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Abstract

This short paper presents our experience in facing
different levels of integration of CBR techniques
with other system components and techniques in-
side decision support systems for controlling envi-
ronmental emergencies. The integration require-
ment at the level of system components is distin-
guished from the integration requirements at the
level of specific steps in the CBR problem solving
cycle. We describe how these aspects have been
dealt inside two systems, CHARADE and CAR-
ICA, and point out the influence of this work on
our current activity.

keywords: interactive planning, constralht satisfac-
tion problem, feature weighting.

Introduction
This paper presents our experience in using CBR tech-
niques to develop advanced functions in decision sup-
port systems (DSSs) for complex domains, such as DSSs
for controlling environmental emergencies.

In real application domains CBR can be effectively
exploited when it is integrated both with other tech-
niques and with other software system components.
That is, first from a software system perspective the
CBR problem solving architecture often must collab-
orate with other components depending on the appli-
cation needs. For instance, ifi a DSS for controlling
environmental emergencies CBR may interact with a
geographical information system or with a data base or
with a external environment simulator. We shall call
that type of integration "collaboration".

Second, the CBR technology itself can include other
techniques to address some of the steps in the CBR
problem solving cycle (Aamodt & Plaza 1994). For
example in the "reuse" step is becoming more and
more common to use constraint satisfaction techniques
to adapt the candidate solution (Purvis & Pu 1995;
Wilke, Smith, & Cunningham 1998). Another exam-"
pie is the application of feature weighting techniques,
which are-borrowed from machine learning, to improve
the similarity evaluation step (Wettschereck, Mohri, 
Aha 1997; Ricci & Avesani 1995). This second type of
integration will be called "inclusion".

We have been concerned with these two levels of inte-
grations during the development of DSSs designed for a
specific application domain: fighting forest fires. This
is a complex domain due to the fact that the forest
fire evolution depends on several environmental vari-
ables and can be poorly modeled, resulting in uncer-
tainty and incompleteness of the data. Moreover the
decision maker (the target user of our systems) must
perform situation assessment, build a plan of first in-
tervention, allocate and dispatch resources as soon as
possible, pressed by the impending danger for people
and things. A domain theory that provides a way to
compute the effects of a precise decision cannot exist.

In particular we have been concerned with support-
ing two basic activities performed by the users of our
systems: planning for the first intervention in case of an
emergency; training for emergency management. Both
activities rests on reasoning tasks that are usually per-
formed by exploiting past experience in the domain,
which suggests to consider CBR techniques as a com-
mon core. The effectiveness of using CBR techniques
for quickly providing a draft solution to be adapted to
the current situation has been pointed out also in other
studies concerning crisis response planning (Gervasio,
Iba, ~ Langley 1998). In order to develop effective
functions we integrate CBR with different specialized
techniques such as temporal reasoning techniques, ma-
chine learning and data visualization techniques.

These functions have been developed and tested in-
side two demonstrators: CHARADE, a system aimed
at supporting the user in the whole process of fire fight-
ing including both situation assessment and planning
activities (Ricci et al. 1994), and CARICA (Avesani,
Terral, &Martin 1997), a system that supports training
for intervention planning.

In this paper we shall explain how we dealt with the
different types of CBR integrations defined above, in
the framework of these two projects.

We will consider the collaboration type of integration
first, then the inclusion type.

We shall conclude the paper with one lesson. CBR
can be really exploited inside a real application when
available as a library of functions ready to be integrated
with the other software components rather than as an
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independent software tool, as it is more common in com-
mercial products. These considerations motivate our
current work in developing a CBR C++ library, called
CBET (Avesani, Perini, & Ricci 1997).

Collaboration
This section discusses the integration of CBR witi~ other
system components inside the CHARADE and CAR-
ICA systems.

Planning the first intervention
Planning the first intervention during a forest fire emer-
gency, requires to mix planning and situation assess-
ment according to a precise operational work-flow that
is typical of each fire fighting organization. This ac-
tivity is supported in CHARADE by a CBR planner
which is integrated with a geographical information sys-
tem (GIS), with a DBMS of the resources and with 
numerical fire spreading model.

The relationships between the system components is
depicted in Figure 1. In particular the GIS manages
thematic mapping (roads, rivers, bases, etc.), visualizes
the fire front evolution, as forecasted by the fire spread-
ing model, and allows to perform spatial queries. This
helps the user in focusing the spatial analysis on par-
ticular zones of the fire front (called also sectors) where
some actions (water spraying, control line, back fire,
etc.) have to be executed in order to protect people
and valuable things or simply to control the fire. This
spatial information (sector length and orientation, ac-
cessibility, availability of water reservoirs near the sec-
tor, type of vegetation) provides part of the predictive
features used by the planner. Other predictive features
concern the fire’s physical parameters and are directly
provided by the fire spreading model. Finally other
data, which are concerned with the availability of the
resources located in the bases closest to a sector, are
provided by the resource data base.

