From: AAAI Technical Report WS-98-15. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

Integrating CBR and Heuristic Search to Solve

Complex Real-Time Scheduling Problems

Juan Manuel Adan Coello” and Ronaldo Camilo dos Santos™

* Instituto de Informatica, PUC-Campinas, Cx.P. 317, CEP 13.020-904, Campinas, SP, BRAZIL
juan@zeus.puccamp.br
** Faculdade de Engenharia Elétrica ¢ de Computagiio, UNICAMP
ronaldoc@dca.fee.unicamp.br

Abstract

This paper presents the Case-Based Reasoning Real-Time
Scheduler system (CBR-RTS), that integrates into a case-
based reasoning framework a heuristic search component to
schedule complex real-time tasks. The problem addressed
involves scheduling sets of tasks with precedence, ready
time and deadline constraints. CBR-RTS uses the solution
of known cases to simplify and solve new problems. When
the systems does not have applicable cases, the new
problem, complete or already simplified, is passed to a
learning algorithm that searches for a solution using a
dedicated algorithm, currently an implementation of a
searching algorithm proposed by Xu and Parnas. A
particularly interesting feature of CBR-RTS is its learning
ability. New problems solved by the learning module can be
added to the case base for future reuse. Performed tests have
shown that small bases of cases carefully chosen allow to
substantially reduce the time needed to solve new complex
problems.

Introduction

Most scheduling problems of practical interest are NP-
complete (Blazewicz, Lenstra and Kan 1983) and are
usually solved using heuristic search methods. An inherent
characteristic of traditional schedulers based on heuristic
search is its lack of ability to learn from experience. New
problems identical, or very similar, to other problems
already solved in the past have to be solved again form
first-principles every time they are found. This procedure
wastes time and resources usually scarce to deal with
problems previously faced, for which it was already found
a solution or discovered that the problem can not be solved
applying available methods.

This paper present the architecture of the Case-Based
Real-Time Scheduling System (CBR-RTS), that integrates
into a case-based reasoning framework a heuristic search
component to solve complex real-time scheduling
problems.

The problem addressed here involves scheduling a set of
tasks with precedence relations and timing constraints
(ready time, execution time and deadline) on a
monoprocessed computer.

39

CBR-RTS Architecture

In CBR-RTS, scheduling problems are described by
acyclic directed labeled graphs, where nodes denote the
tasks to be scheduled and arcs the precedence relations
between the connected tasks. Nodes have attributes that
specify their timing constrains, as shown in figure I.
Although not used in this version, arcs may also have
attributes, for example do express the time needed to
transmit the results of a computation made by a
predecessor node to a successor node in a distributed
system (Adéan, Magalhdes and Ramamaritham, 1995).
Figure 2 presents the structure of CBR-RTS. It consists
of a case base (CB), a case retrieval module, a case reusing
module and a learning module. The case base stores the
description of scheduling problems solved in the past and

2
i
®
i node id.

Ci computation time
r; ready time
di deadline

AN

precedence

Figure 1: Representation of a Scheduling problem

Problem

NEW

+

Similar Cases

PROBLEM

;@UEVAL

.. 4
Similar
Cases

CASE BASE

Problema

Solution

SOLUTION

Solution

New Case

(Problem + Solution)

Figure 2: CBR-RTS System Structure

their respective solutions.

The retrieval module is responsible for finding in the
case base old problems similar to the new problem or to
parts of it. The reusing module employs retrieved cases to
solve or simplify the problem. The learning module is
responsible for searching for solutions to problems that
could not be solved using stored cases.

The retrieval module can retrieve past cases similar to
the new problem as a whole or to parts of it (subproblems).
In the first situation, the retrieved solutions are adapted to
solve the new problem. In the second situation, the
retrieved cases are used to simplify the new problem, and
new cycles of retrieval and simplification are performed
until the complete problem is solved or until it is necessary
to use the learning module.

