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Introduction

A wide variety of multiple-paradigm reasoning systems
have been developed in recent years. Case-based rea-
soning (CBR) is very frequently one of the reasoning
paradigms in such integrations. Three justifications for
the integration of multiple reasoning paradigms can be
distinguished.

First, the domain may be characterized by multi-
ple knowledge representations. Reasons for multiple
knowledge representations include the following:

¯ Institutional. Law typifies a domain with mul-
tiple distinct knowledge sources--statutes and
precedents--that are not reducible to one another.

¯ Cognitive. In some domains humans typically reason
with multiple representations, e.g., pictures, text,
and equations. Modeling human problem-solving
behavior in these domain requires using these mul-
tiple representations as well.

¯ Computational. A single domain may give rise to
multiple representations specialized for various dis-
tinct subtasks.

¯ Domain theory incompleteness. A domain theory
may consist of several distinct knowledge sources. If
the domain theory is incomplete, it may be unclear
how to reduce these multiple knowledge sources to a
single representation.

A second justification is to improve computational
efficiency. For example, search can often be reduced
by caching macros or cases so that previous search
episodes can be reused. Conversely, an induction al-
gorithm may be applied to induce general rules from
cases. However, it is sometimes desirable to retain the
cases as well as the induced rules.

1This research was supported in part by NSF Career
Grant IRI-9502152.

The third justification is to improve problem-solving
completeness or accuracy. In many domains, no single
knowledge source or problem-solving method is indi-
vidual sufficient for accurate and efficient problem solv-
ing. Moreover, explanations in some domains require
reference to multiple methods or knowledge sources. In
these cases, the problem-solving methods are comple-
mentary in the since that each component compensates
work a weakness of the other.

This paper describes two general paradigms of com-
plementary integrations involving CBR. In the first,
approximate-model-based adaptation, cases and models
represent opposite extremes on a continuum of possi-
ble tradeoffs between certainty and generality. In the
second, integration of rules and cases in weak-theory
domains, both rules and cases reduce the uncertainty
in the other’s applicability conditions. Several systems
representative of each paradigm will be described.

Approximate-model-based adaptation

Model-based adaptation (MBA) consists of using case-
based reasoning to find an approximate solution and
model-based reasoning to adapt this approximate so-
lution into a more precise solution. The first systems
using model-based adaptation assumed the existence of
a perfect domain model, e.g., (Koton, 1988; Goel, 1991;
Bhatta and Goel, 1996). By contrast, a more recent
form of MBA is premised on the absence of a com-
plete and correct domain model. In this approach,
cases compensate for incompleteness in the model by
providing a set of reference points with known solu-
tions. Conversely, models compensate for insufficient
case coverage by permitting the solutions associated
with cases to be adapted to sufficiently similar situa-
tions. This form of MBA is termed approximate-model-
based adaptation.

Approximate-model-based adaptation is suited for
domains in which cases have high certainty but low
generality, and models have low certainty but high gen-
erality. As argued in (Branting, 1998), many forms 
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Figure 1: In domains suited for approximate-model-
based adaptation cases have high certainty but low
generality, and models have low certainty but high gen-
erality.

control planning for physical systems require use of
cases and models with these characteristics. For ex-
ample, models of many ecological, biological, chemi-
cal systems encountered in engineering, manufactur-
ing, and agriculture, are incomplete, either because a
complete state description for such systems cannot be
determined or because the number and type of interac-
tions between system elements are poorly understood.
Moreover, while historical data often exist for such sys-
tems, they are often insufficient for accurate prediction
and control using empirical methods. In such systems,
both models and empirical data exist, but neither is per
se sufficient for accurate control decisions. Accurate
prediction and control of the behavior of such systems
requires exploitation of multiple, individually incom-
plete, knowledge sources.

Examples of Systems Using

Approximate-Model-Based Adaptation

CARMA

CARMA is an advisory system that helps ranchers and
pest managers determine the most economical response
to grasshopper infestations. Grassland pest manage-
ment is typical of the physical-system control plan-
ning tasks described in the previous paragraph. The
task is to select a set of control actions, such as ap-
plying chemical or biological control agents, to mini-
mize expected forage consumption by pests. Numerical
models of grasshopper physiology and life cycles and
of grassland ecology have been developed by entomol-
ogists, but these models are incomplete and require
more data than is typically available for management
decisions (Lockwood and Lockwood, 1991). Some spe-
cific cases are available, but the absence of systematic
record-keeping on rangeland pest infestations means
that the number of cases is relatively small. Thus,
neither the domain model nor empirical data are indi-
vidually sufficient for accurate prediction.

