From: AAAI Technical Report WS-98-15. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

A Proposal to Combine Probabilistic Reasoning
with Case-Based Retrieval for Software Troubleshooting

Akihiro Shinmori

INTEC Systems Laboratory Inc.
3-23 Shimoshin-machi, ISL Bldg.
Toyama, 930-0804 JAPAN
shinmori @isl.intec.co.jp

Abstract

Analysis of a real case of software troubleshooting made it
clear that probabilistic models, or Bayesian networks are
suitable for modeling software troubleshooting processes in
today’s computing environments. As a way to support soft-
ware troubleshooting by reusing skillful support engineers’
expertise, 1 propose to use Bayesian networks and prob-
abilistic reasoning for case-based retrieval. The outline of
query reformulation using Bayesian network is presented.

Keywords: Bayesian network, case-based retrieval, software
troubleshooting

Introduction

A lot of software troubles are happening in today’s multi-
vendor computing environments. While current computing
environments have much functionality and flexibility, they
are too complex and are vulnerable to software troubles.
The rapid speed of change such as new product introduc-
tions and frequent version-ups makes the situation worse.

Engineers working on software troubleshooting have to
deal with various kinds of uncertainty. Problem descrip-
tions conveyed from customers or other support engineers
are often partial and incomplete. Information they can use
and rely on is scattered over multiple sources and in multi-
ple forms such as product manuals and support information
documents provided by the vendors, internal support
documents compiled in-house, and various Web pages.

While there is no single almighty expert in customer
support and troubleshooting, it is observed that skillful en-
gineers with appropriate knowledge and expertise in the
domain are far better at solving the problems. They can
analyze the situation, ask appropriate questions to clarify
the situation, search the case-base effectively, and come up
with a solution in a reasonable time frame. If it would be
possible to formalize those engineers' knowledge in reus-
able forms, it would be possible for less skillful engineers
or other engineers with different skills to take advantage of
them.

Our research group has been working to develop a sup-
port system for software troubleshooting. This paper re-
ports an analysis of a real case of software troubleshooting

149

process and introduces a proposal to combine probabilistic
reasoning with case-based retrieval.

Analysis of Software Troubleshooting
- A Case Study

We have analyzed a real case of software trouble at our
parent company (referred as “the company” in the follow-
ings) (Shinmori and Shibagaki 1997).

The whole story

The company developed and sold an application called X
to several customers. X runs on a Microsoft Windows cli-
ent and creates a data file on a Novell NetWare server. The
problem was that the file X creates on the NetWare server
got partially corrupted at very rare intervals on a cus-
tomer’s site.

The customer called the company and told the problem
to the front-line engineer. The front-line engineer did not
find the cause or similar past cases on the spot and for-
warded this case to a back-line engineer (referred as “the
troubleshooting engineer” in the following). The trouble-
shooting engineer at first thought the culprit was the X it-
self. But the efforts to reproduce the problem at the testing
environment did not succeed. The engineer asked the cus-
tomer to provide more detailed information.

After several sessions, the customer reported that the
problem tends to happen when there is little free disk space
on the NetWare server, specifically when most of the disk
space on the server is occupied by the “space available
from deleted files,” ! and the network traffic is high. After
testing further and inspecting source programs, the engineer
found that one portion of the programs lacked write error
checking. It could be a valid cause of the problem, but it
alone did not explain why the problem happened at very
rare intervals and only at one customer’s site.

The engineer continued investigation assuming that there
were other causes. He doubted the NetWare client and the
NetWare server. He searched the case-base provided by the

1 The area managed by NetWare OS to recover deleted files.



Application X

Write request
A 4
i Automatic purge
NetWare Client L .
(Data Cache) NetWare Server | when filsk shortage
Write request

Because of data caching at client,
write request is delayed.
The higher the network traffice is,

the delay is larger.
Figure 1. Background Mechanism of the Problem

vendor (“Technical Information Document” provided by
Novell Inc.). But searching by using the keywords of
“server”, “file”, “write”, “error”, and their combinations
always generated too much hits.

While looking through the hit list and browsing the can-
didates, he by chance found a case that was describing, “In
a certain setting of NetWare client, running an application
Q may cause data loss.”

While reanalyzing the situation, he refocused on the ad-
ditional information from the customer. Then he searched
the manual and found the following limitation of NetWare
client:

CACHE WRITES
Sets the cache write requests to ON or OFF.

Setting this parameter to OFF increases data integrity
but decreases performance. Leaving this parameter set to
ON can cause data loss if the NetWare server runs out of
disk space between write requests.

Default : ON
(quoted from “NetWare Workstation DOS and Win-
dows” in “NetWare 3.12 Manual Set” by Novell Inc.)
He also found that the default value of “CACHE WRITES”
was off in the previous version of NetWare.

