
CBR for Dynamic Situation Assessment in an Agent-Oriented Setting

Jan Wendler and Mario Lenz*

Abstract

In this paper, we describe an approach of using case-
based reasoning in an agent-oriented setting. CBR is
used in a real-time environment to select actions of soc-
cer players based on previously collected experiences
encoded as cases.
Keywords: Case-based reasoning, artificial soccer,
agent-oriented programming.

Introduction

In recent years, agent-oriented technologies have caught
much attention both in research and commercial areas.
To provide a testbed for developing, evaluating, and
testing various agent architectures, RoboCup Federa-
tion started the Robot World Cup Initiative (RoboCup)
(Kitano et al. 1997), which is an attempt to foster AI
and intelligent robotics research by providing a some-
what standardized problem where wide range of tech-
nologies from AI and robotics can be integrated and
examined.

In particular, during the annual RoboCup champi-
onships different teams utilizing different models and
methods compete with each other in the domain of soc-
cer playing. Key issues in this domain are that, firstly,
a true multi agent behavior is required in which each
player corresponds to an autonomous agent which, how-
ever, has to cooperate with the other agents/players.
Secondly, the agents have to deal with an uncertain en-
vironment, primarily because of the unpredictable be-
havior of the opponent team.

Besides the various leagues for robots of different
sizes, a Simulation League is also part of RoboCup. As
the name indicates, soccer players are simulated in this
league by means of software programs rather than us-
ing real robots. For this, RoboCup Federation provides
a SoccerServer, which simulates all the events that oc-
cur on the pitch (namely, movements of players and the
ball), and a SoccerMonitor which is used to visualize the
game (Noda 1995). The programs of the competitors
implement the brains of the virtual players.

Dept. of Computer Science, Humboldt University, D-
10099 Berlin, {wendler, lenz}~informatik.hu-berlin.de

In this paper, we will restrict ourselves to the Simu-
lation League; that is, we will consider software agents
only. On the one hand, we thus ignore some of the ma-
jor problems of robotics, such as analyzing sensor input
or moving in an uncertain environment. On the other
hand, we can concentrate on the problems of intelligent
agent behavior which is particularly difficult as a player
has to come up with its decisions and actions in real
time (the player can produce a command describing an
action every 100 msec). In particular, we will address
the issue of how agents can learn during the game and
thus adapt to the opponent’s behavior. For this CBR
techniques are applied; in terms of the specified cate-
gories this approach clearly belongs to a Slave-Master
configuration, that is, CBR is used to support other
reasoning mechanisms internal to the agents.
In the next section, we give a short introduction into the
SoccerServer and in the current implementation. After
having described the problem, we will outline the CBR
approach in detail. Last but not least, we will present
some preliminary results.

The Domain of Artificial Soccer

The Simulation Environment
The simulator program of the soccer simulation con-
sists of two subsystems, the SoecerServer and the Soc-
cerMonitor. The SoccerServer is the simulator’s engine,
whereas the SoccerMonitor visualizes the game.

The SoccerServer runs as a process and waits for the
login of the 22 different player-agents (clients). The
communication between the server and his clients runs
via UDP (User Datagram Protocol); thus real distrib-
ution of the client-programs over several computers is
possible. The player programs are only allowed to com-
municate with each other through the server.

When all the player-agents have logged in properly,
the human observer can start the match by the Soccer-
Monitor, and the SoccerServer starts the simulation.
Two interfaces are used in the communication between
server and clients: The server sends character string,
which encode visual and audible information, in pre-
defined intervals to the player programs. The players
react by transmitting commands from a certain skill
library.

172

From: AAAI Technical Report WS-98-15. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

The "visual" information of a player depends on its
facing direction and the distance of observable objects.
It can observe only objects in a region of 45, 90 or
180 degree. Beyond a certain distance, first the player
number and then even the team identity is omitted by
the server. The player gets information about the dis-
tance of objects and their deviation from the facing di-
rection. For very close objects it also gets expected
position changes. All information is subject to certain
noise.

Players do not get information about their absolute
position on the field. They only receive their relative
coordinates with respect to some landmarks like goals,
lines, and flags, if these objects are within their field of
view.

Every agent can send commands to the SoccerServer
in constant time intervals. Available commands are
Kick, Dash, Turn for acting on the playground, and
Say for "broadcasted" messages. The necessary para-
meters of actions, like power and direction, are relative
to the agent, too.