Figure 3: Graph describing a new problem

40

The Case Retrieval Module

The case retrieval module searches the case base looking
for stored cases (old problems) similar to the current
problem or to parts of it. A case and a new problem (or
subproblem) are similar if they are described by
structurally identical graphs and if all tasks in the new
problem have timing constraints at least as strict as the
corresponding tasks in the old problem. That is, if #; , ¢;,

Case Base (CB)

30)

Figure 4: Old problem in the case base similar to
subproblem x in new problem

Figure 5: New problem simplified

and d; are the ready time, computation time and deadline,
respectively, of task i in the new problem, and r’;, ¢’;, and
d’; the equivalent times for the corresponding task in the
old problem, the following relations have to be observed
for all corresponding tasks in both problems:

ri < rPisei<c’iand df = d’

The verification of the structural identity of new and old
problems is the most complex activity of the retrieval
process and involves the detection of subgraph
isomorphims. In the current version of CBR-RTS this is
done by an implementation of Messmer (1996) of an
algorithm proposed by Ullman (1976).

Figure 3 shows an example of a new problem to be
solved and figure 4 shows and old case retrieved from the
case base that is similar to subproblem x of the new
problem.

Case Reusing Module

When the retrieval module finds an old case identical to the
new problem, the solution of the old case is integrally
reused without any adaptation to solve the new problem.
When it retrieves a past case structurally identical to the
current problem, but with different ready time, execution
time or deadline, the old problem schedule is adapted.
Because the retrieved case has timing constraints at least as
strict as the new problem, the adaptation consists simply in
replacing the execution times of the old problem tasks by
the corresponding times of the new problem tasks in the
retrieved schedule.

When it is retrieved a case similar to a subproblem of the
new problem, the solution to the old problem is adapted to

laxity,

T: IT6]T7I

I 2 3 27 3z 34 Y

L
>

‘--_.,_,; Solution found
| by the PSPS

Figure 6: Schedule produced by PSPS for the
new problem simplified

41

New problem schedule

' d ! .
[T [B[T] [T[T]T]T]
7 S A (A A R A A >

Figure 7: Final schedule for new problem

solve the subproblem, as described above for the complete
problem, and the new problem is simplified substituting
the subgraph that represents the subproblem by a single
node. Then, the system performs new retrieval and reusing
cycles to try to solve the simplified problem.

Besides the observation of the structural identity and the
timing restrictions described before, to substitute a
subproblem by an equivalent task (a single node in the
graph) the case reusing module verifies if the subproblem
forms a group.

A group is characterized by a graph composed of an
entry node, an exit node and internal nodes. In a group,
internal nodes and the exit node can have as predecessors
only the entry node or other internal nodes, in the same
way, the entry node and the internal nodes can have as
successors only other internal nodes or the exit node.

Figure 5 shows the new problem or our example (figure
3) simplified using the old case found in the case base
(figure 4). We can see that subproblem x was replaced by
the equivalent node x..

The Learning Module

When it is not possible to solve a new problem using only
past experiences stored in the case base, the system passes
the problem to the learning module. The learning module
may find a solution to the problem or discover that the
problem is not schedulable. The problem description and
the solution found (a schedule) or an indication that the
problem is not schedulable are stored in the case base. That
is, the system can learn solutions for a new type of problem
or can learn that this type of problem has no solution. Both
lessons are worth remembering.

In the current version of CBR-RTS, the learning module
uses a scheduler implemented by Mello Jr. (1993), named
PSPS (Periodic and Sporadic Processes Scheduler), based
on a branch and bound search algorithm proposed by Xu
and Parnas (1990).

In our example, because the simplified version of the
new problem, shown in figure 5, has no similar cases in the
case based, it is passed to the learning module that
produces the schedule shown in figure 6.

Outputting a Problem Solution

When a problem is solved, the schedule produced to the
simplified problem is expanded to restore the subproblems

that were transformed into single nodes during the
simplification phase. This is done placing the solution to
the original subproblems (resulting from the adaptation of
the old problems schedules found in the case base) in the
time intervals reserved for the corresponding nodes.

In our example, figure 7 shows the final solution
produced by CBR-RTS for the new problem presented in
figure 3.

