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Abstract

In this paper, we suggest diagnosing InterOperabil-
ity Testing problems by integrating Constraint-Based
and Case-Based Reasoning. We model the problem as
a Constraint Satisfaction Problem (CSP), then Case-
Based Reasoning (CBR) is used to compensate for what
is missing in this model. CBR supports the process of
learning by supplying the case-base with new cases that
can be used to solve future similar problems. CBR is
also used to update the CSP model, and make it more
robust for solving more problems. The domain we are
using is InterOperability Testing of protocols in ATM
(Asynchronous Transfer Mode) networks.

Introduction

In this work, we suggest diagnosing interoperability
testing problems by integrating two modes of reason-
ing: constraint-based and case-based. The first step is
modeling our system as a Constraint Satisfaction Prob-
lem (CSP). CSP has proven very useful in many appli-
cations including diagnosis of protocols, and interoper-
ability testing. The model of any system may be insuf-
ficient for solving all the problems, because the model
may be incomplete or incorrect. We propose to deal
with incompleteness and incorrectness by using a case-
base of the specific system. Previous versions of this
paper appeared as (Sqalli & Freuder 1998a) and (Sqalli
& Freuder 1998b).

It was shown in (Sqalli & Freuder 1998a) that model-
ing can be categorized using two parameters: the com-
plexity of the system to be modeled and the status of
the knowledge in these systems (complete vs. incom-
plete).

One example of simple systems with incomplete
and/or incorrect knowledge is interoperability testing
of protocols. Protocol specifications are written by ex-
perts but may have flaws and be incomplete, which may
lead to non-interoperability of devices. In addition, if
many protocols are running at the same time between
two devices, they may cause the wrong behavior of one
protocol due to the external interactions with the other.

A model is incomplete if it is missing some knowl-
edge about the system’s behavior. A model is incorrect
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if it represents wrong knowledge. An example of an in-
complete model is a CSP problem where a constraint or
a variable is missing. An example of an incorrect model
is a CSP problem where a constraint is incorrect.

Models can be incomplete because they represent the
behavior of a specific system and may not include all
the interactions with the external world. In addition,
models can be incorrect because they may represent
systems that are not well-defined or contain flaws (mis-
takes, bugs, errors, ...), because these systems are the
outcome of imperfect human thinking,.

The problem domain presented in this paper is mo-
tivated by the work we are doing with the InterOper-
ability Lab (IOL) at the University of New Hampshire.
One mission of IOL is to provide testing services for
vendors of computer communications devices.

Interoperability testing is testing whether two devices
connected to each other and implementing the same
protocol are operational. This is done by monitoring
the data between the two devices using an analyzer,
and then comparing the data observed with what is ex-
pected (what is stated in the specifications of the pro-
tocol tested).

One of the main challenges at IOL is how to debug
and diagnose interoperability problems in a timely man-
ner. At the present, these tasks are done by the experts
who work at IOL, and sometimes it becomes exhausting
to check the data manually and try to determine what
the problem is.

Some of the difficulties that the IOL is having are:
1- checking a large amount of data to find out where
there is a mismatch between what is expected and what
is observed.

2- Wasting time in solving problems that the IOL has
solved before or in solving problems that are very sim-
ilar to old problems solved.

Test suites have been written to help in diagnosing
the interoperability problems. But, using a test suite
manually does not solve the above mentioned problems.

This shows that there is a need to make the process
of debugging interoperability problems easier, quicker
and more efficient. The work we propose in this pa-
per is tuned toward solving some of these problems by
automating the process of running test suites and diag-



nosing interoperability problems.

Related Work

(Karamouzis & Feyock 1992) show that the integra-
tion of CBR and Model-Based Reasoning (MBR) en-
hances CBR by the addition of a model that aids the
processes of matching, and adaptation; and it enhances
MBR by the CBR capacity to contribute new links into
the causality model.

In (Purvis & Pu 1995), case adaptation process in
assembly planning problems was formalized as a CSP.
Each case is represented as a primitive CSP, and then
a CSP algorithm is applied to combine these primitive
CSPs into a globally consistent solution for the new
problem. CBR is used to fill the values of the problem,
then CSP is used to make the problem consistent.