The design of CARMA’s forage consumption com-
ponent was based on the hypothesis that an integra-
tion of model-based and case-based reasoning can lead
to more accurate forage consumption predictions than
the use of either technique individually. This hypothe-

sis was based on the observation that neither the causal
model nor the empirical data available for rangelands
are individually sufficient for accurate prediction. To
test this hypothesis, CARMA’s empirical and model-
based knowledge components were each tested in iso-
lation and the results compared to the performance of
the full CARMA prediction system.

In an empirical evaluation described in (Branting
et al., 1997), the ability of CARMA’s forage consump-
tion module to duplicate the predictions of entomolo-
gists experienced in grasshopper management and ecol-
ogy was compared to the following:

¯ CBR only: CARMA’s forage consumption module
with all model-based adaptation disabled.

¯ Other purely empirical methods

- Decision-tree induction using ID3.

- Linear regression.

¯ Model only: a numerical simulation based on
CARMA’s model of rangeland ecology.

The accuracy of each approach was tested using
leave-one-out testing for the sets of predictions by each
expert and for a data set consisting of the median of
the predictions of individual experts on each case. The
full CARMA prediction system was tested using both
global adaptation weights (CARMA-global) and case-
specific adaptation weights (CARMA-specific). The
root-mean-squared error for each of the methods, set
forth in Figure 2, provides initial confirmation of
the hypothesis that integrating model-based and case-
based reasoning through model-based adaptation leads
to more accurate forage consumption predictions than
the use of either technique individually.

FormTool

FormTool is a system for selecting colorants for plas-
tic coloring (Cheetham and Graf, 1997). A coloring
theory, Kubelka-Munk color theory, can be used for
this task, but it requires exhaustive search, fails to
take into consideration all the important attributes of
a color match, and typically yields a nonoptimal solu-
tion. While a large library number of formulae exists,
it is very unlikely that a new color will precisely match
an existing formula.

FormTool retrieves the color formula that most
closely matches the a given sample using a fuzzy simi-
larity metric. Kubelka-Munk color theory is then used
to predict the effect of incremental changes in the re-
trieved formula. Adaptation consists of hill-climbing
to reduce to difference in between the sample’s color
and the color of the adapted formula as predicted by
Kubelka-Munk color theory.

29



CARMA Empirical Only Model-Based Only
Specific Global CBR ID3 Linear Numerical
weights weights only regression simulation

Expert sets 13.3 14.2 21.1 34.9 25.6 29.6
Median set 9.7 10.0 22.8 35.2 11.9 28.8

Figure 2: Root-mean-squared errors (in %) for leave-one-out-test results.

As with rangeland pest management, colorant selec-
tion is a task for which there is a model which is power-
ful but not accurate enough to use independently and
a large but insufficient collection of cases. The integra-
tion of these two knowledge sources, however, yields an
effective system.

Sophist
Sophist is a system for bioprocess recipe planner
(Aarts and Rousu, 1996; Rousu and Aarts, 1996;
Aarts and Rousu, 1997). Although many bioprocesses,
such as beer brewing, have fairly well-understood mod-
els, these models are typically not precise enough to
permit bioprocess planning through model-based rea-
soning alone. Numerous effective recipes are known,
but new conditions require development of new recipes.
Bioprocess recipe planning is therefore a physical-
system control planning task. Although there are both
extensive cases and a powerful model, these knowledge
sources are individually insufficient and must therefore
be integrated.

Sophist uses a domain model expressed in Qualita-
tive Process Theory for case adaptation. Cases are
indexed by a discrimination net. Cases are adapted
by using a qualitative model to identify a set of adap-
tation goals, changes that would reduce the difference
between the results of the retrieved case and the cur-
rent specifications. The adaptation actions associated
with each adaptation goal are then performed in order
of expected benefits.

The three approximate-model-based adaptation sys-
tems are summarized in Figure 3.

Integration of rules and cases domains

with non-operational concepts

A second paradigm for complementary integration is
the integration of rules and cases in domains char-
acterized by non-operational concepts. This non-
operationality typically arises from uncertainty about
whether abstract terms are satisfied by particular col-
lections of facts (Porter et al., 1990). In legal rea-
soning, this phenomenon is termed open-texture (Hart,
1958). For example, determining whether a rule for
negligence liability applies in a given case requires de-
termining whether there was a "failure to exercise rea-

sonable care," but there may be considerable uncer-
tainty concerning whether a particular set of facts sat-
isfies the abstract concept "reasonable care." A wide
range of human concepts are characterized by "poly-
morphy" (?) or "graded structure" (?) that necessi-
tates use or prototypes or exemplars for categorization

(?).
In domains with non-operational concepts there is

uncertainty concerning the conditions for applicability
of both rules and cases to the top-level goal. Uncer-
tainty in the applicability conditions of rules can arise
either from the absence of inference rules connecting
abstract concepts to specific facts (i.e., "the rules run
out" (Gardner, 1984)) or because rules are over-general
(Golding and Rosenbloom, 1996). Uncertainty in the
applicability conditions of cases arises from the absence
of a well-defined relevance criterion capable of deter-
mining the importance of case differences (Ashley and
Rissland, 1988).