CBR-RTS Evaluation

This section discusses the performance of CBR-RTS when
applied to solve nine problems of increasing size and
complexity. The performance of CBR-RTS in solving
these problems is compared with the performance of the
PSPS system alone (the heuristic scheduler used by the
learning module).

The hypothesis that is being tested on this set of
experiments is that the reuse of solved old cases can
contribute to reduce the time needed to find feasible
schedules for new problems. As our retrieval module
involves isomorphism graph detection, a NP-hard
problems as is our original scheduling problem, several
parameters, for example, the size of each case and of the
whole case base, will have a major impact on the
performance of the system. In the described experiments
we decided to evaluate the behavior of CBR-RTS when
working with a case base composed of small cases. This
case base will rarely permit to solve new problems in one
single step, but could be used to simplify a high number of
large problems that will be solved in multiple retrieve-
simplify steps.

The Case Base (CB)

As Miyashita and Sycara (1995), we assume that although
scheduling is an ill-structured domain, it exhibits some
regularities that could be captured in a case. In our context,
we assume that scheduling problems tend to present typical
structural regularities and attribute values that characterize
the main classes of problems handled. Several problems
that have identical precedence relations can be represented
by graphs that share a common structure. These structures
can be automatically learned by the system as it faces new
problems. .

In order to simulate a situation in which CBR-RTS had
already passed for a learning period, fourteen small
problems, described by graphs from 2 to 6 nodes, were
presented to the system. Since the CB is initially empty,
and because the presented problems are not similar to each
other, they are completely solved by the learning module
and stored in the CB. The structure, ready times and
execution times of these problems were chosen in a way
that they could be highly reusable in the solution of the
testing problems described below.

Testing Problems

The nine testing problems (P,, P,, ... P;) have increasing

42

size and complexity, varying from 5 to 60 nodes with
several combinations of precedence relations and timing
constraints. The system was able to find a complete
solution for all but the 9th problem using only the cases
stored in the CB. For P,, after two retrieve-simplify cycles
the system had to use the learning module, because there
were no similar cases on the CB. The solution of these
problems gives some insight in the performance of the
CBR-RTS system with a stable CB, that is, a case base that
makes possible to solve most new problems without having
to employ the learning module.

CBR-RTS Performance

Table 1 shows the total processing times required by CBR-
RTS and PSPS for solving problems P, to P, in a 167 MHz
Sun Ultrasparc 1 workstation with 64 MB of RAM. We
can see that as problem size and complexity increases there
is also a sensible increase in the relative performance of
CBR-RTS compared with PSPS, as the consequence of
reusing past solutions.

Table 1 also shows CBR-RTS processing times by
phase. As expected, we can see that the retrieval phase
accounts for most of the processing time of CBR-RTS,
indicating that this is an important point to be focused in
future work.

The solution of problem P, is an example of a situation
where the system is learning the solution for a new type of
problem. In this example, CBR-RTS can not find a final
solution to the problem using only stored cases, but it is
able to simplify the original problem. The simplified
problem is submitted to PSPS (the learning module of the
system) that finds a solution in approximately 30% of the
time it will require to solve the original problem.

PSPS CBR-RTS
Problem | Total Time | Total Time | Retrieval | Reusing | Learning
1 0.10 0.25 0.24 0.01 0
2 0.07 0.51 0.42 0.09 0
3 0.15 0.28 0.26 0.02 0
4 0.16 0.40 0.36 0.03 0
5 0.29 0.93 0.76 0.17 0
6 0.62 0.58 0.51 0.06 0
7 1.77 1.03 0.91 0.11 0
8 6.99 4.60 3.90 0.69 0
9 4.66 2.49 0.94 0.11 1.43

Table 1 CBR-RTS and PSPS processing times (seconds)

Related Work

In this section we will discuss systems that adopt
integrations strategies similar to ours, particularly in the
domain of scheduling, and some systems, as Casey (Koton

1988), that in some degree have inspired the design of
CBR-RTS.