In (Portinale & Torasso 1995), it is stated that ap-
proaches combining MBR and CBR can be roughly clas-
sified into two categories: approaches considering CBR
as a speed-up and/or heuristic component for MBR,
and approaches viewing CBR as a way to recall past ex-
perience in order to account for potential errors in the
device model. Their proposal was in the first category
by means of the development of ADAPtER, a diagnos-
tic system integrating the model-based inference engine
to AID (a pure model-based diagnostic system), with
a case-based component intended to provide a guide to
the abductive reasoning performed by AID.

(Lee et al. 1997) developed a case and con-
straint based project planning expert system for apart-
ment domain. This large scale, case based and
mixed initiative planning system integrated with in-
tensive constraint-based adaptation utilizes semantic
level meta-constraints and human decisions for com-
pensating incomplete cases embedding specific plan-
ning knowledge. The case and constraint based archi-
tecture inherently supports cross-checking cases with
constraints during the system development and main-
tenance. '

(Hastings, Branting, & Lockwood 1995) describe a
technique for integrating CBR and MBR to predict the
behavior of biological systems characterized both by in-
complete models and insufficient empirical data for ac-
curate induction. They suggest the exploitation of mul-
tiple, individually incomplete, knowledge sources to get
an accurate prediction of the behavior of such systems.
They state that precise models exist for the behavior of
many simple physical systems. However, models of bio-
logical, ecological, and other natural systems are often
incomplete, either because a complete state description
for such systems cannot be determined or because the
number and type of interactions between system ele-
ments are poorly understood. In this paper, MBR is
mainly used to determine values for variables in cases,
and compute new values from old cases’ values. MBR
is used for the adaptation of cases (MBR is used within
the CBR formalism).

Our focus in this paper is to deal with interoperabil-
ity testing and show how we can get better results by
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enhancing the CSP model with the case-base reasoner.
First, CSP is used to solve the problem. If the CSP
model is insufficient, then CBR is used. This way CBR
will not be used unless CSP fails. The result obtained
from the CBR is then used to update the model. This is
similar to what has been done in integrating CBR and
MBR to update causality models. The difference is that
we are using CSP models, taking advantage of the CSP
representation and applying that to the interoperability
testing domain.

InterOperability

InterOperability Testing of the PNNI
Protocol in ATM Networks

Asynchronous Transfer Mode (ATM) has emerged as a
networking technology capable of supporting all classes
of traffic (e.g. voice, video, data). ATM is a connection-
oriented technology that uses fixed-size cells, and can
guarantee certain quality of service (QoS) requested by
the user.

PNNI (Private Network Network Interface) proto-
col provides dynamic routing, supports QoS, hierarchi-
cal routing, and scales to very large networks (ATM
1996). Two switches running PNNI are able to send
data to each other either via direct link or by using a
route. The PNNI protocol is composed of PNNI rout-
ing that includes discovery of the network topology to
become ready to route to different points, and PNNI
signaling which is responsible for dynamically estab-
lishing, maintaining and clearing ATM connections be-
tween two ATM networks or nodes (ATM 1996). The
PNNI routing protocol starts when the link is up, and
every switch should send HELLO packets (information
about itself) during the Hello Protocol phase.

InterOperability Testing in networks is used to ensure
that a device does what it is intended for. It is meant
to supplement conformance testing by verifying that
the end-to-end behavior of devices is compatible with
the protocol specifications. This work is focused on
testing protocols that run over ATM networks, and the
examples used are taken from the PNNI protocol.

For our purposes, interoperability testing of PNNI
allows us to detect any problems that arise when two
switches supporting the PNNI protocol are connected.
The network can be large with many switches con-
nected. But, for simplicity we propose to work on a
two-switch network and perform interoperability test-
ing on them. We suppose that the two switches have
passed conformance testing. We base our work on the
BTD-TEST-pnni-iop.000.000 document which provides
the test suite for performing PNNI interoperability test-
ing (ATM 1998).

The monitor gets all the data (observations) neces-
sary to test the interoperability of the devices hooked
to it. An observation is the data representing an event
that occurred. After we get the results of monitoring
all the traffic between the two switches, we want to an-
alyze the data obtained and determine if both devices



are interoperable.