Considering the fact that X was developed before the
previous version of NetWare, the assumption described in
Figure 1 explained the whole story well. Several months
had passed since the first call was made.

The engineer advised both the customer and the front-
line engineers to set the “CACHE WRITE” option off as a
workaround. He also notified the developers to fix the
source code.

Modeling by Bayesian Network

The above troubleshooting process can be modeled by us-
ing probabilistic model, or Bayesian network. Bayesian
network is a theoretical framework based on probability
theory (Pear! 1997) (Charniak 1991) (Jensen 1996). It is
suitable for dealing with uncertainty and several prob-
abilistic inferences can be done on it. It has been used in a
variety of applications, most successfully in diagnostic ap-
plications.

Bayesian network consists of nodes and directed arcs.

150

With nodes, variables are attached usually representing
discrete states such as true or false, relevant or irrelevant.
Nodes without parents are called root nodes and assigned
prior probability distributions with their variables. With
non-root nodes, conditional probability distributions are
specified given their parents’ values combinations,

In diagnostic applications, directed arcs connecting no-
des usually represent causal relationships from causes to

Figure 2. Bayesian Network for Software Troubleshooting

symptoms. While the notion is also applicable to the do-
main of customer support and software troubleshooting,
additional relationship is needed to represent that a certain
object shows some functionality in certain conditions. For
example, a certain version of a certain DLL (dynamic link
library) behaves in a certain way with certain other DLL’s.

Because most of the objects in today’s computing envi-
ronments are “COTS” (Commercially Off-The-Shelf), these
kinds of knowledge or know-how are inherently uncertain
and informal. Nevertheless, they are playing an important
role in customer support and software troubleshooting.
They are typically accumulated through the engineer’s own
experience or word-of-mouse communication from others.

To model uncertain knowledge related to software trou-
bleshooting, I propose to use Bayesian network as shown in
Figure 2. The right half shows the “object-functionality
relationship” I discussed in the above,



Q NetWare_Client_Bug
Application_X_Bug B

Appq':atlon_x_conﬂ&,,rroblom )

®
App! cQﬂon_X_Problom

.

Proil.m_at_othor_(:ustomor T p o ’
Déwmo_probl.m

Naaro_SQrvor_Bug

i N
N_.*aro_Cllonq_anﬂg_Prohl.m
V‘x ,.' \‘.. ;;'
N!Iiigro_Cllnnq_Problom .-N§an Server_Problem

. N srr"’

Oh—_c“om_»plleaﬂoni?roblom
b3

gau_s«vor_c:mﬂg_Problom

Other_Server-related_aApplication_Prohiem

Analysis of the troubleshooting process

The previous troubleshooting process can be modeled by
Bayesian network. Figure 3 is a screen image of the Baye-
sian network model drawn by using the JavaBayes package
(Cozman 1997).

To reduce the complexities of the model and to ease the
knowledge acquisition task from experts, the model is con-
structed following the notion of “noisy-or” model (Pearl
1997) (Jensen 1996). The probability distribution is set
follows:

 For each root node, the prior probability to take true val-
ue is set 0.

* For each non-root node, conditional probability to take
true value is set as follows where the number of parent
nodes which take true value is n:

1-(0.2)" (n21)
0.1 (n=0)

The process can be modeled as follows:

1. As the first call indicated file write error, observe the

“Data_Write_Problem” node as true.

At this point, posterior probabilities for the three mid-

dle nodes to take the value of true are all the same

(0.28).

. After finding that X lacked some error checking, set
the prior probability of the “Application_X_Bug”
higher (true with 0.80). Then, among the three middle
nodes, the “Application_X_Problem” node gets the
highest posterior probability (true with 0.87). The
remaining two get 0.15.

. Because no other customers report the problem, ob-
serve the “Problem_at_Other_Customer” as false.
Then, the posterior of “Application_X_Problem” node

2.

151

gets lower (true with 0.60) and the remaining two get

0.21.
5. After finding a relevant case in the case-base, set the
prior probability of true value of “Net-

Ware_Client_Config_Problem” higher (0.80). Then,
the node “Application_X_Problem” gets lower value
(true  with 040), the node of “Net-
Ware_Client_Problem” gets higher value (true with
0.82), and “NetWare_Server_Problem” gets slightly
lower (true with 0.13).

The model described in Figure 3 and used in the abo-
ve analysis is not just a hindsight record of the process
but can be viewed as the know-how of the troubleshoot-
ing engineer. By creating and saving the models, they
can be reused for another troubleshooting sessions or by
less experienced engineers.

