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Abstract

The progress to date is described in an ongoing project in
which the aim is to investigate the combination of case-based
reasoning and artificial neural networks as a strategy for
cooperative problem solving. The paper describes a
successful application in which a Radial Basis Function
artificial neural network is used for the adaptation of cases,
during the reuse phase of the CBR life cycle. The approach is
being applied to the problem of real-time oceanographic
forecasting and the results obtained so far are presented.

Introduction
Research into artificial intelligence (AI) has produced
various problem solving methods which may be applied to
give more powerful computer based problem solving
capabilities than may be obtained using purely algorithmic
methods. Indeed, the reason for the application of an AI
approach is very often precisely because the nature of the
problem to be addressed is such that no appropriate
algorithm is either known or is applicable. For example, the
data and/or knowledge pertaining to the problem at hand
may be either incomplete or uncertain. Faced with such a
situation the task of the AI professional is to choose, from
the various AI problem solving approaches available, a
method which appears most appropriate to the problem to
be solved.

It is in situations where prior experience of solving
similar problems is available that case-based reasoning has
proved its value as an AI problem solving strategy. But the
nature of a complex problem solving situation may be such
that there are different aspects of the problem that may best
be addressed through the application of several distinct
problem solving methodologies. In such situations the
application of a hybrid problem solving approach may be
appropriate. In the research described in this paper, the
focus is on the combination of case-based reasoning (CBR)
and artificial neural networks (ANN) as mutually
supportive problem solving methods. The original
motivation for this work was twofold: (i) to investigate how
neural networks may be employed to assist case-based
problem solving, and (ii) to employ such a hybrid approach
with the aim of extending earlier work on the application of

AI methods to the problem of oceanographic forecasting
(Lees et al., 1992). The work forms part of a wider, longer
term strategy in which the aim is to investigate the
feasibility and applicability of a multi-paradigm approach
to artificial intelligence problem solving. In an earlier paper
(Corchado et al., 1997) the possibility of combining the
problem solving components in the form of a set of
intelligent agents was explored. However, in this paper, an
approach using a single integrated problem solving
mechanism is addressed.

The structure of the paper is as follows. First the
integration of CBR and ANN problem solving methods is
introduced; a brief outline of work elsewhere on the
integration of CBR and neural network methods is given.
The application of a hybrid neural network case-based
approach, using a radial basis function network for case
adaptation as a strategy for real-time oceanographic
forecasting, is presented. Finally, a summary of the
experimental results obtained to date are presented, which
indicate that the approach performs favourably in
comparison with the use of statistical and neural network
forecasting methods in isolation.

Combining CBR and Neural Networks

Case-based reasoning and artificial neural networks are
complementary problem solving methods. Case-based
reasoning has the potential to provide, by reference to
previous learned experiences, problem solving capabilities
in situations which defy attempts to obtain a satisfactory
solution through the use of the logical, analytical
techniques of knowledge-based systems and standard
software technologies: for example, when a clear model of
the problem domain is unobtainable. Neural networks are
able to analyse large quantities of data to establish general
patterns and characteristics in situations where rules are not
known and, in many cases, can make sense of incomplete
or noisy data. Furthermore, whilst neural networks deal
easily, and normally, with numeric (and, to some extent,
symbolic) data sets, case-based reasoning can also handle
more complex symbolic knowledge structures.

Many complex tasks that a human being can perform
with apparent ease, for example distinguishing among
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visual images, patterns or sounds, are not so easily
performed by computers using traditional algorithmic,
methods. Neural networks have been found to be a more
appropriate means of carrying out such tasks (Rumelhart et
al., 1996). The premise underlying the research reported in
this paper is that, for certain problems, the integration of
case-based and connectionist problem solving paradigms
may result in a more effective problem solving facility than
would be possible with either paradigm in isolation.

Other researchers elsewhere have investigated the
integration of CBR and neural networks as a problem
solving strategy. There is current interest in the application
of hybrid CBR and ANN systems for the purpose of
diagnosis. As an example, the use of a fuzzy logic-based
neural network in a case-based system for diagnosing
symptoms in electronic systems has been proposed by Liu
and Yan (1997), the aim being to overcome the problem
that descriptions of symptoms are often uncertain and
ambiguous. In the domain of medical diagnosis, Reategui et
al., (1997) have used an integrated case-based reasoning
and neural network approach. The task of the neural
network is to generate hypotheses and to guide the CBR
mechanism in the search for a similar previous case that
supports one of the hypotheses. The model has been used in
developing a system for the diagnosis of congenital heart
diseases and has been evaluated using two cardiological
databases with a total of over two hundred cases. The
hybrid system is able to solve problems that cannot be
solved by the neural network alone with a sufficient level of
accuracy.

