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Abstract

Multi-agent systems exploiting case based reasoning
techniques have to deal with the problem of retrieving
episodes that are themselves distributed across a set of
agents. From a Gestalt perspective, a good overall case
may not be the one derived from the summation of best
subcases. In this paper we deal with issues involved in
learning and exploiting the learned knowledge in multi-
agent case-based systems.

Introduction
Case Based Reasoning (CBR) has been attracting much
attention recently as a paradigm with a wide variety of
applications [Kolodner 93]. In this paper, we discuss
issues pertaining to cooperative retrieval and composition
of a case in which subcases are distributed across different
agents in a multi-agent system.

A multi-agent system comprises a group of intelligent
agents working towards a set of common global goals or
separate individual goals that may interact. In such a
system, each of the agents may not be individually capable
of achieving the global goal and/or their goals may have
interactions - leading to a need for coordination among the
set of agents. Due to its partial view of the problem-
solving situation, an agent may have access only to a part
of the environment, and communication bandwidth
limitations and heterogeneity of representations may limit
its view of other agents’ states. An agent may have to
communicate and negotiate with other agents to resolve
any uncertainties (arising out of the partial or imperfect
views of the global problem-solving context) to the extent
that it can make positive contributions to the ongoing
problem solving process [Lesser 91 ]. More specifically, in
a distributed case-based reasoning system (DCBR), each
agent’s partial view may result in the best local cases,
which when assembled, may not result in the best overall
case in terms of global measures. This gives rise to a need
for the agents to cooperatively access their case bases to
retrieve and assemble a good composite case [Nagendra
Prasad, Lesser and Lander 1996].

We will discuss these concepts using a multi-agent
transportation-planning domain. Two countries C1 and C2
share a border with a number of check-posts. Agent A~
transports a load from a source in C/to one of the border
check-posts and agent A: needs to carry the load from that
check-post to a destination in C2. Given a source in country
C1 and a destination in country C2, the agents need to plan a
route -- including the common check-post -- from the
source to the destination. Each of the agents can rely on its
local case base of paths to plan its route to a check-post.
However, the agents need to "talk to each other" to reach
an agreement on a common check-post so that one agent
can takeover the load from the other agent.

The rest of the paper is organized as followS. Section 2
discusses how distributed case bases arise. Section 3
introduces an efficient retrieval algorithm from distributed
case bases. In Section 4, we present some early
experimental results and then conclude with a discussion of
the implications of the proposed mechanism and future
work in the final section.

Distributed Case Bases

In a multi-agent system, a problem-solving episode may
not be situated at a single physical location and may be
distributed across a set of agents. How do distributed case
bases arise in these systems? A system that performs rote
learning by storing successful problem-solving episodes,
where each agent stores its own local case in its case-base,
could give rise to such a Distributed Case Base (DCB).
However, this may not be the only way. If the agents are a
set of "open" agents1 [Lander 94], then each of them
could have acquired its own independent problem-solving
experiences by participating in different teams of agents. A
Case-Knowledge Engineer could design each of the case
bases by giving them episodes from his collection of cases.

1 An agent is "open" if it is designed to be flexible enough

to participate in a number of agent systems.
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Another scenario one could envisage in the near future is
the existence of case bases spread across a communication
network. Certain queries may not be satisfied by any one
case base and may need a composite case derived from
different case bases.

Barletta and Mark [Barletta and Mark 88] and Redmond
[Redmond 90] deal with distributed cases in single agent
systems. Each case is divided into subcases or snippets and
a snippet is indexed using both global goals of the entire
case and the local context of that snippet within the case.
This kind of elaborate engineering in the form of indexing
the case pieces using both global and local problem solving
contexts may not be feasible for multi-agent CBR systems.
The agents may only have a partial view of the global
problem solving context and the internal context of a case
piece. Case bases for individual agents may be built
independently, without the knowledge of the kinds of
problem solving systems in which they are going to
participate. Veloso and Carbonell [Veloso and Carbonell
93] use multiple cases to guide the adaptation process to
derive a plan. Each of the cases covers a subset of the goals
and provides a plan for achieving those goals. As in the
previously discussed work, due to its single-agent nature,
the need for dynamically exchanging information to
resolve conflicts is not an explicit part of this work. Purvis
and Pu [Purvis and Pu 95] use constraint satisfaction
techniques to adapt a case whose features are derived from
features of more than one past case. The constraints are
used to adapt the new case by changing its feature values to
satisfy them. Unlike the work presented in this paper, the
system is a single agent system. We use distributed
constraint optimization techniques to assemble cases from
pieces distributed across multiple databases. The constraint
optimization in this paper is not for adaptation but for
deciding which cases to put together into a coherent overall
case; an issue that is unique and important to DCBs.

