From: AAAI Technical Report WS-98-16. Compilation copyright © 1998, AAAI (www.aaai.org). All rights reserved.

How to Get a Free Lunch:
A Simple Cost Model for Machine Learning Applications

Pedro Domingos
Artificial Intelligence Group
Instituto Superior Técnico
Lisbon 1096, Portugal
pedrod@gia.ist.utl.pt

Abstract

This paper proposes a simple cost model for ma-
chine learning applications based on the notion of
net present value. The model extends and uni-
fies the models used in (Pazzani et al., 1994) and
(Masand & Piatetsky-Shapiro, 1996). It attempts
to answer the question “Should a given machine
learning system now in the prototype stage be
fielded?” The model’s inputs are the system’s
confusion matrix, the cash flow matrix for the ap-
plication, the cost per decision, the one-time cost
of deploying the system, and the rate of return
on investment. Like Provost and Fawcett’s (1997)
ROC convex hull method, the present model can
be used for decision-making even when its in-
put variables are not known exactly. Despite its
simplicity, it has a number of non-trivial conse-
quences. For example, under it the “no free lunch”
theorems of learning theory no longer apply.

Introduction

A key point in the life cycle of a machine learning ap-
plication is the decision to go from prototype system
to fielded application. Many projects do not make it
past this stage. How should this decision be made?
What factors should be taken into account? How should
they be combined? Clearly, knowing the predictive
accuracy of the system is not sufficient to make an
informed and intelligent decision, although this is all
most authors report. Many other criteria for evaluat-
ing the output of learning systems have been proposed
and used (e.g.,(Piatetsky-Shapiro 1991; Silberschatz &
Tuzhilin 1995; Nakhaeizadeh & Schnabl 1997)), but
they often involve a substantial degree of subjectiv-
ity, and do not directly address the deployment deci-
sion. A number of initial proposals and studies have
been made that take the cost of decisions into account
(Breiman et al. 1984; Pazzani et al. 1994; Turney 1995;
Masand & Piatetsky-Shapiro 1996; Matheus, Piatetsky-
Shapiro, & McNeill 1996; Provost & Fawcett 1997;
Turney 1997). Simultaneously, a large applicable lit-
erature exists in the fields of management and decision
theory (Brealey & Myers 1996; Keeney & Raiffa 1976;
Berger 1985; Henrion, Breese, & Horvitz 1992), but it

has so far made little contact with machine learning.
The goal of this paper is to begin closing this gap.

This paper will focus on standard classification appli-
cations, but its conclusions are qualitatively applicable
to many other types. We will use a banking problem as
a running example: Bank X has applied machine learn-
ing to its database(s) of past loan applications and their
results, and produced a prototype system for automat-
ically making loan decisions (i.e., for classifying loan
applications as “good credit risk” or “bad credit risk”).
It now needs to decide whether to deploy this system
in the field.

A Cost Model

Deploying a machine learning system is an investment
decision like any other, and it can be made in the stan-
dard way: deploy the system if its net present value
(NPV) is positive (Brealey & Myers 1996). The NPV
of an investment is the sum of the cash flows it gen-
erates, discounted by the rate of return. If C; is the
cash flow during period ¢ (typically a year), and r is
the rate of return demanded by the investor for each
period (assumed constant):

<N
NPV =Co+Y i +‘r)t @)
t=1

Co is the initial cash flow, and is usually negative, repre-
senting the initial investment. In the case of a machine
learning system, it is the one-time cost of deploying the
system. This can include the cost of new equipment,
software installation, personnel training, reorganization
of procedures, etc. The cash flow at time ¢ > 1 is the
result of the decisions made by the system.! The cash
flow associated with a single decision has two compo-
nents: the cost of making the decision, and the cash
flow resulting from the decision. The first component
is an “internal” one: it includes the cost of keeping the
system running, gathering the information needed to
make the decision, periodically retraining the system

'If the investment has a limited time horizon to,Ce =0
for ¢ > to.