An important task in the design of case-based systems is
the determination of the features that make up a case and
also of ways to index those cases in the case-base for
efficient and correct retrieval. Main et al. (1996) consider
the use of fuzzy feature vectors and neural networks as a
means of improving the indexing and retrieval steps in
case-based systems.

A neural network has been employed as a basis for
calculating a measure of similarity between a new problem
case and each stored candidate case (Garcia Lorenzo and
Bello Perez, 1996). It is claimed that the neural network
provides a mechanism to retrieve cases using information
that in other models would require a parallel architecture.

Further examples of research into the integration of
case-based reasoning and neural networks include the work
of Agre and Koprinska (1996) and also that of Krovvidy
and Wee (1993).

In the area of forecasting, the task of predicting future
parameter values from a given sequence of states has been
addressed by Goodman (1994); however, his approach was
based on simulation, rather than on neural networks.

The Forecasting Problem

A hybrid case-based approach to forecasting is being
investigated in collaborative work with Plymouth Marine
Laboratory (PML). In this research the aim is to develop 
methodology for predicting the values of physical
parameters (in particular, sea temperature at a given depth)
in three dimensions, around a sea going vessel from data
acquired in real time, and also from past records of sea
temperature (and possibly other oceanographic parameters)
surrounding the vessel at some point ahead of the vessel,
which will be reached in the immediate future. This
information may also then be used to provide a forewarning
of an impending oceanographic front, i.e. a boundary
between different large water masses. The approach builds
on the methods and expertise previously developed at
Plymouth Marine Laboratory, and, in particular, in previous
collaborative work with the University of Paisley into the
application of knowledge based methods for the analysis of
oceanographic data (Lees et al., 1992).

The problem of forecasting, which is currently being
addressed, may be simply stated as follows:

Given: a sequence of data values (which may be
obtained either in real-time, or from stored
records) relating to some physical parameter

Predict: the value of that parameter at some future
point(s) or time(s).

The raw data (on sea temperature, salinity, density and
other physical characteristics of the ocean) which are
measured in real time by sensors located on the vessel,
consist of a number of discrete sampled values of a
parameter in a time series. These data values are
supplemented by additional data derived from satellite
images, which are received weekly. In the present work the
parameter used is the temperature of the water mass at a
fixed depth. Values are sampled along a single horizontal
dimension, thus forming a set of data points.

This data must be pre-processed in order to eliminate
noise, to enhance interesting features, to smooth stable
areas and to transform the data set into a form which may
be represented on an absolute scale. There are several
techniques that can be applied to transform the original data
set (Corchado, 1995) to reduce noise, sharpen data and aid
in the detection of fronts. The approach adopted employs a
Sobel Filter, the operation of which is based on the idea
that local variations, corresponding to edge transitions,
occur at a slower rate than those corresponding to noise.

Hybrid CBR - Neural Network System

In order to produce a forecast in real-time of the
temperature a certain distance ahead of the vessel, a
problem case is generated every 2 krn. A problem case
consists of a sequence of N sampled data values (after
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suitable filtering and pre-processing) immediately
preceding the data value corresponding to the current
position of the vessel. A value of 40 for N has been found
empirically to produce satisfactory results. The problem
case also includes various other numerical values; these
include the current geographical location of the vessel and
the time and date when the case was recorded.

The set of N data values forms an input vector, which is
then used to produce a forecast of the ocean temperature, 5
km ahead. In outline, this process is depicted in Figure 1.
(Note that, in practice, it is the set of differences, between
the temperature Ti at the current point and the temperature
at successive earlier points, which are used as the input
vector: i.e. Ti- T i4, Ti- T i.2 etc.)

The forecasted values are created using a neural
network enhanced case-base reasoning system. The CBR
mechanism allows the experience recorded in previous
forecasting situations to be reused. The role of the neural
network lies in the case adaptation process.

The relationships between the processes and
components of the hybrid system are illustrated in Figure 2.
The cyclic CBR process shown in the figure has been
inspired by work of Aamondt and Plaza (1994). The four
basic phases in the CBR cycle are shown as ellipses.
Superimposed on the fundamental CBR cycle is a cycle of
neural network operations during which the network
parameters are retrieved from a neural network knowledge
base, employed in case adaptation, and then are revised,
with their updated values being stored back in the
knowledge base. The full cycle of operations of the hybrid
system is explained in the following section.

temperature value at current time/distance

I Xo x, x2 x3 .... XN.]@ XN,, XN,2 -XN,Stime/~

l distance
input temperature vector output

(known data) (forecasted value)
{ Xo Xl X2 X3 -.. XN.I } X N.5

produce m
forecast

Figure 1 Forecasting operation

The particular type of neural network of interest in the
current research is the Radial Basis Function (Bishop,
1995), in which the input layer is a receptor for the input
data, whilst the hidden layer performs a non-linear
transformation from the input space to the hidden layer
space. The hidden neurons form a basis for the input

vectors; the output neurons merely calculate a linear
combination of the hidden neurons’ outputs.