Auditory information from the referee is available to
all players regardless of their distance to the referee.
The built-in referee of the SoccerServer judges goals,
outside, corner kick and offside. Auditory information
from other players (command Say) is available for all
players in a distance of less than 50 m, and it is re-
stricted to only one message per 200 msec.

With the special command Change View the agent
can adjust its view angle and quality. This property
influences the update rate of visual information. We
use mainly a 180 degree view angle and high quality
information, which implies a 300 msec update interval.
Commands are accepted every 100 msec by the server.
This clocked process with tight time slices results in a
real-time behavior of the whole system.

Players have some restricted resources, the most im-
portant being stamina and time. Their stamina is de-
creased according to the power of dash commands. It
is exhausted after a full speed run over about half of
the playground, after that it is restored only slowly.
The agents also have a limited time for deliberation
and planning, if they want to react quickly to new sen-
sor information.

Current Implementation

The team AT Humboidt (Burkhard, Hannebauer,
Wendler 1997), which became World Champions at
the RoboCup 1997 in Nagoya, is based on the Belief-
Desire-Intention (BDI) architecture well known in the
agent-oriented community (Rao & Georgeff 1995).
the BDI-approach, which is based on the philosophi-
cal work of Bratman (Bratman 1987), agents maintain
a model of their world which is called belief (because
it might not be true knowledge). The way from be-
lief to actions is guided by the desires of the agent.
Bratman has argued that intentions are neither desires
nor beliefs, but an additional independent mental cate-
gory. Intentions are considered as partial plans for the

achievement of goals by appropriate actions.
All components of a BDI-architecture can be iden-

tified in our planning process. The belief component
models the environment of the agent, according to sen-
sor information. It simulates the movement of objects
outside the agent’s field of view. Beliefs about future
development are realized through a simulation element.
It enables the agent to evaluate the utility of possible
actions of speculative future developments for possible
actions.

The desire and intention component is modelled by
the deliberator of the agent. The deliberator is started
with a set of options, which are possible desires, and a
set of possible constraints, each time new sensor infor-
mation is available. Possible desires are e.g. to perform
a goal-kick, to dribble or to run free. A possible con-
straint is to conserve stamina.

The deliberator asks all options and all constraints
about their expected utility, to collect the desires which
seems to be feasible. The best of this desires, which is
possible in the current situation, is choosen. At this
selection, the previous desire (the desire of the last de-
liberation process) will be taken into account. At this
phase of the deliberation the best posibility to reach
the choosen goal is computed and fixed as an inten-
tion. This corresponds to a long-term plan with some
parameters which can be also seen as a partial plan.
The plans are based on the "capabilities" of the agents.
This means that plans are in a close correspondence to
the skills of the agents, which are split the long-term
partial plans into short-term plans. These short-term
are nothing more then the available commands of the
SoccerServer.

The part of the deliberation process, which will be
described in this article is the computation of the long-
term plan of the desire to run free.

The Problem of Uncertainty

A key problem that the players have to deal with in the
RoboCup is the uncertainty in the soccer world which
arises mainly because of two reasons:

¯ Firstly, the information provided to the players by
the above mentioned SoecerServer is insecure and,
in some sense, unreliable. In particular, a kind of
fuzziness is included in the information given. For
example, data about other players on the pitch is
less precise the further these are away.

¯ Secondly, the behavior of the opponent team is, of
course, unpredictable.

While uncertainty of the first kind is inherent to the
entire system, there are certain ways to overcome the
second point. In particular, our approach is to learn
about the opponent’s behavior and to adapt the actions
of the soccer players accordingly.

As an example consider the situation depicted in Fig-
ure 1: Knowing the position and movement of the ball,
the position of another teammate PB, and positions of
players of the opponent team, player Ps has to decide

173

[GOAl, I

I
°

"’"" "’"-......:.....

! ..0:::::/",.

~team-mate ’",,.,. [::

enemy ’. .".....*

Figure 1: Finding a good position for the expected
movements

about where to move in order to be in good position for
the expected actions on the pitch. We will refer to this
position as the preference position.

There is certain information which allows to actually
calculate precisely what the situation might look like
after 2, 3, or 4 time steps. This information includes in
particular the speed and direction of all the players as
well as the ball. However, there are certain drawbacks
when attempting to calculate to preference position:

1. As mentioned above, the information provided by the
SoccerServer is insecure and imprecise.

2. Calculation of preference positions has to take a num-
ber of parameters into account and requires a com-
plete modeling of the involved players. This may be
too computationally expensive for players having to
react in real time.

