
Planning in Manufacturing Domains

Controlled by Case-Based Reasoning

J6zsef Vfincza

Computer and Automation Research Institute
Hungarian Academy of Sciences

H-1518 Budapest POB 63, HUNGARY
vancza@sztaki.hu

Abstract
In this paper a class of planning problems is dealt with
where resources have a central role: they can allow for many
alternative courses of actions, but, at the same time, they
have to be used economically. Such problems are typical in
manufacturing domains, e.g., in manufacturing process
planning or inspection planning. The problem of constrained
plan optimization is exposed in such resource-rich domains,
and an appropriate planning method is outlined. The method
that performs task grouping is supported by case-based
reasoning. Finally, it is shown how the approach was applied
in robotic inspection planning.

Introduction

Planning in manufacturing domains brings about serious
difficulties for a planner: it must reason about complex
objects, handle various, sometimes even contradictory
technological constraints and deal with resources in a
parsimonious way. In such domains, thanks to the
abundance of alternative resources, finding a plan is rarely
a problem. However, generating plans with at least close-
to-optimal resource utilization is already very troublesome
(Kis and V~incza 1996). The constrained plan optimization
problem can be solved only if one is able to exploit domain
knowledge in the quest for the best plans.

Below the problem of planning in resource-rich domains
is outlined and a new planning method is presented. The
method enables us to apply domain knowledge directly in
the control of the search process. The most critical step of
the planning process is performed by case-based reasoning.

Planning in Resource-Rich Manufacturing
Domains

This section characterizes planning domains where re-
sources play a central role. Such domains are typical in
manufacturing. For further details see our detailed models
on manufacturing process (Horv~ith et al. 1996, V~incza and
M~irkus 1996) and inspection planning (V~incza et al. 1998).

In manufacturing domains a planning problem consists of
many atomic tasks. The tasks are, however, not

independent. For instance, in process planning a problem is
specified basically by a part model with form features, but
further information on general part properties (material,
sizes) as well as feature relations (e.g., perpendicularity)
are also substantial.

The tasks are consolidated local subproblems with well-
proven solution patterns. E.g., it is well understood which
machining processes--and under what conditions--are
applicable for drilling (or inspecting) deep holes.

Tasks can be performed by operations that use various
resources. Operations usually require combinations of re-
sources: e.g., a milling operation needs a machine tool, a
fixture and a milling tool. In manufacturing domains the set
of resources is typically large, the resources are modular
and often have overlapping capabilities. As a consequence,
the same task can be performed by a large number of alter-
native operations, all using different resource combinations.
Resource changes are costly and may deteriorate the
accuracy of machining (or inspection) operations.

The order of performing tasks is very important.
Typically, the tasks are nonserializable (Barrett and Weld
1994): they cannot be achieved without interleaving
subplans for other tasks. Beyond ordering constraints, there
can be also resource binding constraints that require two or
more tasks to be performed with the same resources (quite
a common requirement in inspection planning). The
constraints stem from technological considerations.

Plans should be complete, consistent (i.e., executable),
and optimal. Optimal plans contain a minimal number of
resource changes and use the cheapest resources. Further
on, plans should cover as many alternative solutions as
possible. Typically, partial-order plans are needed with
alternative resource assignments. However, all solution
instances must satisfy the relevant constraints and utilize
resources at least in a close-to-optimal way.

Planning in manufacturing domains is a constraint satis-
faction problem on one hand: all the relevant technological
constraints must be observed. This is not always possible,
since constraints which are mostly based on local solution
patterns may contradict each other when put together.
Hence, planning needs the application of constraint check-
ing and relaxation methods, too. On the other hand,

161

From: AAAI Technical Report WS-98-15. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

planning is an optimization problem as well: in manufactur-
ing domains optimal resource usage is a key issue.

The Planning Method

We have developed a planning method which can cope with
large planning problems in resource-rich manufacturing
domains, even if optimization is a major concern. The
overall planning process goes like this:

1) For each task, generate operation alternatives with all
applicable resource combinations.

2) Generate ordering and resource binding constraints for the
tasks. Resolve conflicts, if any.

3) Find maximal groups of tasks so that they have common
resources, and do not violate the constraints.

4) Propagate constraints to groups and perform detailed
planning within the groups.

