
Interchangeability for Case Adaptation in Configuration Problems

Rainer Weigel, Boi V. Faltings and Marc Torrens
Artificial Intelligence Laboratory

Swiss Federal Institute of Technology in Lausanne (EPFL),
IN-Ecublens, CH-1015 Lausanne, Switzerland

Abstract

We address in this paper the adaptation of a case when
a complete constraint model of the underlying problem
is given. The idea is to apply methods from constraint
based reasoning that allows the detection of "similar"
solutions, which can be used to adapt a selected case
to a new situation. We consider applications like con-
figuration where a complete constraint model is avail-
able. For these applications, it is often advantageous
to use a case-based approach because constructing a
solution from scratch requires often more interaction
than taking a complete solution (case) and adapt it
fit the current requirements.

Keywords: Case-Based Adaptation, Constraint-
Based Reasoning

Introduction
We consider a solution space of a discrete CSP which
can be nicely partitioned into sets of smaller spaces.
Two solutions within the same set are quite "similar"
while solutions from different sets are not "similar"
where similarity can for example be measured by the
number of values that are different in two solutions.
Consider an elevator configuration problem where the
class of electric elevators is very different from the hy-
draulic ones. Taking other concepts like building types
into account one can synthesize summarized descrip-
tions of the solutions within the different subspaces.
The summarized descriptions correspond from a CSP
point of view to the solutions of a sub-CSP induced by
primary variables which represent "abstract" concepts
of the underlying model. Similarly the summarized de-
scriptions of a product can be found in every product
catalog a salesperson uses to find a first rough descrip-
tion of the product envisaged by the customer. One
can now build a case base containing for every parti-
tioning a single complete solution of the CSP. Using
such case base a clever salesperson can easily select
a case which corresponds roughly to the customer’s
wish. Such a solution however will rarely satisfy all

the requirements and must therefore be adapted. In
many applications of case-based reasoning to design,
automatic case adaptation relies on constraint satis-
faction methods, like for example in Julia (Hinrichs
1988), Cadsyn (Maher et al. 1995) or Cadre and Fam=
ing (Faltings 1997). In this paper we focus on the case
adaptation process by exploiting the concept of inter-
changeability of values of CSP variables introduced by
Freuder in (Freuder 1991); extensions to context de-
pendent interchangeability are described in (Weigel et
al. 1996) and structuring techniques using meta in-
terchangeability can be found in (Weigel and Faltings
1997). The basic idea is as follows: From the model
based description, we extract knowledge of the form
"The value a of a variable X can be replaced by a value
b of X in a certain context C, but not in general". This
knowledge can then be used for the adaptation of a case
containing a, to move to a case containing b as long as
the case is included in context C. In a car configura-
tion example we have selected a case that contains the
air-conditioning system AC1 which should be reconfig-
ured because the customer would like to have system
AC2. AC1 and AC2 however are interchangeable only
when a large battery is available. Thus if the case
already contains a large battery we can simply swap
AC1 and AC2, otherwise we should first upgrade the
battery and then replace the air-conditioning system.
In the following, we recall the definition of a CSP and
describe how to build the case base by finding some
solutions which are considered as typical cases for the
different possible classes of solutions. Then we recall
the concepts of interchangeability and show how these
concepts can be exploited when moving from one so-
lution which corresponds to the adaptation process of
solutions.

Cases and Constraints in Configuration

Problems

Configuration is a design activity where the set of avail-
able components and their allowed combinations are