if necessary,? etc. For convenience, this cost will be
viewed as having a fixed value per decision made. The
second component is external: it will depend on the ef-
fects of the decision. In the case of Bank X, the cash
flow will (presumably) be positive if the bank decides
to loan and the loan is repaid, negative if the loan is not
repaid, and zero if no loan is made.® In general, given m
classes, an m x m cash flow matriz Q is required, with
component Q(%,j) representing the cash flow that re-
sults if the true class is j and class 7 is predicted. This
still ignores that a given (Z,j) may result in different
cash flows in different situations (for example, depend-
ing on the dollar value of the loan), but in this paper we
will simply take @ to be a pre-compiled matrix of the
relevant averages. To compute the expected cash flow
given (), we also need to know the system’s confusion
matriz P, where component P(i,j) = P(i A j) is the
probability that the true class is ¢ and class j is pre-
dicted. The P(i,) estimates can be obtained the same
way accuracy estimates usually are: by dividing the
database randomly into training and test cases, learn-
ing on the training cases, and counting the number of
test cases for which 7 is the true class and j is predicted.
‘The expected cash flow C associated with a single de-
cision is then:

i=1 j=1

where D < 0 is the decision-making cash flow (i.e., [D|
is the cost of making the decision). If n decisions are
made on average during each time period, C; = nC,
and:

nC

NPV = C0+nCz(1+ =Cot— (3

r)t

Strictly speaking, the latter identity applies only if the
system is used in perpetuity; more pragmatically, it is
valid if the system stays in operation long enough for its
exact date of retirement to have little effect on the NPV,
We will use it because of its simplicity, and because all
conclusions will be similar in the two cases.

Equation 3 represents the NPV of deploying the sys-
tem if nothing is currently being done in its place (i.e., if
Bank X starts operating today from scratch). More fre-
quently, the machine learning system will modify (or re-
place) an existing procedure (for example, manual loan
evaluation, a hand-built expert system, or a combina-
tion). In this case, the “old” cash flow associated with

%In general this will change the system’s confusion matrix
(see below), but here we will ignore this effect. Taking it into
account is clearly non-trivial.

$More precisely, the decision to lend at time ¢ will itself
generate a sequence of cash flows (loan, interest, repayment
of principal) whose net present value at that time can be
computed by the usual method. For simplicity, this NPV
will be taken as an “instant” cash flow at time ¢.

each decision should be subtracted from the “new” one.
A more transparent way of doing this is to compute the
NPV of continuing with the current procedure, and de-
ploy the machine learning system if its NPV is greater.
An important difference between the two NPVs is that
the current solution has no Cj term, since it involves
no new investment. Using M to index terms associated
with the machine learning system, and L to index terms
associated with maintaining the current solution:

NPV = NPVy -~ NPV, = (Co + "(;:M) nCy (4)

Notice that in general Dys and Dy, will be different, as
will Pp(4,7) and Pg(i,7), but Q(4,5) is the same for
the two alternatives.

Some Consequences of the Model

By Equation 4, the machine learning system should be
deployed iff:

>0 (5)

Let Cpr — C = AC. Given that Cy is negative, this in-
equality can be rearranged into a more expressive form:

AC > §|co| (6)

In other words: for deployment to be justified, the gain
in cash flow per decision from using the system has to
be at least a fraction r/n of the cost of deployment. The
frontier between deployment and non-deployment is a
straight line in the (AC,|Cp|) (half-)plane with slope
n/r. This is illustrated graphically in Figure 1.

The region of deployment increases with the num-
ber of decisions per year n and decreases with the rate
of return r. Given these two factors, it is possible to
determine if a system should be deployed even if the
cash flow and confusion matrices, and the initial and
per-decision costs, are not known exactly. It is also
possible to perform sensitivity analysis. If the region in
the (AC, [Cp|) plane representing the plausible range of
those quantities falls entirely on the right side of the
dividing line, the decision to deploy is robust, and con-
versely if it falls entirely on the left. If the dividing line
intersects the plausible region, the decision is sensitive
to the estimated values of of AC and Cp, and it may
be advisable to attempt to determine these values more
precisely, or to take into account the increased risk.