First, supposing the independence of elementary tasks, we
generate alternative ways for achieving each of them. Then,
with a somewhat wider scope, constraints are generated on
the feasible combinations of local plan fragments. Here
conflicting constraints, if any, have to be resolved by relax-
ing or removing some of the constraints. After this, when
we know already a lot about how the various tasks could be
achieved, and what constraints have to be satisfied by the
combinations of local solutions, we suspend completely the
assumption of independence and try to define groups of
tasks that may be strongly interdependent. In resource-rich
domains interdependence means first of all the use of
common resources. Thus the optimization step is based on
grouping those tasks that can be performed by operations
using common resources. Finally, the groups are ordered
and detailed planning is performed within each group.

This structuring of the planning process is not without
good reasons: Steps 1) and 2) can both be performed
using local pieces of knowledge that are strongly related to
the tasks. E.g., what processes and resource combinations
are applicable for machining a particular slot, or measuring
its dimensions; how should these operations be ordered
relative to other operations that perform some--but
definitely few---other tasks. Potential conflicts between the
constraints are resolved in a mixed-initiative way:
combinatorial algorithms check the satisfiability of
constraint sets and suggest what constraints to relax or
remove, but the decision is left to the human planner. Once
task groups have been established, further planning is quite
easy, because (1) groups factorize the search space, and (2)
within groups the number of applicable resource
alternatives may be greatly reduced, too.

Hence, the computational complexity of planning is
concentrated into step 3). This strategy is similar to some
recent domain-independent planning approaches that build
up the space of disjunctive solutions relatively easily by
way of putting the burden of complexity on the process that
extracts solutions from this space (Kambhampati 1997).
our case, this solution extraction is directed toward close-
to-optimal plans by task grouping.

Task Grouping

Task groups have to meet the following requirements:
¯ Tasks in the same group must be executable by

operations that can use the same resources.
¯ Any grouping must be, just like the plans, complete

and consistent with the plan constraints.
¯ The grouping should be as close to the optimization

objectives as possible. Primarily, the plan should have
a minimal number of groups. A secondary concern is
that the common resources of the groups be as cheap
as possible.

Finding the best grouping of tasks is not easy because one
has to keep one eye on the resource alternatives, and one
eye on the ordering and resource binding constraints. For
instance, consider the simple example in Fig. 1. Nodes of
the graph are tasks, while arcs show ordering constraints
(resource binding constraints are not considered here). Let
R(x) denote the set of resource combinations that are appli-
cable by operations aimed at performing a task (ti) or a task
group (Gi). Assume that certain tasks have overlapping
resource sets; e.g., R(tl) n ... R(ti)... n R(t6) = R1 {} ,
and similarly, R(t7) n ... R(tj) ... n R(tl4) = R2 # {}.
the point of view of resource usage alone the groups G1 and
G2 seem to be ideal, but they introduce a cycle in the graph
of orderings. Hence, such a grouping is not feasible.

Figure 1. A task grouping that results in ordering conflict
between the two groups.

How tasks are grouped has a critical impact both on the
feasibility and optimality of plans, and on the efficiency of
the planning process. When suggesting a particular
grouping one can but anticipate that it will result in a close-
to-optimal and consistent plan. The solution of this problem
calls for the application of domain knowledge. We claim
that such knowledge is available, and it can best be utilized
by case-based reasoning.

In manufacturing domains planning experts do a kind of
task grouping. They often perform so-called setup
planning: collect elementary manufacturing tasks into
groups so that all the tasks can be performed in the same
setup and possibly, with the same tool or instrument (Sarma

162

and Wright 1996, Halevi and Weill 1995, Farago and Curtis
1994). Setup planning is accomplished, however, either
before or after sequencing the tasks and the corresponding
operations. Since alternative resources and orderings are
not considered simultaneously, the search problem is
greatly simplified. Of course, this can be done only at the
risk of having the plan optimization process halted at some
local optimum.

All in all there are a lot of pieces of advice on how to
form setups, but if we remove the order and/or resource
related restrictions, then the conditions of their applicability
become rather blurred, and our decision problems become
ill-structured.

Task Grouping by Case-Based Reasoning

For capturing and utilizing essential domain knowledge
with somewhat ambiguous application conditions, we
attempted to use case-based reasoning.

Cases and their representation
Cases are high-level descriptions of plan sets together with
suggestions on how to modify the sets. The modifications
are aimed at restricting the set of plans possibly to those
plans that are both feasible and close-to optimal. However,
it must be emphasized that, contrary to most case-based
planning approaches (see Champati et al. 1996, Veloso et
al. 1996), cases are definitely not problem statements on the
task level with plans as perspective solutions.