There are other important issues to note in DCBs. It may
in fact be true that even though the cases for individual
agents may be derived from past problem-solving
experiences, there could be combinations of these cases
that may be assembled into an episode that the system as a
whole has never seen before. As discussed later, this has
some important implications in DCBs. In addition, case
integration does not require that the overall episode be
completely represented at any one node; in some situations,
the distributed episode components are integrated only by
their mutual consistency.

Retrieval in Distributed Cases Bases

We now introduce our multi-agent case-based learning
system called MILTON. Each agent in MILTON is
associated with a local case base from which it contributes
a local case to the overall case. The overall case is the

composition of a set of compatible local cases, one from
each of the agents in the system. Each agent is also
associated with a set of constraints representing the
requirements of the present problem instance and the
contexts in which a local case from that agent can
participate in the overall case. A constraint could be
defined on local and/or non-local variables representing
features derivable from partial cases. A local case is also
associated with some credibility or cost measure
representing the "goodness" of a case. For example, in the
transportation-planning domain, each agent has delivery
paths to the check-posts from source or destination as local
cases and a constraint that the check-post of a local path
has to match with that of the non-local path. The credibilty
measure for a local path is its distance. Retrieval from
distributed case bases can be cast as a distributed constraint
optimization problem where the overall case should be
compatible with the local constraints of each of the
participant agents and it should be the best such case (in
terms of credibility measures). Local case consistency
constraints arise from the knowledge that an agent has
about the generic requirements of the context in which its
local subcase can usefully participate.

Searching for Optimal Cases

Central to the approach to distributedcase-based systems
in MILTON is the OpportunisticA or OA* search
algorithm for retrieving optimal overall cases from
distributed case bases. OA* is a distributed version of A*
search with modifications for merging partial search paths,
in addition to expanding them. The proof of optimality of
solutions in this search is a straightforward extension of the
A* search algorithm and can be found in [Nagendra
Prasad98]. Each agent executes the algorithm shown in
Figure 1.

Each agent executes Do_Local_Retrieval to retrieve all
those local subcases that satisfy the constraints on local
features (features available from subcases retrieved
locally). From these locally valid subcases, the set of
agents needs to assemble an overall case that is globally
acceptable i.e., it satisfies all the non-local constraints in
each of the agents. In addition, it should be the best such
case in terms of credibility. In the transportation-planning
domain, the agents have to not only agree on a case with a
common check-point, but they have to find one with the
minimum distance. Agents perform a distributed A* search
over the space of partial cases to accomplish this. Initially
the agents announce their worst credibility local case from
the set of locally valid cases. These credibility measures
are used for forming the heuristic estimate for the
credibility of a partial case. Let the sum of the credibilities
of component local cases of a partial case be g. Let the
sum of the worst credibilities of subcases from agents that
have not yet contributed component subcases to this partial
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case be the admissible estimate h’. Then an estimate of the
credibility of a partial casef’ is:

f’=g+ h’

.

.
During a single iteration in the loop of the OA* algorithm,
each agent announces its best credibility case. The agents
collectively choose the best partial case (in a distributed The

manner) and try to merge it with each of their partial cases.
The merging process at an agent involves checking if the 1.

case components from the two partial cases satisfy the
constraints at that agent on all the features of the two
partial cases. If a constraint is violated the merge does not
succeed. The search does not terminate with the first 2.
solution found, unlike in A* search. It proceeds until all the
partial cases are expanded to the extent where their
credibility measures are lower than the best complete case
found. This is needed to guarantee the optimality of the 3.

assembled case. Note that OA* is completely distributed

A*Each agent uses to find the best paths from source
(for AI) or destination (for A2) to each checkpoint.

The agents together search for an optimal composition
of the paths using the OA° algorithm.

distributed case-based planner works as follows:

Each agent retrieves paths (or past cases) with source
(for AI) or destination (for A2) that is close to 
present source (for AI) or destination (for A2).