A particularly simple case occurs if the learning sys-
tem emulates the previous decision process (almost)
perfectly. In this case the cash flow matrix Q be-
comes irrelevant, and deployment depends solely on
whether the compounded savings per decision AD =
Dy — Dy exceed the cost of deployment. The sav-
ings per decision may result from going from a manual
to an automated decision process, or from one auto-
mated process to another requiring lower maintenance.

hv)

IC,

0 AC

Figure 1: Region of deployment for a machine learning
system.

These savings may also justify deploying a system that
makes worse decisions on average, if AD sufficiently
exceeds Y ;2 3500 [Pr(i,5) — Pu(5,5)] Q(3,4) (Equa-
tions 2 and 3). Conversely, a system that makes better
decisions on average may not be worth fielding, for ex-
ample if it has a very high cost of deployment |Cpl.
(A negative deployment decision does not necessarily
mean abandoning the system; it may simply mean that
it needs to be further developed before it is ready for
fielding.)

So far we have assumed that r is constant, but this
need not be the case. Given a region of plausible val-
ues on the (AC,|Co]) plane, the deployment decision’s
sensitivity to r can be observed by varying the slope of
the decision frontier. We have also assumed that r is
the same for the current solution and for the learning
system, but in general it may differ, if the two have dif-
ferent risk characteristics. A common measure of risk is
the variance of returns (Brealey & Myers 1996). Lower
variance will lead to a lower return being demanded.
Thus, NPV)s may be greater than NPV}, even if the
learning system makes on average worse decisions than
the current procedure, if it reduces the variance in cash
flows. This variance is proportional to:

L QS by A 1
V—EZZP(%J) [Q(la])—C+D]2 (7)
i=1 j=1

Thus, risk is reduced if the learner makes fewer of
the decisions whose cash flow differs most from the av-
erage, and more of the decisions whose cash flow is
close the average. For example, if bad loans on av-
erage generate a larger (negative) cash flow than good
ones, rejecting more loans may reduce risk and result

in a higher NPV, even if it means rejecting more good
loans and reducing the average cash flow per decision.
(This will also be the case if, for example, Bank X now
makes more average-sized performing loans and fewer
very large and very small ones, and similarly for non-
performing loans. However, this aspect is not covered
by the current model, because the values of Q(%, j) for
each (Z,7) are already pre-computed averages.)

The model can also be used to compare two alter-
native machine learning systems M; and Mj. Let Cy
be M;’s initial cash flow, C; its expected cash flow per
decision, and similarly for M;. M, is preferable to M,
iff:

Cy — C1 > %(00,1 - 00,2) (8)

A useful notion is that of effective value EVys of a
machine learning system M. This is the NPV that
M actually results in: NPVy, — NPV, if the sys-
tem is deployed, and O if it is not. Since in our
model deployment occurs iff NPVy — NPV, > 0,
EVy = max{NPVy — NPV,0}. In other words, if
M does not increase revenue it is effectively worthless;
but it is never worth less than zero, because we will not
deploy it if it would decrease revenue.

The proposed model can also be used to gauge which
applications are a priori more likely to yield a system
worth deploying. Some factors that favor a machine
learning solution are: a low |Cp| (for example if the
necessary computing and organizational structure is al-
ready in place); a high Dy, and low Dy (for example,
if an expert, time-consuming manual procedure is re-
placed by a purely computational one); a high n and
low r, because this will reduce the weight of Cp in the
total cost (see Equation 6). In short, the most promis-
ing areas to apply machine learning are those where risk
is relatively low, a large number of decisions per year is
made, the current procedure is expensive, and the com-
putational and organizational infra-structure needed for
the machine learning solution is (mostly) already in
place. (However, a small n may also favor the use of a
machine learning system, if the latter reduces variance;
by Equation 7 a small n will make this effect more pro-
nounced.)