Cunningham and Smyth (1996) explore solution reuse in
job scheduling. Cases represent highly optimized structures
in the problem space, produced using simulated annealing.
They address single machine problems where job setup
time is sequence dependent (an example of a non
Euclidean Traveling Salesman Problem). Their objective is
to produce good quality schedules in very quick time.
Although we share the same conceptual framework, our
work differs in a number of ways. We address distinct
types of scheduling problems and we employ different case
representations and retrieval and reusing strategies that
seem to make our approach amenable for a wider category
of scheduling scenarios.

Other systems also combine CBR with some other
strategy to solve scheduling problems. CABINS (Miyashita
and Sycara 1995), for example, integrates CBR and fine
granularity ~ constraint-directed scheduling. CABINS
constructs cheap but suboptimal schedules that are
incrementally repaired to meet optimization objectives
based on the user preferences captured in cases. As in
CABINS, we also assume that although scheduling is an
ill-structured domain, it exhibits some regularities that can
be captured in a case.

Some of the basic ideas of the CBR-RTS system can be
found in Casey (Koton, P. 1988), a well know example of
system that integrates CBR and search. Casey is built on
top of a model based program implemented using rules that
diagnoses heart defects. The case library is constructed
using this rule based program. Casey searches the case
library to see if it has old cases that can be used to diagnose
a new patient, if no similar cases are found the problem is
passed to the rule based program. When know solutions are
reused, Casey can be 2 to 3 orders of magnitude more
efficient that the rule based program.

PRODIGY/ANALOGY (Veloso 1994) is also a well
know system that combines CBR with search in the
solution of planning problems. The case library is seeded
by cases solved by a general problem solver, based in a
combination of means-ends analysis, backward chaining
and state space search. Cases permit to acquire operational
knowledge that can be used to guide the generation of
solutions for new problems, avoiding a completely new
search effort.

Although most CBR systems use flat representations in
the form of attribute-value pairs, the issues raised by
structured representations, as the graphs used in CBR-RTS,
have been addressed by several authors. The interested
reader can find more details in (Bunke and Messmer
1994), (Messmer 1996) and (Gebhardt 1995).

Conclusions

The experiments described in this paper suggest that the
CBR-RTS system, based on the integration of CBR with
heuristic search, can contribute to an expressive reduction
in processing times required to schedule complex

43

problems. However, in order to better evaluate the
potential and behavior of the system, and the subjacent
architecture, it must be submitted to a testing procedure
with a wider coverage than that provided by the
experiments described in this paper.

CBR-RTS has a modular architecture that easily
supports evolution. Each component of the systems
constitutes itself an interesting research subject.

The current structure of the case base and the
corresponding retrieval algorithm seem adequate to case
bases storing a moderate number of cases of small size, as
the ones considered in the experiments described in this
paper. New organizations and retrieval strategies might
have to be considered to deal with case bases with a high
number of complex cases.

A particularly important problem in real-time systems is
to develop deterministic schedulers that can compute
schedules in bounded time. Although in the general case
(for any new problem) this can not be achieved by the NP-
hard nature of scheduling problems, the possibility of
doing this in a reasonable amount of situations permits the
implementation of some interesting strategies. The use of
polynomial time subgraph isomorphism algorithms, as the
one proposed by Messmer (1996), to address this issue is
an interesting topic that should be considered in our future
work.

An interesting extension to the reusing module is to try
to employ old cases to solve subproblems structurally
identical even when they do not form a group.

The learning module can also evolve in a number of
ways, for example with the creation of a library of methods
for solving different types of scheduling problems, besides
the one currently considered.

The management of the case base is also an interesting
theme. The definition of criteria to be used in deciding
which new cases to incorporate to the case base is one of
the relevant questions to be considered. There are several
possibilities here. For example, the case base can be
formed only of carefully chosen small cases that permit to
simplify a extensive number of large problems, as done in
the experiments described here. It could be also interesting
to prioritize the memorization of unschedulable problems
that require the searching algorithms to spend a lot of time
and resources to reach that conclusion.