Each agent modifies each local case to connect the gap
between the present source/destination with the
source/destination of the local case.

The agents together search for an optimal composition
of the paths using the OA* algorithm.

agent_partial_cases = Do Local_Retrieval (agent);
Announce_Worst_Credib]-lity_Local_Case(agent);
Receive_Worst_Costs(agent);
bestcomplete_case = nil;
Loop forever

best_local_._partial_case = Choose_Best_Local_Partial_Case(agent_partial_cases)
if Credibility(best_complete_case) > Credibility(best localAgartial case)exit;
Announce_Partial_Case (best_local_partial_case)
potential_partial_cases to merge = Receive_Partial_Cases(agent)
push (best_local_partial_case, potential_partial_cases to merge)
next_partial_case to merge = Choose_Best_Partial_Case(potential__partial_cases to merge)

if(best_local_partial_case == next_partial_case to merge)
remove_case(best_local_partial_case,agent_partial_cases)

else
merged_partial_cases = merge(next_partial_case to merge,agent_partialcases)
if(complete_cases = Get_Complete_Cases(merged_partial_cases))

Announce_Complete_Cases (complete_cases)
agent_partial_cases = append (agent_partial_cases,merged_partial_cases)
if (null agent_partial_cases) exit;

endif
End Loop

Figure 1 :

and performs all these functions in a distributed manner.

Opportunistic A’Algorithm

Learning
We discuss distributed case-based learning in MILTON in
the context of the transportation-planning domain pre-
viously introduced. Agents can either use a distributed
search-based planner or a distributed case-based planner.

The search-based planning algorithm works as follows:

Learning in this system is straightforward. Every time a
planner is invoked, the local cases of the optimal path are
stored at the respective agents. A planner is invoked by an
agent if it does not find similar past cases.

Experiments

The transportation domain has been implemented in a grid
world. For the experiments below, we used a 50 x 100 grid
where each of the countries occupied 50 x 50 grid with
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some obstacles. There are two check-posts between the
countries. The OA* algorithm has been implemented as a
general distributed constraint optimization search
mechanism and integrated into the transportation domain.

We trained MILTON on 100 transportation-planning
instances and ran this system and the search-based system
on each of the test instances. Figures 2 and 3 show the
results of running the system on 20 test instances. Despite
the preliminary nature of our experiments, they do reveal
the effectiveness of the DCBR system. Average path length
for MILTON is 108.9 units whereas the search-based
planner produces paths with an average length of 104.6.
MILTON takes 0.48 seconds of CPU time to produce a
path on average whereas the search-based planner needs
0.87 seconds. With a marginal sacrifice in the optimality
of the planning paths, MILTON can boost the efficiency of
finding the paths by as much as 81%. The grids used in
these experiments are very small and larger grids can be
expected to produce more dramatic results.

Conclusion and Future Work

We see the contributions of this work as many fold.

We identified some of the unique aspects of case-based
reasoning in multi-agent systems. Further studies along this
line can help make available a vast array of tools developed
for dealing with the centralized, monolithic cases to bear
on multi-agent systems.

The OA* algorithm itself is independent of how the local
paths are generated. Hence, it is possible to integrate local
paths from agents using different planning mechanisms to
form these local paths. For example, one of the agents can
use cases where as the other agent could use A* search.

The OA* algorithm is a general and efficient distributed
constraint-optimization search mechanism that can deal
with both procedurally and declaratively expressed
constraints [Nagendra Prasad 98].

In addition, there are a number of other intuitions about
multi-agent learning derived in the process of our work
with this system [Nagendra Prasad 98]. These need to be
validated by further statistical studies and this is our
primary focus for the near future.
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Appendix

Integration name/category: MILTON integrates case
snippets distributed across multiple agents.

Performance Task: Retrieval and composition of
distributed case pieces in a distributed travel-planning
domain.

Integration Objective: Essential in the case of multi-
agent case-based systems with distributed cases.

Reasoning Components: Multiple agents that jointly
perform a distributed A* search.

Control Architecture: Each agent is a CBR reasoner
that works with peer agents to form a good overall
case.

CBR Cycle Step(s) Supported: Retrieval and
adaptation

Representations: Cases in all agents. All agents also
do a cooperative search during case assembly

Additional Components: ?

Integration Status: Empirically evaluated (partially).

Priority future work: Further evaluation and
exploration, especially for tougher tasks and domains.
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