How to Get a Free Lunch

Perhaps the most remarkable consequence of the pro-
posed model is that in it the famous “no free lunch
theorems” of learning theory (Schaffer 1994; Wolpert
1996) are no longer valid. Roughly speaking, these the-
orems say that no classifier can outperform another on
average over all possible classification problems, and im-
plicitly question the utility of much learning research.
As Rao et al. (1995) have shown, these theorems do
not necessarily apply if not all classification problems
are equally likely. However, under the current model, a
classifier can globally outperform another even without
such a caveat.

Schaffer’s (1994) is the simplest treatment, so we will
follow it here. Schaffer uses as a measure of perfor-
mance the generalization accuracy of the classifier. In
terms of the current model, this is equivalent to: setting
Q(i,7) = 1 when 7 = j and Q(i,j) = 0 otherwise; ex-
cluding all training cases from the (exact) computation
of the confusion matrix P; and ignoring the existence
of initial and decision-making costs, |Co| and |D|, and
of a current procedure (NPVy = 0). Let M; and M,
be two classifiers, and let S be the set of all possible
domains. A domain is a set of class assignments to all
instances in the instance space. Schaffer’s result can be
stated as follows.

Theorem 1 If the confusion matrices P, and P, are
computed using only examples not in the training set,
Q(i,5) = 1 when i = j and Q(¢,5) = 0 otherwise,
Co1=Co2 =0, Dy =Dy =0, and NPVL =0 then:

VMy, My) (EV2 - EVi) =0
s

In other words, no classifier is more profitable than an-
other, on average, over all domains. This result be-
comes trivially false if Cp,; # Cp2 or D; # Dy. The
more interesting case occurs when costs are equal for
the two systems, which is what we will assume here.
Our result can be formally stated thus.

Theorem 2 If the confusion matrices P, and Py are
computed using only ezamples not in the training set,
C()’l = 00,2 = C(), D1 = D2 = D, and NPVL = 0,
then:
My, My Y (EVy — EV;) >0
s

Proof. Like Schaffer, we will assume an example dis-
tribution and training set are given, and for simplicity
not index to them, noting that the results are valid for
any such distribution and training set. We will also
consider only two-class problems, again without loss of
generality. It is not hard to see that simply going from
generalization accuracy to an arbitrary cost/cash-flow
matrix does not alter Schaffer’s results. Thus, to keep
matters simple, we will continue with the @ values used
in Theorem 1. The accuracy of a classifier M}, is then
A = 3 25k Pe(4,5) Q(4,5) (Equation 2). Let Ao
be the minimum accuracy required to justify deploy-
ment (i.e., for the classifier to pay for its deployment
and decision costs): Ag = —D —rCy/n, by Equation 3.
By the definition of effective value, EV), = Co +rAi/n
if A > Ag, and EVj = 0 otherwise (k € {1,2}). Let
Sn be the set of domains where A; < Ap (i.e., where
A; would not be deployed), and let Sy be the set of
domains where A; > Ag (i.e., where 4; would be de-
ployed). Suppose A2 > A; in some subset Syy of Sy,
As < A; in some subset Syny of Sy, and A, = A;
in all other domains. Since in the the conditions of
Theorem 1 EV), = A, this is allowed by that theo-
rem as long as 3 g, (A2 — A1) = — 3 5 (A2 — 41).

In Syy EVi = EV, = 0, since Ay < A; < Ag. In
Syy EVy > EVi, since A2 > A; > Ay and thus
EVi = Cy +rAi/n. In all other domains EV) = EVj,.
Therefore in some domains EV, — EV; > 0 and in all
others EV; — EV) =0, and) ¢(EV; — EV2) > 0. O

Theorem 2 generalizes easily to the case where M,
and M, are being considered as alternative replace-
ments for an existing procedure L, instead of deployed
from scratch. Theorem 2 can be informally stated thus:

A classifier My will have a globally higher effective
value than another classifier My if its generaliza-
tion accuracy (or cash flow per decision) is higher
in domains where My is accurate enough to be de-
ployed, and lower in domains where My is not ac-
curate enough for deployment.