166

From: AAAI Technical Report WS-98-15. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

known a priori and the goal of the configuration pro-
cess is to find the sets of components fulfilling the cus-
tomers wishes and respecting all the compatibility con-
straints. Given such a problem with a complete con-
straint model, one could argue that there is no need
for using case based methods if one can solve the whole
problem indeed solely with CSP methods. However in
configuration it can be very advantageous to add case-
based methods because customers often cannot com-
pletely describe the product they really want. This is
due to their incomplete knowledge about the product
and also due to the complexity of the problem. The
sales person’s task is thus to propose a solution which
is "close" to the customer’s wish. Proposing a solution
however can be considered as the case selection and
a clever sales person will directly find a set of cases
which could satisfy the customer wish to a certain ex-
tend. Without a case base the salesperson would have
to generate constructively a solution by deciding first
on certain parameters and starting a search engine. It
could be that given the input parameters the system
is over-constraint which is a situation every sales per-
son tries to avoid, or the result is a huge number of
possible solutions which are simply hard to overlook.
Another good argument for using case based methods
is that in some configuration applications it is much
easier for a customer to say what he does not want in-
stead of clearly stating what he wants. Thus proposing
a solution and modifying it until all requirements are
fulfilled is easier that constructing a complete solution
from scratch.

We will now give a definition of a binary CSP to-
gether with a partitioning of the variables into pri-
mary and secondary parameters. A CSP defined by
P = (X,D,C,R); where X = {X1,...,Xn} is a set of
variables, D = {D1,..., Dn} a set of finite domains as-
sociated with the variables, C = {C1,..., Cm} a set of
constraints, and R ={R~j C Di x Dj for a constraint
applicable to Xi and Xj} a set of relations that de-
fine the constraints. We divide the variables into a set
of primary variables Xp and secondary variables Xs.
With primary variables we can for example represent
abstract concepts or functions of an artifact. Based on
the definition, that design [Configuration] can be de-
fined as the moving from a function description to an
attribute description N. Murtagh described in an IMS
working paper (GNOSIS Workpackage 4 1993) primary
and secondary attributes of an artifact:

¯ Primary attributes relate directly to the required
functions of an artifact, e.g., the primary attributes
of a car enable it to perform the functions of trans-
porting people and objects. The desire to have an
artifact possessing certain primary attributes is what

Figure 1: Partitioning o/ the solutions in ~ sets. Adap-
tation of a case correspond to finding a path in the
graph.

normally motivates the design in the first place.

¯ Secondary attributes are normally not essential, e.g.
the ease of use of a car or optional features like air-
conditioning, sun-roofs etc.

One should note that secondary parameters are often
used to implement the functions described by primary
attributes. Given such a partitioning we can define
the CSP Pp as the CSP induced by the primary at-
tributes (variables) of the artifact. Pp contains only
the variables Xp and the constraints in between vari-
ables in Xp. The solutions of Pp represents principally
all possible combinations of functions a product could
exhibit, however some of the solutions of Pp, which are
in fact partial solutions of the overall problem P might
not be extendible to a complete solution, and will thus
be removed from the set of possible function configura-
tions of the artifact. Every solution in this set together
with a single extension to a global solution represents
a case in the configuration case base. In Fig. 1 we see
a small example where the solutions of the problem
can be partitioned into four solution sets. Every solu-
tion is represented by a circle and the solutions that
will appear in the case base are the filled ones. Two
solutions are linked by an edge if they are "similar",
that is they differ only in a small number of values. In
the following we assume that a case base as described
above is available and the salesperson together with
the customer have selected a case which needs now to
be modified until all of the customer’s requirements are
fulfilled. In constraint reasoning one can describe a se-
lection of a case as a "jump" into a region of the search
space where one hopes to find the customer’s solution.
Thus case adaptation can be considered as the recon-
figuration of a given product (case). We consider the
situation where the customer is not willing to change
the values of the primary variables and thus only val-

167

Figure 2: Adaptation with Neighborhood Interchange-
ability.

ues of secondary variables can be changed. Otherwise
one would need to start again at the case selection.

Adaptation using Interchangeability

Using a CBR configuration system a clever salesper-
son can retrieve a case (product) from the case base
which is close to the customer’s wish and propose this
product to the customer. A customer however is rarely
satisfied and some modifications to the product need
to be made. In this section we describe how make
these modifications using model based transformation
techniques based on the concepts of interchangeability.
We consider a solution S of P which corresponds to the
case selected and a CSP/°8 which is obtained from the
CSP P by removing the variables in Xp, furthermore
we remove the values from the variable in Xs that are
not compatible with the values of the primary variables
Xp in S. We first recall the definition of interchange-
ability which formalizes equivalence relations between
values in a CSP.

