orthogonal to learning through storage
of new cases, consists of two parts; both the qualitative
structure of the network and the strength of each edge are
adjusted. This incremental learning of the edge strengths is
straightforward using standard methods for complete data
sets; when the data, is prone to missing values, the EM
algorithm (Dempster & al., 1977) or the steepest ascent
(Binder & al., 1997) must be used. Methods 
incrementally control the model structure exist as well.
(Lam & Bacchus, 1994) propose a method based on the
MDL principle, simpler methods (like peeling off Noisy-
OR gates) are also applicable. A heavily researched task in
the BN community is to define theory to detect and handle
hidden variables (Heckerman 1997). One tries to pinpoint
unknown conditions (i.e., not in the domain model)
influencing the domain by looking for variations in the
observed behavior not explained by the domain model. In
our approach, these methods will serve as a technique to
find sub models of the domain that are poorly modeled.

5. Bayesian case retrieval

Each case is indexed by the Bayesian network by a binary
feature link (on or off, with probability). The standard
Creek process of choosing index features is adopted, taking
both the predictive strength and necessity of a feature into
account. The retrieval of cases is a two step process:

Pass 1: The observed features (from the new case) are
entered as evidence into the Bayesian network. The



Bayesian network is updated (i.e., the inference method is
applied), and each case is allocated a probability of being
On. This is calculated on the basis of the conditional
probability P(Case node is OnlFeatures of New case),
which then represents the similarity metric. Every case
with a probability exceeding some threshold value, t, is
retrieved. The context specific value t must be found
through trial and error, typically between 5 and 10 cases
are activated in Pass 1.

The procedure is exemplified in Figure 4. One feature node
is instantiated (drawn black), and the information flows
through the nodes in the network. The affected nodes
("vertices" in BN terminology) are shaded according to the
degree of influence. Eventually, the information flows to
the case nodes (drawn as squares in the network). One 
the cases are affected by the information entered (i.e., its
probability for being "On" is altered), the other is not
affected by the information entered.

Figure 4: Retrieve in the Bayesian network

Pass 2: The cases that were activated during Pass 1 are
retrieved for further processing. We want to select k>_l of
the plausible cases, and to do so the system infers what
type of information that is best suited for discriminating
between the plausible cases. A BN approach will be to look
up one of the (yet unseen) observable nodes. If, in Figure
4, both cases shown are retrieved, a choice for the
discriminating information may be the node that influences
both cases. Pass 2 is repeated until k cases are standing out
as the most plausible.

This approach can be combined with the explanatory
process of a basic Creek system (Aamodt, 1995), either 
two separate methods or as a combined method. We are
investigating both.

6. Discussion

We are currently in the process of implementing the BN
method into the Creek system in order to test out the
different integration options. The main CBR engine in the
NOEMIE project is the KATE system, which now is being
extended and linked to Creek methods. The methods will
be adapted to incorporate the use of BN that turns out most
successful.

A particular feature of the Bayesian network submodel is
its dynamic nature i.e. the strengths of the dependencies are
continuously updated as new data is seen. Hence, the
system is adaptable, both because new cases are stored in
the system, but also because we are able to continuously
monitor the adequacy of the domain model. The main
disadvantage is the extra computational complexity
introduced; hence domains which are static and

deterministic, or without an interesting causal structure
(like recognition of faces) are not suited for the proposed
integration.

The dynamic BN submodel suffers from its less complete
structure, but has an advantage through its sound statistic
foundation. Therefore the BN submodel cannot replace the
classic domain model; the two must work in cooperation.
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Appendix A

1. Integration name/category: Bayesian Networks and
CBR.

2. Performance Task: Any, but primarily diagnosis and
information focusing in open, weak theory domains.

3. Integration Objective: Bayesian network (BN) assists
in retrieval and indexing, and in learning of general
domain knowledge.

4. Reasoning Components: BN (for computing similarity)
and maintaining a "dynamic" domain model.

5. Control Architecture: Interleaved (BN used within
subprocesses of CBR).

6. CBR Cycle Step(s) Supported: Retrieval, Reuse, and
Retention.

7. Representations: Semantic net for domain knowledge,
the BN is a subset of semantic net with additional
conditional probabilities. In the BN, case nodes are
binary variables linked to the case features.

8. Additional Reasoning Components: Model-based
reasoning.

9. Integration Status: Proposal building on previous work
(Creek).

10. Priority future work: Empirical evaluation.