Combining Probabilistic Reasoning with
Case-Based Retrieval

Several contributions have already been made to improve
case-based retrieval mainly for help desk applications (Si-
moudis 1992) (Shimazu, Shibata, and Nihei 1994). But the
uncertainty aspect of troubleshooting analyzed in the previ-
ous section has not been addressed well in them.

Bayesian network is already used in software trouble-
shooting (Breese and Heckerman 1995). It is also used in
hardware troubleshooting in copier machines (Hart and
Graham 1994). These approaches assume that complete
Bayesian networks are constructed beforehand. The target
problem domain is rather narrow and restricted.

Query Reformulation using Bayesian Networks

The most obvious way to use probabilistic reasoning in
software troubleshooting is to create full and complete



I Keywords

[ Keywords |

Keywords | |Keywords

Figure 4. Bayesian Network for Query Reformulation

Bayesian networks and to diagnose the problems based on
them. However, it is not a trivial task because it requires
complete analysis and deep understanding of the domain.

Instead, I propose to use Bayesian networks to reformu-
late query for case-based retrieval as follows.

Model Construction:

Create (partial) Bayesian networks which model domain
knowledge by incorporating experienced engineers’
knowledge or by extracting from existing case-base.

Each node is assigned keywords that represent it.

Questions are attached to bottom nodes that are used to
observe the node.

Questions or some other means are attached to the root
nodes that are used to observe the node or change the
prior probabilities.

The conceptual model is shown in Figure 4.

Query Reformulation Outline:
Load the appropriate Bayesian networks.

Analyze the user’s initial problem description and search
for the nodes in the networks which have some kind of
similarities (such as linguistic similarities).

Provide the user with questions attached to the nodes.
Observe the nodes appropriately based on the answers
given by the user.

Calculate posterior probabilities of the middle nodes.
Retrieve the keywords of the observed nodes and the
middle nodes that have larger values than a certain
threshold. Generate a query by collecting the keywords.

If the target case-base system supports weighted query
term, use the posterior probabilities as the weight of the
keywords.

Search the case-base. The user can iterate the above

152

process until he or she finds the appropriate case.

Implementation of Prototype System

As a long-term research goal, we plan to develop a “call-
avoidance system” which the customers themselves use to
solve problems (Andrews 1996). So, we are developing a
Web-based prototype system.

For the purpose of processing Bayesian network and
reasoning probabilistically, we used the engine derived
from the JavaBayes package. From v0.333, JavaBayes sup-
ports XML (W3C 1998) and the Bayesian networks created by
the graphical editor can be saved in XML files.

At this point, we have implemented an initial version of a
query reformulating Java applet. It analyzes initial problem
description, load Bayesian network stored in a XML file,
asks questions, does Bayesian inference, and reformulates
the query. It can be used to call general-purpose search
engines on the Internet as well as our special-purpose da-
tabase search servlet. The conceptual diagram of the system
is shown in Figure 5. In Figure 5, the shaded components
are the systems we are developing.

Sample Scenario Using the System

In the following, a sample scenario using the system is ex-
plained.

It is well reported that various software troubles hap-
pened after installing the latest version of Internet Explorer
(IE4.0) on Windows95 OS2. Specifically, it is reported
that the dialog of cover page setting in “Microsoft FAX”
program got corrupted. In fact, this trouble happened be-
cause among the several DLL files installed with IE4.0,
different versions of “awfxcg32.dll” can interfere with oth-

2 It is reported much especially in the Japanese environ-
ment.



<Server Side>

<Browser Side>
General-purpose
Search Engines on the 9
Internet IE: _Installed?
Java Applet e Callll Web Server
Query Reforl'tll'lhftl()n Special-purpose Prod \.om_rolatod_to _AWFXCG32.DLL
by Probabilistic ; N
. Search Servlet ) y
Reasoning
A Bayesian é
Graphical ‘Load Networks , Pago_fault';\whon_oxltlng_Outloom
editor (XML files) :
Text Editor ———Create/Generate Possible_problem_In_Microsoft_FAX
Page_fault_when_exiting_Exchange_client
Special
Program

Figure 5. Conceptual Diagram of the System

&

Problem Dascription: AX coverpage dialog gets corrupted.

P R ) . ) | 1ot
indows85 Support Database Search [using MS Index Server]
AltaVista Search

‘Query Target:

Quety.

et e

| Did_you_instal led_intarnet_Explorer 4.0 7

as_the_font_display_in_the_FAX_cover_page_dial

#0oas_the_page_fault_happen_when_finishing_Out!ook

Is_this_on_Windows957?