Representation

We propose to use the CSP formalism to analyze the
data and test the interoperability of the device. CSP
provides more flexibility in the representation of the
events and constraints that must be satisfied.

Modeling the entire protocol may be a costly way of
approaching this particular problem (Sqalli & Freuder
1996), since the model must include all the information
found in the protocol specifications. In addition, inter-
operability testing is usually presented as a test suite
(ATM 1998). A test suite is a collection of tests. Each
test provides the mechanisms for testing a particular
phase or component of the protocol. We propose a sim-
ple way of modeling the protocol by using sub-models
where each sub-model represents one test. Tests are
written in an incremental way, and some are subsets
of others. Running all tests then would be the same
as testing the whole protocol. The advantage of this is
to simplify the representation and be able to pinpoint
problems at a smaller scale.

CBR support for the CSP model

CSP is a powerful and extensively used artificial intel-
ligence paradigm (Freuder & Mackworth 1992). CSPs
involve finding values for problem variables subject to
restrictions on which combinations of values are accept-
able. A constraint graph is a representation of the CSP
where the vertices are variables of the problem, and the
edges are constraints between variables. Each variable
has labels which are the potential values it can be as-
signed. CSPs are solved using search (e.g. backtrack)
and inference (e.g. arc consistency) methods. CSP rep-
resentations and methods will be used for modeling our
interoperability problem since they provide a powerful
tool in this case.

CBR is very useful when there is enough empirical
data for accurate induction. It is composed of four
main steps: case matching, case retrieval, case adap-
tation, and case storage. CBR uses a case-base where
it stores learned cases. A case is usually composed of a
description of a problem, and a solution to it. When-
ever there is a new problem, it is matched to what is
already in the case-base using similarity metrics. Then,
the useful cases are retrieved and adapted to the new
problem to provide a solution. The new case (problem
and its solution) will be stored in the case-base if it
provides new information.

In this paper, the main focus is on the CBR/CSP
interface and how CBR can be used to deal with in-
completeness and incorrectness in the CSP model.

Approach
In figure 1, we show how CBR and CSP are combined
to deal with incompleteness and incorrectness.

The first step consists of modeling the protocol spec-
ification into a CSP representation. The protocol spec-
ification is taken from the test suite that represents it.
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Each test in the test suite is modeled and tested sepa-
rately.

Protocol
Specification

Monltored
Observations

Decoded
Observations

Figure 1. Integration of CSP Model and CBR for
InterOperability Testing.

Each event has many parameters. For example, the
Hello event has Node_ID, PG.D, ..., Source, Time, Sta-
tus as parameters, and some of these parameters are
shown in figure 2. The CSP graph shown in figure 2
is the model of a test case taken from the BTD-TEST-
pnni-iop.000.000 document (ATM 1998).

Hello (from SUT A
Figure 2. CSP Model of Test Case ID: V4201H__001

Each of these parameters represents a vertex (vari-
able) in the CSP graph. The labels in each vertex (val-
ues inside the vertex) are the values a variable may
take, called the variable’s domain. When no labels are
present, the variable can be assigned any value. The
constraints may be either unary, binary, ternary, etc.
The unary constraints are the restrictions on the vari-
able’s domain. For example, in the Hello(A) event, the
variable Status can be assigned the value ‘1’ only, mean-
ing this event is mandatory; in other optional events,
the associated variable may take either value ‘0’ or ‘1.
In the same way, the Source can be either (A) or (B)
representing the device which sent this Hello event. The
binary constraints are restrictions on the relation be-
tween two variables’ domains. For example, there is a
< constraint between the Time variable of the Hello(A)
event and the Time variable of the Hello(B) event.



The following steps are taken from(Sqalli & Freuder
1996) and they show how the CSP modeling of protocol
testing is done:

1. Identify uniquely each event using the event name,
the address, the time-stamp, etc. In the case where we
have more than one event with the same name, the
other parameters (e.g. address, time-stamp, ...) can be
used to identify each of them.