The stored cases have a problem description and a
solution component:

¯ The problem description is the specification of a
search control situation. It is given in terms of a task
set profile. The profile characterizes a problematic set
of tasks: it may refer to the number, the types and
relations of tasks, the characteristics of resource sets
as well as to the plan constraints.

¯ The solution contains a suggestion on how to form
groups from the elements of a task set. Actually, this
is an advice for the human planner. It has also a
machine executable part for implementing the
suggestion whenever it is accepted.

For representing the cases, weighted feature vectors with
Boolean, string and numeric attributes suffice. Our experi-
ence suggests (see below) that different weights for match,
mismatch and absence can well be exploited in case
retrieval.

Reasoning with cases

¯ Case-based reasoning is applied when there is a set of tasks
G that cannot be performed by operations using common
resources; i.e., when R(G)={ }. If this is the situation,
groups G1,G2,...Gn are formed from G so that G=G1 u G2
... u Gn. How groups should be formed is suggested by the
stored cases. If for any group Gi the resource set R(Gi)
empty, then the process is repeated for this group.

The steps of the reasoning process are the following:

1) If the tasks have some common resource alternatives, then
no grouping is needed; return the input set as one group.

2) Otherwise define the actual case by generating the task-set
profile.

3) Retrieve stored cases which are similar to the actual case.
4) Present suggestions of the retrieved cases in a ranked list

and let the user select from among them. If there is no
(good) choice, then go back to 3) and retrieve cases with
looser match.

5) Execute the group forming action that comes with the
accepted suggestion.

6) Check the constraints: if the new task grouping introduces
any conflict, then go back to step 4).

7) Recursively apply the same procedure to the new task
groups.

In step 2) the profile of the actual set of tasks is prepared by
rule,based reasoning. Then this actual case is matched
against those stored in the case-base. For retrieval k-nearest
neighbour matching is applied.

What happens in step 5) is a kind of case adaptation. In
contrast to most case-based applications, adaptation is
relatively easy in our framework because it does not need to
tailor a previous solution to an actual problem. Instead,
following an accepted suggestion, a particular grouping
action has to be carried out. Production rules together with
some auxiliary procedures can do this perfectly.

However, there is no guarantee that recalling and reusing
previous cases always leads to the best solution. Hence,
after the iterative, top-down group forming process a bot-
tom-up merging is initiated: we try to recombine the groups
so as to form better groupings, if possible. When merging
the Gi and Gj task groups, the new resource set, R(Gi u Gj)
will be R(Gi) n R(Gj). The two groups can be merged
if R(Gi u Gj) is not empty. Group merging can be per-
formed in an exhaustive way since due to non-overlapping
resource sets most of the groups cannot be merged at all.

Application in Inspection Planning

The above ideas have been applied in the development of a
knowledge-based inspection planning system (Vdncza et al.
1998). The system had to assist robot-based dimensional
quality control in ordinary production environments: it had
to support the proper and justified selection of inspection
resources (including universal robots) and the generation
inspection plans for machined parts with average tolerance
and surface roughness requirements.

Inspection can be carried out by using many types of
equipment: there is a wide choice of measuring instruments
(like calipers, probes or gauges), specialized measuring
stations (e.g., cylindricity or roundness testers), and various
coordinate measuring machines. Inspection needs also
auxiliary equipment for staging and manipulating the part.
A planning problem is specified by a set of dimensional
control tasks. Thanks to the universal robots and multi-
purpose instruments and setups, the tasks can be performed
in many alternative ways. Ordering and resource binding

163

constraints are numerous and often conflicting. The primary
optimization objective is to avoid resource changes as far as
possible.

The solution of the robotic inspection planning problem
required multimodal representation and reasoning:

¯ Domain objects (part and its features, instruments, se-
tups, auxiliary instruments and robots) and their rela-
tions were represented by means of frames.

¯ Part analysis, determination of elementary inspection
tasks, selection of appropriate resource combinations,
generation of constraints, as well as detailed planning
were all accomplished by rule-based reasoning.

¯ Geometric reasoning and constraint checking was
done by procedures.

¯ Finally, task grouping was carried out first of all by
case-based reasoning.

¯ A simplified case from the case-base of this application is
shown below.