Definition 1 (Freuder) : Neighborhood in-
terchangeability: A value b for a CSP variable V is
neighborhood interchangeable (NI) with a value c for
V iff for every constraint C on V:

{i I (b, i) satisfies C) = {i I (c, i) satisfies

A polynomial time algorithm (O(n2d2)) for computing
all NI sets is described in (Freuder 1991). In the small
example shown in Fig. 2 we can replace the values a
and d for variable Xs1 because the values are neigh-
borhood interchangeable.

Even in structured problems NI sets are rather rare
and thus other forms of interchangeability might be
useful. In the next two subsections we show how
context dependent interchangeability and meta inter-
changeability can be exploited for case adaptation.

Context Dependent Interchangeability
(CDI)
Here, we recall the notion of context dependent inter-
changeable sets which is defined in terms of maximal
cliques of a graph obtained from the microstructure of
a CSP. This graph is called the modified microstruc-
ture #mod and is obtained by adding an edge in the

i Xpl.. tx.,., ix .blI

"b" of Xs4 can be replaced by "a" of Xa4 since ?
they are Interchange|hie when Xe2 m ¢

¯ I V..o I x.,..Ix.4.. II

Figure 3: . Adaptation with Context Dependent Inter-
changeability.

original microstructure between all variable-value pairs
of the same CSP variable:

#mod(P) = (XD, CR U Eadd) with

Eadd = { Edges between (Xi,Vk) and (Xi,vt)l

V(Xi,vk), (Xi,vt) E andv~ ~vt}

In the modified microstructure, maximal cliques of size
bigger than n can be found. Maximal cliques that are
of size bigger than or equal to n and contain variable-
value pairs covering all variables, contain necessarily a
set of solutions to the CSP andthus are called solution
cliques1.

Definition 2 Context dependent intcrchangeability:
A value a for a CSP variable V is context dependent in-
terchangeable with a value b for V, if and only if there
exists a solution clique in the modified microstructure
of the CSP that contain both nodes (V, a) and (V,

Unfortunately finding all solution cliques is compu-
tationally intractable, however approximations of CDI
sets as described in (Weigel et al. 1996) can be found
in polynomial time. The basic idea is to decompose
iteratively the CSP and run Freuders algorithm on the
subproblems. As a result one can identify interchange-
ability of the following form: The value b of variable
)(84 is interchangeable with the value a if Xs2 is ei-
ther c and Xsl is a or b. Exploiting CDI is depicted
in fig 3. Given Solution1 and the customer wants to
replace Xs4 a by b we realize that replacing the values
can be done when Xs2 is c which is currently not the
case. Thus we first exchange b by c of X82 which are
CDI when X~3 = c and then we swap a by b of Xs4.

Adaptation can now be described as a transformation
of a solution into another solution by successively ex-
changing values assigned to single variables. This could
be accomplished using the solution graph G = (V, E)

1Note that two arbitrary solution cliques may contain
some identical solutions but they differ in at least one
solution.

168

xnow. lX,,

x,v - v3

vl = {(r,g), (g,r)}~

v2 = {(r,b), (b,r)}
X3 v3 = {(b,g), (g,b)}

x =

Figure 4: Coloring example

where V is the set of solutions of the CSP and there is
an edge between two solutions if they differ in exactly
one value (see Fig. 1). Each connected component
of G is a subset of solutions and any two solutions of Gi
can be mapped onto each other by stepwise exchanging
m values, where m is the length of the shortest path be-
tween the solutions in Gi. Unfortunately, building this
graph requires us to enumerate all solutions. However
given a single solution S~ (the filled nodes in Fig. 1)
and the sets of context interchangeable values, then
we can build a connected subgraph Gcdi = (V I, Ecdi)
of G with: S~ E W C_ V and Ecdi C_ E and any edge in
Ecd i allows us to move in between the solutions con-
nected by the edge simply by exchanging CDI values.
Exploiting CDI for adaptation of solutions can now be
described as follows: Given a single case S~, construct
the connected component of Gcdi containing S~ which
yields m - 1 possible adaptations, where m is the num-
ber of nodes in the connected component.