Activation is fed forward from the input layer to the
hidden layer where a Basis Function is calculated. The
weighted sum of the hidden neurons’ activations is
calculated at the single output neuron. Radial Basis
Functions (RBF) are better at interpolating that 
extrapolating; where there is a region of the input space
with little data, a RBF cannot be expected to approximate
well, Furthermore, RBFs are less sensitive to the order in
which data is presented to them than is the case with other
neural network models, such as Multi-Layer Perceptrons.
However, Radial Basis Functions are potentially useful in
hybrid systems because of their fast learning capability.

Hybrid System Operation

The forecasting system uses data from two sources: (i) the
real-time data are used to create a succession of problem
cases, characterising the current forecasting situation; (ii)
data derived from satellite images are stored in a database
(which, for clarity, is not shown in Figure 2). The satellite
image data values are used to generate cases, which are
then stored in the case base and subsequently updated
during the CBR operation.

problemI case

~ retrieved
d~abas~J "~atching [ cases I

Icase’’ I
.Icase I

[~~ proposed i~[forecast J I forecast I
Figure 2 Modified CBR cycle

The cycle of forecasting operations (which is repeated
every 2 km) proceeds as follows. (Note that space in this
short paper does not permit all the finer details of this
process to be included).

First a new problem case is created from the pre-
processed real-time data.

A set k cases, which most closely match this current
problem case, is then obtained from the case base during
the CBR retrieve phase, using nearest neighbour matching.
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In the reuse phase, the values of the weights and centres
of the RBF neural network used i~ the previous forecast are
retrieved from the neural network knowledge base. These
network parameters together with the k closest matching
cases are then used to create a forecast of the temperature 5
km ahead. At this point the parameters of the network are
modified by taking into account the information contained
in the retrieved cases. The effect of this is to allow the
system to learn from all these k cases (rather than simply
using the single adjudged closest matching case) in making
a new forecast.

During each forecasting cycle the RBF network is
retrained, using the retrieved weights and centres, with the
input vectors contained in the k matching cases applied as
inputs to the network. This process adapts the RBF
network, by accommodating the retrieved cases, thus
updating the values of the network parameters (empirically,
a value for k of between 500 to 1000 has been found to be
appropriate).

The input vector from the problem case is then fed into
the trained network to produce a proposed forecast.

In the revise phase, the proposed forecast is modified by
taking into account the accuracy of the previous forecasts,
which have been reused to obtain the new forecast. Each
case has associated with it a cumulative average error
which is a measure of the average error in the previous
forecasts for which that particular case was used to train the
neural network. Confidence limits are calculated by
averaging the cumulative average error of the k cases used
to train the ANN in producing the current forecast. The
revised forecast is then expressed, using the confidence
limits, as an interval, between upper and lower limits,
rather than as a single value.

The revised forecast is then retained in a temporary
store - the forecasts database. When the vessel has
travelled a further 5 km, the actual value of the water
temperature at that point is measured. The forecasted value
for the temperature at this point can then be evaluated, by
comparison of the actual and forecasted values, and the
error obtained. A new case, corresponding to this
forecasting operation is then entered in the case base.
Knowledge of the forecasting error is also, at this point,
used to update the cumulative average error of all the k
cases that were reused to obtain that forecast.

Radial Basis Function Operation

The RBF network uses 9 input neurons, between 20 and 35
neurons in the hidden layer and 1 neuron in the output
layer. Input vectors (explained earlier) form the input to the
network; the output of the network is the difference
between the temperature at the present point and the
temperature a fixed distance ahead. Initially, twenty vectors
are randomly chosen from the first training data set and
used as centres in the middle layer of the RBF network. All

the centres are associated with a Gaussian function, the
width of which, for all the functions, is set to the mean
value of the Euclidean distance between the two centres
that are separated the most from each other.

Training of the network is done by presenting pairs of
corresponding input and desired output vectors. After an
input vector activates every Gaussian unit the activations
are propagated forward through the weighted connections
to the output units which sum all incoming signals. The
comparison of actual and desired output values enables the
mean square error (the quantity to be minimised) to 
calculated.