(DEFSCHEMA CB-PROF-ROT-TOL-ALL
(INSTANCE-OF TASK-PROFILE)
(NUMBER-KEY 13
;;TASK-SET PROFILE (matched attributes)
;;part-related attributes
(PART-TYPE ROTATIONAL)
;;tolerance type related attributes
(DIMENS IONAL-TOLERANCE-CONTROL Y)
(FORM-TOLERANCE-CONTROL Y)
(RELATIONAL-TOLERANCE-CONTROL Y)
(ROUGHNESS-CONTROL Y)
;;constraints related attributes
(MAX-LENGTH-OF-TOLERANCE-CHAINS i)
;;resource related attributes
(COMMON-SETUPS-FOR-PART-ROTATING Y)
; ; SOLUTION (non-matched attributes)
(SUGGESTION "Form task groups on the basis of

tolerance types. ")
(ACTION FORM-GROUPS-BY-TOLERANCE-TYPES)

)
Figure 2. A case applied to form task groups in inspection

plans (without match, mismatch and absence weights)

The system has been implemented by using the tool-kit of
ART-IMTM (Brightware Corp.) which supports all the
above technologies. It was tested with models of commer-
cial robots and contact-type measuring instruments. While
solving inspection planning problems of average complex-
ity (rotational parts with about 20 dimensional control
tasks), typically 10-50 alternative operations were gener-
ated per tasks. The partial order of tasks looked typically
like the ordering shown in Fig. 1. The space of potential so-
lutions was built up by thousand or so rule firings. In this
space case-based reasoning directed the search process to-
ward optimal solutions always in a reliable and efficient
manner. Though CBR was not called for many times, to-
gether with the preparation and adaptation of cases
(including group merging) it consumed about one third
the total computing time.

Discussion

A planning method was outlined that is able to explore
alternative ways of achieving elementary tasks and to find
close-to-optimal combinations of plan fragments. The
solution space is not restricted by a wired-in decision
structure or by heuristics. Instead, plans that have to meet
global optimization criteria are generated with a global
view of the space of potential solutions.

The method has been verified in manufacturing process
planning (Horvdth et al., 1996, V~incza and M~kus 1996),
and later in robotic inspection planning. The two solutions
are in one respect very different: while in manufacturing
process planning a powerful, but expensive and "blind"
genetic algorithm was applied for finding groups of
interrelated tasks, in the inspection planning domain case-
based reasoning serves this purpose. Great advantage of the
latter approach is that it enables the direct application of
optimization-related knowledge, and just in that phase of
the planning process where such help is mostly needed.

There are already some case-based planners applied in
manufacturing domains (Champati et al., 1996; Mufioz-
Avila and Weberskirch, 1996), but these planners do not
take much care just of the abundance of potential resources.
Hence, they can hardly serve optimization purposes.
Another problem with case-based planners is that they can
be inhibited whenever too complex adaptation tasks have to
be resolved. In the worst case, a planner can save nothing
by starting from a previous solution instead of planning
from scratch. At least, this is known within the classical
framework of planning (Nebel and Koehler 1995).
However, these results are relevant also in our case, since,
as we have shown in (Kis and V~incza 1996), our
manufacturing planning problem can also be formulated
within the classical model. All in all, though our system
uses cases while generating plans, it has not much in
common with case-based planners. The planning method is
most similar to that of the CABINS system (Miyashita and
Sycara 1995). CABINS works in the domain of job shop
scheduling and suggests repair strategies and tactics for
improving schedules by case-based reasoning.

In our framework case-based reasoning provides a
technology for injecting domain specific knowledge into
the search control of the planning process, and supports
also, via its soft matching mechanism, the application of
this knowledge under somewhat blurred conditions. On the
other hand, using CBR in search control instead of directly
in planning is also advantageous, since cases with simple
structure are suitable, the solution quality and efficiency of
the planning process can be enhanced by using relatively
small case-bases, and case retrieval and adaptation can be
fully automated.

In conclusion, it must be emphasized that case-based rea-
soning is embedded in a complex planning framework: the
power of the approach seems to be just in the integrated use
of various knowledge sources and reasoning methods.

164

Acknowledgments This work has been supported by grant
T023305 of the National Research Foundation of Hungary
(OTKA) and the IC15-CT96-0708 (MINOS) project.
author is indebted to A. Mfirkus for many discussions and
suggestions.