Figure 7. Sample Screen Image of the Applet

er programs such as Microsoft FAX.
When considering the troubleshooting process by a no-
vice engineer, the followings can be assumed:

1. In the case-base, there is no exact case describing the
problem situation.

2. The novice engineer does not know that the direct cause
is in the awfxcg32dll. Nor does he/she know that the
root cause is in the previous action: installation of
IE4.0.

3. The experienced engineer already knows that depending
on a different version of awfxcg32.dll other problems,
such as (Microsoft 1998), can happen.

4. The experienced engineer also knows that awfxcg32.dll

153

Figure 6. Sample Bayesian Network
is used by Microsoft FAX.

In this case, the novice engineer tends to get stuck in the
early stage of troubleshooting because he/she cannot find
relevant cases by just using the keywords he/she describes
the situation. If the experienced engineer’s knowledge is
encoded in a Bayesian network as in Figure 6 and is used
by the query reformulating Java applet, the novice engineer
can generate a query to retrieve relevant cases. Figure 7 is a
screen image of the Java applet.

Discussion and Issues to Investigate

The proposed approach is more open-ended than those
described in (Breese and Heckerman 1995) and (Hart and
Graham 1994) because Bayesian network is just used to
reformulate query to search various case-bases. Although it
lacks diagnostic powers, it is flexible.

Query reformulation mechanism in the general context of
information retrieval is reported in (Gauch and Smith
1991). They used rule-base technology and thesaurus to
expand or narrow the query. Causal knowledge typical in
software troubleshooting cannot be incorporated into it.

As the next step of research, we will refine and evaluate
the prototype system in more realistic contexts. We need to
investigate the following issues.

* How do we create and maintain Bayesian networks?
* How do we share and exchange them?

Acknowledgments

The author would like to thank Dr. Kouichiro Ochimizu
and Dr. Youichi Shinoda of Japan Advanced Institute of
Science and Technology for useful discussions. The author



also thanks Mr. Fabio Cozman of Carnegie Mellon Univer-
sity for developing and providing the JavaBayes package.

References

Andrews, D. 1996. Self-Help Software to the Rescue. BYTE.
October. 1996: 26-27.

Breese, J. S. and Heckerman, D. 1995. Decision-Theoretic Case-
Based Reasoning. Technical Report. MSR-TR-95-03. Mi-
crosoft Research.

Charniak, E. 1991. Bayesian Networks without tears. Al Maga-
zine. Winter. AAAI: 50-63.

Cozman, F. 1997. JavaBayes v0.33.

Gauch, S. and Smith, J. B. 1991, Search Improvement via Auto-
matic Query Reformulation. ACM Transactions on Informa-
tion Systems. 9(3):249-280.

Hart, P. E. and Graham, J. 1994. Query-free Information Re-
trieval. In Proceedings of the International Conference on Co-
operative Information Systems.

Jensen, F. V. 1996. An Introduction to Bayesian Networks. New
York, NY: Springer-Verlag.

Microsoft. 1998. “Error Message: Exchng32 Caused an Invalid
Page Fault...” Microsoft Support Online.

Pearl, J. 1997. Probabilistic Reasoning in Intelligent Systems.
San Francisco, CA: Morgan Kaufmann. (Originally published
in 1988). :

Shimazu, H., Shibata, A., and Nihei, K. 1994. Case-Based Re-
trieval Interface Adapted to Customer-Initiated Dialogues in
Help Desk Operations, Proceedings of AAAI’94

Shinmori, A. and Shibagaki, Y. 1997. Support Process Improve-
ment Approach based on the Analyses of Software Trouble-
shooting Processes. Proceedings of Software Symposium’97.
(in Japanese)

Simoudis, E. 1992. Using Case-Based Retrieval for Customer
Technical Support. IEEE Expert. :7-12,

W3C. 1998. Extensible Markup Language (XML) 1.0. World
Wide Web Consortium. February 1998.
http://www.w3.0rg/TR/1998/REC-xml-19980210

Appendix: Questions and Ansv'vers Concern-
ing CBR Integrations

1. Integration name/category:

- Interactive case retrieval system incorporating query
reformulating based on Bayesian network

2. Performance Task:

- Probabilistic reasoning and case-based retrieval in cus-
tomer support and troubleshooting for software troubles

3. Integration Objective:

- Bayesian network assists in retrieval by query
reformulation

4, Reasoning Components:
- Bayesian network for query reformulation support

5. Control Architecture:
- CBR as master

6. CBR Cycle Step(s) Supported:
- Retrieval

7. Representations:

- Textual cases. Bayesian network created beforehand
and stored in XML files.

8. Additional Components:

-Ask questions to the user to observe the node in Baye-
sian networks
-Generate query adapted to the target search system

9. Integration Status:
- Proposed and currently being implemented.

10. Priority future work:
- Application and evaluation

154