3. Even worse, calculation would require a complete do-
main modeling at compile time; i.e., the programmer
of the system would have to consider all situations
that might possibly occur during the game. This
seems infeasible.

4. Last but not least, the behavior of other players is, of
course, unpredictable. Due to the multi-agent envi-
ronment where each player is implemented by means
of an autonomous program, this is true for both op-
ponent players as well as teammates.

An alternative to calculating the preference position is
to use a case-based reasoning approach in which snap-
shots of the game are considered as cases and similar
situations are recalled and evaluated for determining
the preference position. This will be described in the
following section.

CBR for Dynamic Situation Assessment
In order to apply CBR, one has to come up with a
number of decision about the actual design of the CBR
systems. These include questions, such as:

* What is a case? How are cases represented?

* How is the similarity measure defined?

¯ How is the structure of the case memory?

¯ Where do cases come from?

We will address these questions in the following.

Case Structure
Based on the information provided by the SoccerServer,
there are certain parameters which obviously should be
included in the case representation (see also Figure 1).
These are

State of the pitch: The position of other players
should, of course, be taken into account. For this,
we represent the considered area by means of seg-
ments which are either occupied by some player or
not. We do not distinguish here between teammates
and players of the opponent team as for selecting the
preference position this is of no interest1.

Time steps until PB controls the ball: Based on
the information provided by the SoccerServer, one
may calculate the expected time until PB will con-
trol the ball and thus is able to pass the ball to other
teammates. Note, however, that Ps does not know
precisely what Ps will do because of the players be-
ing autonomous agents. An assumption here is that
PB will behave somewhat optimal with respect to the
performance of the entire team.

Preference direction of PB: As PB is a member of
the same team, Ps may know about the preference
movements of PB which mainly depends on the start-
ing position of the player; i.e., whether he plays on
defending or forward position.

Available power resources: As power resources are
limited, player Ps has to take into account which
actions can still be performed within a certain time
frame. If the player still has sufficient power, he can
easily reach positions further away. In contrast, if
power is nearly consumed, he might only reach neigh-
boring segments.

Distance to the ball at position M: In order to
save power resources, it is reasonable to let the ball
move instead of running themselves. Consequently,
movements should be selected carefully depending
on the distance to the point where the ball will be
reached by player PB. Where to small distances are
inefficient, to large distances include the risk that the
ball leave the right path to much.

Based on this, a case is represented by a feature vector
where each value encodes a certain value of the above
parameters. While for the last four aspects encoding
is straight-forward, this is more difficult for the first
parameter. As sketched in Figure 1, we segmented the
pitch in such a way that the position M where Ps will
likely control the ball is in the middle of a circle. In the
real world, each segment would correspond to an area
of about 8 meters length and an arc of 20 degrees.

lit does not make any sense to move into a place which
is occupied by a player of the same team.

174

case I

query

14

case 2

query after similarity activation

Figure 2: Finding a good position for the expected
movements

Similarity Measure

Given the above described case representation, the de-
finition of a similarity measure is straight-forward: For
the parameter State of the pitch, neighboring segments
are considered similar; all other parameters are encoded
by means of a numeric value thus allowing for a sim-
ple similarity assessment. Given these, we can define
a composite similarity measure which simply computes
the weighted sum over all local similarities where all
features have the same relevance.

Case Memory and Retrieval

A crucial point in the RoboCup domain is that all play-
ers have to react in real time. Consequently, there is
an urgent need for a highly efficient memory organiza-
tion and retrieval procedure. For this reason, we ap-
plied the Case Retrieval Net (CRN) model (Lenz 1996;
Lenz & Burkhard 1996).

Figure 2 briefly sketches how the spreading activation
mechanism of CRNs is used to determine the similarity
of cases describing previously observed situations. The
upper two pictures (A and B) show cases in the case
base. Circles denote segments occupied by some other
player; the position of the player itself is marked by the
square. In both cases, the arrow denotes the solution,
i.e., the preference position taken in this situation.

In the lower left part of the figure (C), the current
problem situation is sketched. Using this description
as the query, similarity propagation within the CRN
model will result in a situation as shown in the lower
right part (D) of the figure. Here, the size of the circles
correspond to the achieved activations of the segments.
Using this information (and the information about sim-
ilarity of the other parameters which are not shown
here), situation A would be considered as more similar
than situation B and hence the player would move to
the left according to case h.