References

Barrett, A., and Weld, D. S. 1994. Partial-Order Planning:
Evaluating Possible Efficiency Gains. Artificial Intelligence
67:71-112.
Champati, S., Lu, W. F., and Lin, A. C. 1996. Automated
Operation Sequencing in Intelligent Process Planning: A Case-
Based Approach. Int. J. of Advanced Manufacturing Technology
12:21-36.
Farago, F.T., and Curtis, M.A. 1994. Handbook of Dimensional
Measurement. Industrial Press Inc.
Halevi, G., and Weill, R.D. 1995. Principles of Process Planning.
London: Chapman & Hall.
Horvfith, M., M~rkus, A., and Vfincza, J. 1996. Process Planning
with Genetic Algorithms on Results of Knowledge-Based
Reasoning. Int. J. of Computer Integrated Manufacturing
9(2): 145-166.
Kambhampati, S. 1997. Refinement Planning as a Unified
Framework for Plan Synthesis. AI Magazine Summer 1997:67-97.
Kis, T., and V~incza, J. 1996. Computational Complexity of
Manufacturing Process Planning. In Ghfillab, M. and Milani, A.
(Eds.), New Directions in AI Planning, lOS Press.
Miyashita K., and Sycara, K. 1995. CABINS: A Framework of
Knowledge Acquisition and Iterative Revision for Schedule
Improvement and Reactive Repair. Artificial Intelligence 76:377-
426.
Mufioz-Avila, H. and Weberskirch, F. 1996. Planning for
Manufacturing Workpieces by Storing, Indexing and Replaying
Planning Decisions. Proc. of the 3rd Int. Conf. on AI Planning
System.
Nebel, B. and Koehler, J. 1995. Plan Reuse versus Plan
Generation: A Theoretical and Empirical Analysis. Artificial
Intelligence 76:427-454.
Sarma, S.E. and Wright, P.J. 1996. Algorithms for the
Minimization of Setups and Tool Changes in "Simply Fixturable"
Components in Milling. J. of Manufacturing Systems 15(2):95-
112.
Vfincza, J., and Mfirkus, A. 1996. Experiments with the
Integration of Reasoning, Optimization and Generalization in
Process Planning. Advances in Engineering Software 25(1):29-39.
Vfincza, J., Horvfith, M., and Stank6czi, Z. 1998. Robotic
Inspection Plan Optimization by Case-Based Reasoning. Journal
of Intelligent Manufacturing. In print.
Veloso, M.M., Mufioz-Avila, H., and Bergmann, R. 1996. Case-
Based Planning: Selected Methods and Systems. AI
Communications 9(3): 128-137.

Appendix

1. Integration Category:
Rule-based reasoning and CBR.

2. Performance Task:
Planning, especially in resource-rich domains. Such
planning problems are typical in manufacturing, like
computer-aided process planning (CAPP), inspection
planning.

3. Integration Objective:
Efficiency gain in CPU and session time; solution quality in
terms of the value of the generated plans; cognitive fidelity.
4. Reasoning Components:
CBR, RBR, procedural reasoning. Rule-based reasoning
sets the stage for CBR and executes what is suggested by
CBR; in particular it 1) analyzes the planning problem at
hand, 2) builds up a disjunctive representation of alternative
plans (an implicit search space), 3) executes plan
modifications suggested by CBR. CBR gives advice on
how to extract good enough plans from this space.
Procedures are needed for geometric reasoning.

5. Control Architecture:
Interleaved. The planning process is segmented to three
different phases; CBR is master in the second phase
(solution extraction), otherwise RBR dictates.

6. CBR Cycle Steps Supported:
Pre-processing, retrieval and reuse. RBR supports both pre-
processing and fully automatic reuse.

7. Representations:
The primary representation is plans given in terms of
actions and constraints. Though, there are frames for
representing complex domain objects, rules for capturing
technological domain knowledge, and also procedures for
dealing with geometrical information. Cases represent
optimization-related domain knowledge.

8. Additional Components:
User provides input in the course of the case-based
reasoning: actually, CBR cyclically offers a ranked list of
plan modification advice, the user selects one, and finally
RBR implements it.

9. Integration Status:
Under empirical evaluation. Tests are made with real-life
inspection planning problems, with detailed models of
objects involved. Experiments are carried out with different
parts and resource sets (instruments, fixtures, etc.). These
can be regarded as independent variables. As for the
solutions, not only their value, but also the path to them is
concerned. Evaluation is supported by 3D simulation.

10. Priority Future Work:
The addition of learning features, theoretical analysis and
generalization.

165