Meta Interchangeability (MI)

Again, we are in the situation where a case has been
selected and must be modified by changing values
of the secondary parameters until the customer’s re-
quirements are fulfilled. Within this subsection we
show that interchangeability might appear for combi-
nations of several secondary variables. We call such
combinations meta variables. The coloring example
in Fig. 4 illustrates this fact. Assume that variables
X1 and X4 are clustered into a new meta variable
Xnew. Then there are 6 values for Xnew , namely
the solutions of the subproblem induced by X1 and
X4. C1, C3 and C2, C4 are merged into C1~ and
C2~ respectively. The constraint C6 will no longer ap-
pear since it is already accounted in the value combi-
nations allowed for Xnc~. The new structured value
(X1 = r, X4 = g) for Xnew is then compatible with
b and y for variable X3. It turns out that by cal-
culating neighborhood interchangeability for values of
Xnew, we can find three equivalence classes each of size
two, namely vl -- {(r, g), (g, r)}, v2 = {(r, b),

and v3 -- {(b,g),(g,b)}. These are the meta val-
ues for Xne~. One solution of the transformed CSP
is (Xnew = vl,X2 = b, X3 = y) and this solution
represents the two detailed solutions (X1 = r, X2
b, X3 = y, X4 = g) and (X1 = g, X2 = b, X3 =
y, X4 = r). This small example shows that one can
find interchangeability in problems after solving a sub-
problem, although no neighborhood interchangeabil-
ity could be found in the original problem formula-
tion. Case adaptation is rather straight forward given
meta interchangeable values to move from one solu-
tion to another. Of course if our current solution is
(X1 = r, X2 = b, X3 = y, X4 = g) and the customer
wants to replace X1 -- r with X1 = g without chang-
ing the value for X4 then replacing the meta values
is not possible. However by applying the clustering
several times we can build meta variables, which cor-
respond to subparts of a case, that are rather inde-
pendent. Thus one can replace parts of a solution by
interchangeable parts without affecting the rest of the
case. If one builds again a solution graph as done in the
subsection above one might link two solution that differ
in more that only a single value. Therefor using meta-
interchangeability seems to be more appropriate for
case adaptation than context dependent interchange-
ability.

Details of the clustering algorithm can be found
in (Weigel and Faltings 1997). We simply give an ex-
ample of the clustering in the constraint graph of a
CSP with 16 variables shown in Fig.5. Every variable
name is followed by its domain size and every con-
straint is labelled with the number of tuples allowed
by the constraint. A greedy clique clustering algorithm
determines 5 subproblems with complete graphs indi-
cated by the bold edges in Fig. 6.1. Every subprob-
lem is solved individually and appears in Fig. 6.2 as
a new meta variable. The variables V13, V14, V15
and V16 for example are clustered together into the
meta variable, named "V16V13V14V15". The last
number of the node label is the number of solutions
of the subproblem, i.e., 30 in this case. Interchange-
ability identifies 8 equivalence classes of values each of
size 2. Thus the domain size can be reduced to 22.
As an example of a set of interchangeable values con-
sider S1 = (V9 = 0, V10 = 3, Vll= 3, V12 = 1) and
$2 = (V9 = 0, V10 = 3, Vll = 1, V12 = 2). Renam-
ing V9VIOVllV12 to AV2 (AV stands for Abstract
Variable) and applying arc-consistency to the CSP is
shown in Fig. 6.3. With arc-consistency one can re-
move 5 values from the domain of AV4. Running the
clustering algorithm again we end up with three vari-
ables AV2AV4, AV1AV5 and AV3.