Thus, the way to produce a classifier M> that dom-
inates another M; is to make My less accurate in do-
mains where M; would not be deployed anyway, and
more accurate in those where it would. This is illus-
trated in Figure 2. M; and M, respect the “no free
lunch” theorems, since they both have an average ac-
curacy of 50% over all S. However, M, has a higher
average effective value than M, since only the area
above Ay counts for purposes of computing EV. In
short, a good agenda for research is to keep improv-
ing the current classifiers in the domains where they do
well, regardless of the fact that this makes them worse
where they already do poorly. Not surprisingly, this is
largely what is done in practice. Another frequent ap-
proach that the “no free lunch” theorems cast doubt on
but the present results validate is multistrategy learn-
ing: attempting to combine the best features of two or
more classifiers in a single one (Michalski & Tecuci 1994;
Chan, Stolfo, & Wolpert 1996). Figure 3 shows how this
can be done: classifier M3 is as good as My in M,’s re-
gion of expertise and as good as M3 in M3’s region of
expertise, by being worse than either in regions where
neither would be deployed. Thus M; and M; are ef-
fectively superseded by Mj: having the latter, there is
nowhere in S the former are worth retaining.

Theorem 2 implies that machine learning researchers
can be more optimistic about their work than previ-
ously assumed. Contrasted with Theorem 1, it also
illustrates how abstract results can be misleading.

Related Work

CART (Breiman et al. 1984) was one of the first learn-
ing systems to allow explicitly incorporating cost con-
siderations. However, its method of variable misclassi-
fication costs only works for two classes, and Pazzani
et al. (1994) found that in practice CART’s altered
priors method was not very effective in reducing mis-
classification costs. The cost model proposed here is a
generalization of that used by Pazzani et al., who al-
ways consider the cost to be zero when the correct de-
cision is made, and ignore the deployment and decision-
making costs. Our model is formulated in terms of cash

50%

w

M,

50%

2

Figure 2: Improving the global effective value of a classifier. The shaded area represents the accuracy gained at no

cost.

w Y

M,

M

2 M3

Figure 3: How multistrategy learning works. The shaded area represents the global effective value of each classifier.

flows instead of costs, because this is more compatible
with the net present value model, and because treat-
ing revenues as negative costs is awkward. Masand and
Piatetsky-Shapiro (1996) focus on a database market-
ing domain, and consider a payoff per decision of rp—c,
where c is the cost of making an offer to a customer,
r is the expected revenue if the offer is accepted, and
p is the probability of acceptance. Qur proposal also
has this model as a special case. Provost and Fawcett
(Provost & Fawcett 1997) propose a method for eval-
uating classifiers in two-class domains in terms of the
true positive and false positive rates. Despite its in-
tuitive appeal, this method may be hard to generalize
to arbitrary cost matrices, and does not take the de-
ployment and decision-making costs into account. The
method we propose shares some of the same goals of
simple visualization and robustness to imprecise infor-
mation.

Another learning system that allows explicit consid-
eration of costs is described in (Turney 1995). Thereis a
relatively small but growing literature on cost-sensitive

learning; see (Turney 1997) for an online bibliography.
Some of the systems referenced in this bibliography
take into account that different attributes have different
costs of evaluation (e.g., some medical tests are more
expensive than others); in our model, this corresponds
to having a variable D term (Equation 2).

If the utility of a decision is equated with the cash
flow it generates, Equation 2 minus the D term cor-
responds to computing the expected utility of the sys-
tem’s decision (Keeney & Raiffa 1976). If the learner
is being considered as an additional source of infor-
mation to the current procedure (i.e., M includes L),
NPVy — NPV, corresponds to the net expected value
of the information (NEVI) induced by the learner,? gen-
eralized to take time and the rate of return into ac-
count. Information value theory was originally intro-
duced by Howard (1966) , and developed in the context
of resource-limited reasoning by Horvitz (1990) . Here
we propose applying it to the machine learning process

‘With the maximization of utility implicit in M’s/L’s
choice of class.