Online versus Offline Learning
Applying the above described CBR approach the dy-
namic situation assessment, there are two ways a player
might obtain cases to reason upon:

¯ Firstly, during a kind of training the player may
build up its own case base: That is, the player will
learn (in a case-based manner) how to behave in cer-
tain situations which seems particularly useful for so-
called standard situations, i.e., situations that often
re-occur.

¯ Secondly, the player my acquire new cases during the
game itself thus having the opportunity to adapt to
the opponent’s behavior.

Preliminary Results and Outlook
The agents of the team AT Humboldt have recently been
extended by case-based components as described above.
Every player now has the capability of acquiring new
cases and maintaining its own case base representing
previously observed situations.

To determine whether CRNs are efficient enough for
the real-time requirements of RoboCup, we tested re-
trieval performance in a number of different configu-
rations as specified by the RoboCup Federation. For
example, when each player is simulated on a single 01-
tra Sparc-Station 1 (as will be the case for the semi-finals
and finals in RoboCup 1998), then retrieval from a case
base of 5,760 cases takes on average 33 msec with a
maximum of 40 msec. Consequently, one can estimate
that a case base of about 10,000 cases is manageable
within the strict time frame of RoboCup.

Currently, investigations are being performed to de-
termine the quality of cases and the overall usefulness
of the approach. In particular, it is an open question
whether the representation of the State of the pitch
by means of segments has to be more fine-grained or
whether the current segment structuring is sufficient.

Furthermore, we will investigate how the two modes
of learning, namely offiine and online learning, can be
combined. For example, a question is whether and
how the cases acquired online by adapting to a partic-
ular opponent team can be generalized in some way to
make this knowledge available for forthcoming matches
as well.

Acknowledgments
We want to thank the entire team of AT Humboldt
who contributed to the success In particular, thanks
go to Hans-Dieter Burkhard, Markus Hannebauer, Kay
SchrSter, Pascal Gugenberger, and Ralf Kfihnel.

References

Bratman, M. E. 1987. Intentions, Plans and Practical
Reason. Massachusetts: Harvard University Press.

Burkhard, H.-D.; Hannebauer, M.; and Wendler, J.
BDI deliberation in artificial soccer. AI Magazin. to
appear.

175

Burkhard, H.-D.; Hannebauer, M.; and Wendler, J.
1997. AT humboldt - development, practice and
theory. In Proc. First International Workshop on
RoboCup, LNCS, to appear. Springer Verlag.

Kitano, H.; Tambe, M.; Stone, P.; Veloso, M.; Corade-
schi, S.; Osawa, E.; Matsubara, H.; Noda, I.; and
Asada, M. 1997. The robocup synthetic agent chal-

¯ lenge 97. In Pollack, M. E., ed., Proceedings of the
IJCAI-97, 24-29. Morgan Kaufmann.

Lenz, M., and Burkhard, H.-D. 1996. Case Retrieval
Nets: Basic ideas and extensions. In GSrz, G., and
HSlldobler, S., eds., KI-96: Advances in Artificial
Intelligence, Lecture Notes in Artificial Intelligence,
1137, 227-239. Springer Verlag.

Lenz, M. 1996. Case Retrieval Nets applied to large
case bases. In Burkhard, H.-D., and Lenz, M., eds.,
4th German Workshop on CBR -- System Develop-
ment and Evaluation --, Informatik-Berichte, 111-
118. Humboldt University.
Noda, I. 1995. Soccer server: A simulator of RoboCup.
In Proc. of AI Symposium. Japanese Society for Arti-
ficial Intelligence.

Rao, A., and Georgeff, M. 1995. BDI agents: From
theory to practice. In Proc. of the First Int. Conf. on
Multi-Agent Systems (ICMAS-95). MIT-Press.

Appendix

1. Integration name/category: AT Humboldt
2. Performance Task: Retrieval
3. Integration Objective: Efficiency gains in CPU

time as well as online learning
4. Reasoning Components: Case- and model-based

reasoning

5. Control Architecture: CBR as a slave
6. Reasoning Step(s) Supported by CBR: Case-

based situation assessment rather than computation-
ally expensive and inflexible model-based computa-
tion

7. Representations: Cases as feature vectors corre-
sponding to the representation in the model-based
reasoning module

8. Additional Reasoning Components: -
9. Integration Status: Initial empirical evaluation

10. Priority future work: Detailed evaluation, compe-
tition at RoboCup-98 in France

176