Every meta-value in a solution of the resulting CSP

169

1" ~ 185

103 (5l

277 "~""~.......~ 48 /

Figure 6.2: Meta-CSP and Interchangeabllity

~~o.~

Figure 6.3: Renaming and Arc-Consistency Figure 6.4: Clique Decomposition
in the Meta-CSP Figure 6.S: Again MaM-CSP and

Interchangeabltity

Figure 5: Precompiling Ps to find MI values used for the adaptation

can be replaced by the set of values it represents. Thus
adaptation of a case solution is accomplished by re-
placing values that belongs to the same meta value.
One should note that changing values within a cluster
that influence values in another cluster cannot be done
using interchangeability. In this case it would be nec-
essary to apply for example context dependent inter-
changeability on the clustered CSP or simply start an
exhaustive search to find a "repair" of the current case.
This situation however might be rare if we can cluster
variables into sets of relatively independent meta vari-
ables. In fact, aggregating variables into clusters allows
us to detect parts of a case that are relatively indepen-
dent from other parts. Consider an elevator example
where a minor change in the "cabin cluster" will not in-
fluence the values in the "counterweight cluster". Thus
such adaptations can then be done locally.

Conclusion

We have shown how to use various concepts based on
interchangeability in CSPs for case adaptation. Pre-
compilation of the constraint problem to compute in-
terchangeability is the key for effective case adaptation
or similarly reconfiguration of a given product. Future
work should answer the question how much preprocess-
ing needs to be done so that all possible adaptations
of a given case can be found with interchangeability.

References

B. Faltings. Case Reuse by Model-Based Interpre-
tation. In M.L. Maher and P. Pu, editors, Issues
and Applications od Case-Based Reasoning in Design,
pages 39 - 60. Lawrence Earlbaum Associates, Hills-
dale, NJ., 1997.

Eugene C. Freuder. Eliminating Interchangeable Val-
ues in Constraint Satisfaction Problems. In Proc. o/
AAAI-91, pages 227-233, Anaheim, CA, 1991.

GNOSIS Workpackage 4. Soft Machinery. Report
GNOSIS/TW4/All/R/D/200ct93/C, IMS-GNOSIS,
available from ftp.cpsc.ucalgary.ca in directory
pub/KSI/GNOSIS/tw4/, 1993.

T.R. Hinrichs. Towards an Architecture of Open
World Problem Solving . In Proc. CBR Workshop,
pages 182 - 189, Morgan Kaufmann, San Francisco,
1988.

M.L. Maher, B. Balachandran, and D.M. Zhang.
Case-Based Reasoning in Design. Lawrence Erlbaum
Associates, 1995.

R. Weigel and B.V. Faltings. Structuring Techniques
for Constraint Satisfaction Problems. In Proc. o] the
16 ~h IJCAL pages 418 - 423, Nagoya, Japan, 1997.

R. Weigel, B.V. Faltings, and B. Y. Choueiry. Con-
text in discrete Constraint Satisfaction Problems. In
Proc. o] the 12 th ECAI, pages 205-209, Budapest,
Hungary, 1996.

170

Appendix

1. Integration name/category: Constraint-Based
Reasoning (CSP)/CBR

2. Performance Task: Product Configuration

3. Integration Objective:

¯ possibility of creating the case-base using CSP
model

¯ runtime efficiency because of might be easier to
adapt a closeby solution than solving the CSP
from scratch

4. Reasoning Components: Interchangeability of
values for CSP variables for case adaptation

5. Control Architecture: Unified

6. CBR Cycle Step(s) Supported:

¯ CSP supports CBR for case adaptation

¯ CBR supports CSP by providing a first solution

7. Representations: Constraint model used to build
the case base

8. Additional Components: None

9. Integration Status: Proposed/Applied

10. Priority future work: Applications in configura-
tion and design. Theoretical Analysis: How many
cases are covered by adapting a case with inter-
changeability ? In which way can we relax con-
straints in order to adapt a case ? Which are the
good heuristics for determining the "similar" cases
using constraint model ?

171