Currently, the learning module is only used after a
problem can not be further simplified. Other integrations
between the retrieval and the learning modules are possible
and could be interesting to study. For example, instead of
trying to find occurrences of stored cases in the problem
graph, as done in the current version, the graph could be
initially divided into groups and them the system could try
to see if these groups are present in the case base. After
reusing the best retrieved cases to simplify the problem, the
groups for which there were no applicable cases could be
scheduled by the learning algorithm before proceeding in
the retrieval-simplification process.

Acknowledgments.

This research has been supported in part by grant
#1996/11200-3 from Fundag8o de Amparo & Pesquisa no
Estado de S&o Paulo (FAPESP).

References

Adén, J. M., M. F. Magalhdes and K. Ramamritham.
(1995). Meeting Hard Real-Time Constraints Using a
Client-Server Model of Interaction. Proc. of the 7Th
Euromicro Workshop on Real-Time Systems, Odense,
Denmark.

Bunke, H. and B. T. Messmer. 1994. Similarity Measures
for Structured Representations. In Topics in Case-
Based Reasoning, S. Wess, K. Althoff and M. Richter
(Eds.) Lecture Notes in Artificial Intelligence,
Springer-Verlag.

Blazewicz, J., J.K. Lenstra and A.H.G.R. Kan. 1983.
Scheduling Subject to Resource Constraints:
Classification and Complexity. Discrete Applied
Mathematics 5: 11-24,

Cunningham, P. and B. Smyth. 1996. Case-Based
Reasoning in Scheduling: Reusing Solution
Components. Technical Report TCD-CS-96-12,
Department of Computer Science, Trinity College
Dublin, Ireland.

Gebhardt, F. (1995). Methods and systems for case
retrieval exploiting the case structure. FABEL report
no. 39. GMD. Germany.

Koton, P. 1988. Reasoning about evidence in causal
explanation. In Proceedings of AAAI-88. Cambridge,
MA. AAAI Press/MIT Press.

Melo, Jr., A. 1993. Uma estratégia de escalonamento de
processos periddicos e esporadicos em sistemas de
tempo real critico monoprocessados. MSc. Thesis,
FEEC, Unicamp.

Miyashita, K., K. Sycara. (1995). CABINS: A framework
of Knowledge Acquisition and Iterative Revision for
Schedule Improvement and Reactive Repair. CMU
Technical Report CMU-RI-TR-94-34. The Robotics
Institute, Carnegie Mellon University, USA. Also
Artificial Intelligence Journal. Forthcoming.

Messmer, B. T. 1996. Efficient Graph Matching algorithms
for Preprocessed Model Graphs. PhD Thesis. Institute
of Computer Science and Applied Mathematics,
University of Bern, Switzerland.

Ullman, J.R. 1976, An algorithm for subgraph
isomorphism. Journal of the ACM, 23(1):31-42.

Veloso, M. 1994. PRODIGY/ANALOGY: Analogical
Reasoning in General Problem Solving. In Topics in
Case-Based Reasoning, S. Wess, K. Althoff and M.
Richter (Eds.) Lecture Notes in Artificial Intelligence,
Springer-Verlag.

Xu, J. and Parnas, D.L. 1990. Scheduling processes with
release times, deadlines, precedence, and exclusion
relations. /EEE Transactions on Software Engineering,
16(3):360-369.

44

Appendix A

1. Integration name/category: CBR-RTS

2. Performance Task: Scheduling sets of tasks with
precedence, ready time and deadline constraints

3. Integration Objective: Reduce the CPU time needed
to find a schedule or find out that the problems is
unschedulable

4. Reasoning Components: Heuristic search
5. Control Architecture: CBR as master

6. CBR Cycle Step(s) Supported: Learning (heuristic
search is used to seed the case base and to learn how to
solve new types of problems)

7. Representations: Acyclic labeled graphs

8. Additional Components: Subgraph
detection algorithm for case retrieval

isomorphism

9. Integration Status: Empirically Evaluated (initial
results)

10. Priority future work: Empirical evaluation