2. Represent the events into a constraint graph where
the variables are parameters (e.g. Node.ID, Status,
Time, ...) of the events (e.g. Hello, ...), or other ex-
tra variables (e.g. Event_ID, ...) used for checking some
constraints (e.g. Event ID = Hello). The variable labels
are the values that may be assigned to these variables
(e.g. (A) or (B) for variable Source), and the edges are
the constraints we need to satisfy such as the order of
receiving events, or the value a parameter may take.

3. Get the input data by monitoring the traffic be-
tween the devices tested (e.g. (A) and (B)). These are
called Observations.

4. Use the event identifier (e.g. Hello(A)) to map the
events’ parameters into variables, and assign values to
them. We may wait until all the graph is instantiated
(i.e. all events have occurred), then check whether all
the constraints are satisfied or there is no violation. Al-
ternatively, we may assign values to variables as events
occur, and test if the LPCG is satisfied. A LPCG (Log-
ical Partial Constraint Graph) is the portion of the con-
straint graph that has been so far instantiated. If there
is a violation of a constraint, the process is stopped and
a failure is reported. This allows us to detect errors ear-
lier.

5. Test if all the constraints are satisfied after instan-
tiating all the variables.

6. Report the results (OK or Error).

More details on how to model the protocol as a CSP
and how to check the consistency of this CSP model is
provided in (Sqalli & Freuder 1996).

Thus, the actual behavior of the system is checked
against this model. If we can get the answer as to
whether the actual behavior matches what is expected
by the model, then the result is reported. If the model
does not provide enough information to give the an-
swer, then CBR is used. This work focuses more on the
CBR/CSP interface and how CBR is used to deal with
the incompleteness and incorrectness of a CSP model.
CBR components are still under development and we
present here a proposal for future implementation.

Each case is represented as a CSP. In the example
presented later we show how this representation is done
for CASE X. CBR checks if there is a similar case in
the case-base. We propose to use syntactic similarity.
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Two cases are similar if they have a similar structural
CSP representation. This involves the number of events
represented and the parameters of these events in ad-
dition to the constraints between different parameters.
Because of the way test suite is written, many tests will
have similar representations. However, further empir-
ical study is needed to prove the effectiveness of this
similarity. If one or many similar cases are found, then
they are retrieved and used to solve the new problem.
The adaptation process is simple in many cases because
of the tests similarity within the same test suite. To
simplify further this process, some rules expressed by
the expert are used. Finally, the user will check in-
teractively whether the adaptation is appropriate, and
whether this new case can be used to update the model.

The new case, consisting of the problem and solution,
is eventually stored in the case-base. The new solution
can also be used to update the CSP model, and make it
more adaptable to new situations. The process of up-
dating the model is done manually. Ultimately, the goal
is to automate this process so that the user interaction
with the system can be minimized. A set of general
rules are used to update the model from a case. Some
examples of these rules are:

1. Add the constraints from the case’s solution to the
model.

2. Add or remove the necessary constraints to make
the CSP graph consistent.

In the example section, more explanation will be
given on how to combine these two modes of reason-
ing in a practical problem.

Advantages

The advantages of our approach can be summarized as
follows:

¢ The modeling of the protocol specifications as a CSP
is easier to start with than gathering a set of cases.
If we use only CBR then we will need to store many
cases. Instead, we choose to reduce the number of
cases by using the CSP model. The CSP model rep-
resents the core of the system, and CBR adds the
missing elements in this model.

o There is no need for CBR use at first but only after
CSP fails. The CSP model is easier to use at first
because of its generalization.

e CSP is enhanced by the CBR results. The effec-
tiveness of the model increases as more problems
are solved, because the CSP model gets updated as
needed.

o The representation of cases is done using CSP. This
assures uniformity of representation.

e The system is open to new expertise and easily up-
dated. The expert can add cases as needed by the
system.



e One case can be used to update different parts of
the model. This will assure that the expert is only
consulted when CBR fails.

Example

We are interested in the PNNI routing protocol to
demonstrate the advantages of integrating CBR and
CSP to interoperability testing. In this example we
will show how we can deal with an incorrect model.

The following is an example of a test (Test Case ID:
V4202H_.004) from the BTD-TEST-pnni-iop.000.000
document (ATM 1998):

Test Case ID: V4202H__004

Test Purpose: Verify that the first Hello
sent from both sides contains Remote node
ID and Remote port ID set to zero.