On the basis of these scenario data the planner re-
trieves candidate plans that can be adapted to the cur-
rent fire emergency. The resulting plan is a correct so-
lution for the current emergency and defines a resource
allocation problem to be solved by an additional system
component, the scheduler. The solution computed by
the scheduler is a list of orders to be sent to the bases
for resource dispatching. This ends the intervention
planning process supported by CHARADE.

Training for intervention planning
Training for intervention planning means to promote
the process of learning and improving planning strate-
gies and tactics by firemen. This kind of training activ-
ity is traditionally performed by playing a simulated
emergency scenario built on the basis of past cases.
Teachers of fire fighting planning define a new realis-
tic scenario by exploring a memory of cases.

CARICA supports both the activity of feeding a case
base of past emergencies, providing a specific module

for cases acquisition, and the case base exploration ac-
tivity, providing a second module based on CBR. The
complexity of the case acquisition phase rests on the
fact that the user is more familiar with a graphical rep-
resentation of the plan where actions are depicted as
appropriate icons on the map, as it is typical in a mili-
tary domain. An example is given in Figure 2. There-
fore the first module provides a specific graphical tool
for this type of plan description which is a component
of the case emergency description. The second mod-
ule provides a range of browsing and display functions
that make possible knowledge extraction from a set of
cases. It allows to detect dependencies between data,
acquire practical planning competencies, visualize com-
plex data, clustering similar cases. These functions rest
on the integration of CBR retrieval techniques with well
rooted machine learning techniques for selecting rele-
vant features, clustering cases and forecasting unknown
values.

Inclusion
In this section we describe some examples of how spe-
cific techniques, such as constraint satisfaction and ma-
chine learning techniques, have been exploited to im-
prove some steps inside the CBR problem solving cycle.

Constraint satisfaction for plan adaptation

The CHARADE planner, as mentioned above, retrieves
plans matching scenario features resulting from the
assessment phase. The candidate plan needs to be
adapted to the current scenario in order to yield an
executable plan. Different approaches to this task are
discussed in (Veloso, Munoz-Avila, & Bergmann 1996;
Leake, Kinney, & Wilson 1996), some of them (i.e.
generative adaptation) are not suitable for intervention
planning in the fire fighting domain that lacks a genera-
tive problem solver. In CHARADE the adaptation task
is performed in two steps. The retrieved plan includes a
set of constraints, on time and resource variables, that
are automatically propagated and checked against other
descriptive variables of the current situation. A further
adaptation phase is realized through an interactive pro-
cess of editing activities performed by the user, like in-
serting/deleting actions, modifying action durations or
temporal relations between parts of the plan. The Plan-
ner architecture depicted in Figure 1 shows the use of
a constraint reasoning module that manages the con-
straint network associated to a plan and supports both
adaptation steps.

Plan adaptation exploits constraint reasoning tech-
niques for modeling the constraints on actions and
checking their consistency. In particular we focused on
the temporal constraints of a plan. For example a plan
for controlling the fire on a given sector can be imprac-
tical if the time required to perform it is greater than
the deadline posed by the fire propagation toward that
sector, actions can have minimum and maximum dura-
tions, and so on.
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Figure i: The components of the CHARDE system. The Situation Assessment module provides a scenario description
to the CBR module. The Planner supports the user for plan definition and yields an allocation problem to be solved
by the Resource Scheduler. The Planner includes: the case-based reasoner, which retrieves (stores) plans from (to)
the plan memory; the plan space is the data space in which plans are installed; the action manager, that manages
the user requests to modify the plans installed in the plan space; the constraint reasoner, in which variables and
constraints are created and constraint reasoning algorithms called.

These constraints can be modeled in terms of
bounded difference between the time points correspond-
ing to the actions start and end times. This defines a
CSP problem on variables with continuous domains ac-
cording to the formalization given in (Dechter, Meiri, g~
Pearl 1991), the so called Temporal CSP (TCSP). 
variables represent the actions start and end times. The
constraints are those representing the minimum dura-
tion of actions and those representing the temporal re-
lations between the actions. In the CHARADE system
we considered a tractable subset of the TCSP formal-
ism, the Simple Temporal Problem formalism that ad-
mits a single bounded difference constraint between two
variables. Particular attention has been devoted to the
analysis of how the different temporal reasoning compu-
tations that can be performed on a STP (determining
the network consistency, computing the feasible times
for the variables of the network, computing the mini-
mal network representation) can be better implemented
and used in order to efficiently support the interactive
process (Perini & Ricci 1995). This analysis motivated
our research on efficient algorithms for the incremen-
tal updating of constraint networks (Gerevini, Perini,
& Ricci 1996).