The closest centre to each particular input vector is

moved toward the input vector by a percentage 0~ of the
present distance between them. By using this technique the
centres are positioned close to the highest densities of the
input vector data set. The aim of this adaptation is to force
the centres to be as close as possible to as many vectors

from the input space as possible. The value of ~ is
initialised to a value of twenty, each time that the network
is retrained, and its value is linearly decreased with the
number of iterations until its value becomes 0; then the
network is trained for a number of iterations (between 10
and 30 iterations for the whole training data set, depending
on the time left for the training) in order to obtain the best
possible weights for the final value of the centres.

A new centre is inserted into the network when the
average error in the training data set does not fall more than
10% after 10 iterations (using the whole training set). 
order to determine the most distant centre C, the Euclidean
distance between each centre and each input vector is
calculated and the centre whose distance from the input
data vectors is largest is chosen. A new centre is inserted
between C and the centre closest to it. Centres are also
eliminated when they do not contribute significantly to the
output of the neural network. Thus, a neuron is eliminated
if the absolute value of the weight associated with that
neuron is smaller than twenty per cent of the average value
of the absolute value of the five smallest weights. The
number of neurons in the middle layer is maintained above
20.

Results and Discussion

The approach presented in this paper combines the
advantages of both connectionist and symbolic AI. The
hybrid system has been tested in the Atlantic Ocean in
September 1997 on a research cruise from the UK to the
Falkland Islands. The cruise crossed several water masses
and oceanographic fronts. The obtained results were very
encouraging and indicate that the hybrid system is able to

produce a forecast with an average error of 0.045 °C and
with a probability of 94.4% that the error in the forecast is
smaller than 0.1 °C. Only 5.6% of the forecasts have an
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error higher than 0.1 °C, 10.1% higher than 0.08 °C, and

27% higher than 0.05 °C

Although the experiment has been carried out with a
limited data set (over a distance of 11000 km between the
latitudes 50° North and 50° South), eleven water masses
with different characteristics were traversed, six of them
containing fronts; the Falkland Front, in particular, is one
of the most chaotic oceanographic areas in the world. It is
believed that these results are sufficiently significant to be
extrapolated to the whole Atlantic Ocean.

The forecasting ability of the system is highest in areas
with small instabilities and where there are many data
profiles from which to choose in the retrieval stage of the
CBR cycle. The forecast is less accurate in areas with large
changes and many instabilities. The system is not able to

forecast if there are no data profiles in the region where the
forecast is made. In such a situation a time series ANN may
produce a better result.

Experiments have also been carried out to evaluate the
performance of the hybrid forecasting approach in
comparison with several separate neural networks and
statistical forecasting methods (Corchado and Lees, 1998):
a Finite Impulse Response (FIR) model, an RBF network
alone (trained with the data recorded during the 160 km
previous to the forecast point), a linear regression model,
an Auto-Regressive Integrated Moving Average (ARIMA)
model and a CBR system alone (using the cases generated
during the 160 km preceding the forecast point). Table 
shows the average error in the forecast up to 5 km ahead
using all of these methods.

Algorithm Type AveraKe Error
FIR ANN 0.091
RBF ANN 0.103

Linear Statistics 0.131
Regression

ARIMA Statistics 0.107
CBR CBR 0.113
Hybrid CBR-ANN CBR - ANN 0.017

Table 1 Comparison of methods (5kin forecast)

The results of these experiments indicate that the
forecasting errors outside the confidence limits are smaller
with the hybrid CBR-ANN approach than with any of the
other forecasting methods used. In particular, the
forecasting error outside the confidence limits is less than
20% of the error produced by any of the other forecasting
mechanisms.

The success of the system in generating effective
forecasts may be attributed to the combination of an

extensive database of past cases, supported by the neural
adaptation mechanism which, each time around the

forecasting cycle, enables the forecasting process to learn
from all the selected closely matching cases.

The experimental results obtained to date are
encouraging and indicate that the neural network supported
approach is effective in the task of predicting the future
oceanographic parameter values. Extrapolating beyond
these results, it is believed that the approach may be
applicable to the problem of parametric forecasting in other
complex domains using sampled time series data.
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Appendix

I. Integration name/category:
real-time forecasting

2. Performance Task:
forecasting oceanographic parameter values

3. Integration Objective:
improved learning from multiple matching cases
during case adaptation

4. Reasoning Components:
CBR;
radial basis function neural network

5. Control Architecture:
CBR as master;
neural network operation integrated into CBR cycle

6. CBR Cycle Step(s) Supported:
reuse (adaptation);
revision

7. Representations:
cases;
radial basis function weights and centres,
confidence limits

8. Additional Components:
DBMS

9. Integration Status:
empirically evaluated with real-time data;
results compared with alternative methods

10. Priority future work:
further evaluation;
application of the approach to other problem domains
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