A number of different approaches to complementary
integration of rules and cases have been implemented.
In one approach, typified by Protos (Bareiss et al.,
1990),general knowledge in the form of rules is used in
the assessment of case similarity. For example, back-
ground knowledge of causal connections between phys-
iological conditions and symptoms could be used to to
reason about whether the symptoms of a new case are
consistent with the causal model that accounted for the
symptoms of a precedent. This approach was termed
case elaboration in (Branting and Porter, 1991).

A second approach uses rules to combine multiple
case-based reasoning steps or reformulate a top-level
goal in such a way as to improve case matching. This
approach was termed term reformulation in (Branting
and Porter, 1991). For example, CABARET (Skalak
and Rissland, 1992) used a blackboard architecture to-
gether with a sophisticated set of heuristics for choos-
ing among the rules and cases applicable each current
goal. A related approach was used in ANAPRON, a
system for proper-name pronunciation, in which cases
represented exceptions to general pronunciation rules
(Golding and Rosenbloom, 1996).

Several hybrid architectures, including GREBE
(Branting and Porter, 1991) and EXPANDER
(Walker, 1992), have been devised that permit both
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System CARMA FormTool Sophist
Task Forage loss Colorant recipe Bioprocess

prediction planning recipe planning
Model Grasshopper Kubelka-Munk Qualitative

simulation + color theory Process Theory
adaptation weights

Cases Grassland Colorant Bioprocess
infestations recipes recipes

Figure 3: Three systems for approximate-model-based adaptation.

CBR as a subgoai of rule-based reasoning and rule-
based reasoning to assist case matching at any stage of
the problem-solving process.

All these systems are characterized by a domain the-
ory in which neither rules nor cases are individually
sufficient. This insufficiency arises because of the ab-
sence of either a unique, correct rule for the top-level
goal or of a unique case that clearly matches the cur-
rent facts. Under these circumstances, the most per-
suasive and likely result requires reasoning with both
rules and cases.

Summary

This paper has described two general paradigms of
complementary integra-
tions involving CBR: approximate-model-based adap-
tation, and integration of rules and cases in domains
with non-operational concepts. Approximate-model-
based adaptation is appropriate when cases have high
certainty but low generality, and models have low cer-
tainty but high generality. Control planning tasks for
physical systems, such as ecological, biological, chemi-
cal systems, often give rise to these conditions.

Techniques for integrating of rules and cases, such
as case elaboration and term reformulation, are ap-
propriate in weak-theory domains in which both rules
and cases can provide only uncertain inferences. A
number of systems using these techniques have been
implemented, including systems in law, medicine, and
pronunciation.
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Appendix
1. Integration name/category

(a) CARMA, FormTool, and Sophist

(b) GREBE, CABARET, Protos (and others)

2. Performance Task:

(a) Control planning tasks for physical system
(b) Argument generation

3. Integration Objective:

(a) Cases compensate for low certainty of model;
model compensates for low generality of cases.

(b) Cases operationalize rule antecedents; rules assist
case matching

4. Reasoning Components

(a) Cases + model used for adaptation

(b) Cases + rules

5. Control Architecture

(a) CBR as master

(b) Complete reciprocity between rules and cases (in
GREBE, CABARET, and EXPANDER)

6. CBR Cycle Step(s) Supported:

(a) Adaptation

(b) Selection of the goal to which CBR is applied, de-
termining degree of match.

7. Representations

(a) CARMA: Grassland/Grasshopper population dy-
namics model, adaptation weights (determined
through wrapper procedure), match weights (de-
termined through information gain), feature infer-
ence rules

(b) GREBE: Legal and common-sense rules, taxo-
nomic hierarchies, semantic network representa-
tion of cases

8. Integration Status

(a) Empirically evaluated (CARMA), fielded
(CARMA, FormTool, Sophist)

(b) Empirically evaluated (GREBE)

9. Priority future work

(a) Determine range of applicability

(b) Develop knowledge-acquisition tools for domains
with complex concept structure
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