Feature weighting for case retrieval

Feature weighting is a technique, which originates from
pattern recognition and machine learning, that has be-
come popular in many CBR systems. The CHARADE

system uses it to select in a more appropriate way the
plan applicable in a given emergency situation. Con-
versely, in the CARICA system, where CBR is mainly
used for information retrieval purposes, weighting is
strongly influenced by the users goals expressed by dif-
ferent queries to the system.

The retrieval function in the CHARADE planner ex-
ploits a novel approach to compute nearest neighbor
based on a local metric that we called LASM (local
asymmetric similarity metric) (Ricci & Avesani 1996).
This approach rests on two basic assumptions. The first
one (locality) states that the metric is defined locally:
the space around a trial case is measured using the
metric attached to that case. The second one (asym-
metric) states that the distance between two points in
a continuous feature space Fi is not symmetric, i.e.,
di(zi, yi) :fi di(yi,xi). In fact we use two different
weights for the "left" and the "right" directions.

We also provide a learning procedure for adapting
the local weights to the input space. This proce-
dure is a typical feedback feature weighting method
(Wettschereck, Mohri, & Aha 1997). Our model ba-
sically implements an anytime algorithm (Boddy 1991)
that updates the distance between an input case c and
its neighbors depending on the role of the neighbors
in solving c. If the nearest neighbor nn can be used
correctly to solve c the distance between c and nn is
decreased (reinforcement), otherwise the distance be-
tween c and nn is increased (punishment). These tech-
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Figure 2: Example of the graphical plan representation used by firemen. The fire front evolution at different times,
are drawn as closed lines. The black arrows indicate the wind direction. The labeled box icons represents the different
actions to be performed (in the zone where the icon is located). For instance the icon labeled CCFM indicates the
action of water spraying with a medium tank truck, at the fire head.

niques were fully evaluated through a set of experiments
on popular datasets, as described in (Ricci & Avesani
1995). Concerning the fire fighting domain the valida-
tion activity performed by the final user focused mainly
on the higher level functions of the system so that the
effectiveness of these retrieval techniques for the specific
domain was only partially tested.

In CARICA retrieval has not been primarily designed
for classification or problem solving, even if that can be
supported. Retrieval must satisfy user’s information
needs when a query is executed by the system and fea-
ture weighting is therefore tailored for that purpose. In
a second application, when the user asks the system for
a graphical plot of 0, given feature the system weights
those features that explain better the variation of the
input feature in the dataset (Chambers & Cleveland
1983).

For these purposes we have implemented in CARICA
weighting methods based on Information Theory. If the
user is focused on a particular feature fT, and he/she
is interested in discovering what other features may ac-
count for the behavior of fT, then a statistical criterion
may be used to detect such a dependency. We hypothe-
size that the features that maximize the "purity" objec-
tive functions, which are used for top down induction
of decision trees (TDIDT) (Weiss & Kulikowski 1991),

can be exploited.

Conclusions
This short paper describes our experience in dealing
with different integration levels of CBR techniques in-
side DSSs designed for supporting emergency man-
agement tasks, such as planning the first intervention
(CHARADE) and training for intervention planning
(CARICA).

In particular we have distinguished a first type of in-
tegration, that we have called collaboration, which con-
cerns the integration of the CBR module with other
software system components. At this level the CBR
planner in CHARADE collaborates with a GIS, a data
base of resources, a fire spreading model and a sched-
uler. The CBR exploration module of CARICA collab-
orates with a module for case acquisition built upon a
specialized graphical tool for plan description. A sec-
ond level of integration, called inclusion, concerns the
exploitation of specialized techniques inside the CBR
problem solving cycle, such as constraint satisfaction
techniques for plan adaptation and machine learning
feature weighting techniques to improve the similarity
evaluation step and obtain a more effective case re-
trieval.

This experience stimulated a current project aimed

2O



at recasting the techniques described in this paper in
a C++ library, called CBET, allowing a flexible multi-
level integration of CBR components into different, spe-
cific real applications (Avesani, Perini, & Ricci 1997).
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CBR Integrations Questions

1. Integration name/category: CHARADE

2. Performance Task: Situation assessment & plan-
ning

3. Integration Objective: Plan adaptation

4. Reasoning Components: Constraint reasoning
(temporal)

5. Control Architecture: CBR as master

6. CBR Cycle Step(s) Supported: Reuse, Revision

7. Representations: Simple temporal constraints

8. Additional Reasoning Components: GIS,
DBMS, scheduler, user (adaptation)

9. Integration Status: Applied

10. Priority future work: Integration with decision-
theoretic planning techniques

1. Integration name/category: CARICA

2. Performance Task: Training device for interven-
tion planning

3. Integration Objective: Information Retrieval

4. Reasoning Components: Inductive feature
weighting

5. Control Architecture: CBR as master

6. CBR Cycle Step(s) Supported: Retrieval

7. Representations: User information needs

8. Additional Reasoning Components: Browser,
data visualization

9. Integration Status: Applied

10. Priority future work: Porting and engineering
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