Pre-requisite: Both SUTs are in
different lowest level peer groups.

Test Configuration: The two SUTs (e.g., ATM
switches (PNNI capable)) are connected.
Test Set-up: Connect the two SUTs with one

physical link.

Test Procedure:

1- Monitor the PNNI (VPI/VCI=0/18)
between SUT A and SUT B.

Verdict Criteria: The first Hello
packet observed from each SUT will have
the Remote node ID field and Remote
port ID field set to zero.

Consequence of Failure: The old PNNI
information was retained causing the
protocol not to operate.

The following is part of the CSP model of this test,
representing the time variables and constraints:

1WayOut(A) 1WayOut(B) 2WayOut(A)
<
2WayOut(B)

Figure 3. Initial CSP Model of Test Case ID: V4202H__004

These are some of the results we may observe:

Observation 1 Observation 2 Observation 3

(Bad) (Good) (Bad?)

Nothing 1WayOut(A) 1WayOut(A)
1WayOut(B) 2WayOut(B)
2WayOut(A) 2WayOut(A)
2WayOut(B)

A Hello packet is a 1WayOut if the Remote node ID
field and Remote port ID field are set to zero. Other-
wise, it is a 2WayOQOut.
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This is the case stated by the expert when we encoun-
tered an earlier problem: If a device receives 1Wayln
before sending one, then it can skip sending 1Wayln
and send 2Wayln.

In the adaptation process, this rule stated by the ex-
pert is used:

“1WayOut (respectively 2WayOut) generate similar
behavior as 1WayIn (respectively 2WayIn).”

This case is then retrieved and reused in this exam-
ple. The new case we obtain is: If a device receives
1WayOut before sending one, then it can skip sending
1WayOut and send 2WayOut.

The CSP representation of this case is the following:

| CASE X ]
Description:
time[1WayOut(A)] < time[2WayOut(B)], and
time[2WayOut(B)] < time[2WayOut(A)]
Problem: 1WayOut(B) is missing. That is:
Status[1WayOut(B)]={0}
Solution: 1WayOut(B) is optional. That is:
Status[1WayOut(B)]={0,1}

In the original model: Status[1WayOut(B)]={1},
which means that the event 1WayOut(B) is mandatory.

To update the model, we use the general rules we de-
scribed earlier in this paper. These rules applied in this
example become as follows:

1. Make the variable 1WayOut(B) optional.

2. For each variable Z connected to the optional vari-
able Y (1WayOut(B) in this case), add transitivity con-
straints between Z and the other variables connected to
Y (e.g. if Z < Y and Y < P then we add the constraint
Z<P).

Using the above case (CASE X), the model becomes
as follows:

WayOut(A)

2WayOut(B)

O Optional

O : Mandatory

Figure 4. Corrected CSP Model of Test Case ID:
V4202H_.004



This problem happened because of misinterpretation
of the specifications that caused an incorrectness in test
V4202H_.004 of the test suite. When the model was
corrected by taking out one inequality constraint, the
two observations 2 and 3 are shown to be correct.

Conclusion

The model for interoperability testing can be incom-
plete or incorrect because it may not represent all the
interactions with the outside world and because such
systems are not always well-defined. We propose to
solve this problem by integrating Constraint-Based and
Case-Based Reasoning. Models are constraint-based
supported by a case-base where special problems with
their solutions are stored for future use. The model is
used first, and if it is not sufficient then similar cases
are retrieved and CBR is used. The solution obtained
can be used to update the model and compensate for
its incompleteness and/or incorrectness.
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Appendix
Integration name/category: Constraint Satisfac-
tion/CBR.
Performance Task: Interoperability testing of net-
working protocols

Integration Objective: Compensate for incom-
pleteness and incorrectness of models

Reasoning Components: Constraint Satisfaction
and CBR

Control Architecture: CBR as slave, sequential:
CSP is used then CBR

CBR Cycle Step(s) Supported: CBR supports
and updates the CSP model

Representations: Constraint Satisfaction for mod-
els and cases

Additional Components: User validation
Integration Status: Proposed

Priority future work: Automate the process of up-
dating the model, and address more specific issues in
CBR (similarity, adaptation, ...)