(i.e., considering the cost and value of learned informa-
tion).

Future Work

The main limitation of the current model is that it as-
sumes a constant cash flow matrix @, independent of
the specific decision being made at each point. In gen-
eral,) may depend on attributes of the case in question
(e.g., size of the loan) and external factors (e.g., Bank
X’s credit policy at the time). In order to preserve gen-
erality, we have not coupled the cost model with any
particular type of induced model (e.g., decision trees
or neural networks). However, if the induced model is
an explicit representation of a probability distribution
(e.g, a Bayesian network (Henrion, Breese, & Horvitz
1992)), the inclusion of attribute-dependent cost and
confusion information is conceptually straightforward.
On the other hand, it may be computationally hard,
requiring approximations (e.g., (Horvitz, Suermondt, &
Cooper 1989)) and/or careful management of computa-
tion (e.g., (Horvitz 1997)). Many classification models
also have implicitly associated probability models (e.g.,
the leaf probabilities in decision trees), and using them
may be computationally easier.

In the future we would like to apply the proposed
model to specific areas (e.g., banking, database mar-
keting, health care). This will allow us to determine
how useful it is, identify where the main difficulties in
applying it lie, and develop extensions.

Conclusion

This paper proposed a simple cost model for machine
learning applications that generalizes and unifies sev-
eral previous ones. This model uses as inputs the cash-
flow matrix for the application, the confusion matri-
ces for the alternatives being considered, their decision-
making and deployment costs, and the rate of return.
The model helps to answer the question “Should a given
machine learning system now in the prototype stage be
fielded?” It also allows us to identify a priori promising
application areas, where machine learning is most likely
to succeed. An interesting consequence of the model is
that it shows the “no free lunch” theorems of learning
theory do not apply under more realistic cost consid-
erations. This lends support to much recent machine
learning, statistical and data mining research.

References

Berger, J. O. 1985. Statistical Decision Theory and
Bayesian Analysis. New York, NY: Springer-Verlag.
Brealey, R. A., and Myers, S. C. 1996. Principles of
Corporate Finance. New York, NY: McGraw-Hill, 5th
edition.

Breiman, L.; Friedman, J. H.; Olshen, R. A.; and

Stone, C. J. 1984. Classification and Regression Trees.
Belmont, CA: Wadsworth.

Chan, P.; Stolfo, S.; and Wolpert, D., eds. 1996.
Proceedings of the AAAI-96 Workshop on Integrat-
ing Multiple Learned Models for Improving and Scaling
Machine Learning Algorithms. Portland, OR: AAAI
Press.

Henrion, M.; Breese, J.; and Horvitz, E. 1992. Deci-
sion analysis and expert systems. Al Magazine 12:64—
91.

Horvitz, E.; Suermondt, H.; and Cooper, G. 1989.
Bounded conditioning: Flexible inference for decisions
under scarce resources. In Proceedings of the Fifth
Conference on Uncertainty in Artificial Intelligence,
182-193. Windsor, Canada: Morgan Kaufmann.

Horvitz, E. 1990. Computation and Action Under
Bounded Resources. Ph.D. Dissertation, Department
of Computer Science, Stanford University, Stanford,

CA.

Horvitz, E. 1997. Models of continual computation. In
Proceedings of the Fourteenth National Conference on
Artificial Intelligence, 286-293. Providence, RI: AAAI
Press.

Howard, R. A. 1966. Information value theory.
IEEE Transactions on Systems Science and Cybernet-
ics 2:22-26.

Keeney, R. L., and Raiffa, H. 1976. Decisions with
Multiple Objectives: Preferences and Value Trade-
Offs. New York, NY: Wiley.

Masand, B., and Piatetsky-Shapiro, G. 1996. A com-
parison of approaches for maximizing business payoff
of prediction models. In Proceedings of the Second In-
ternational Conference on Knowledge Discovery and
Data Mining, 195-201. Portland, OR: AAAI Press.

Matheus, C. J.; Piatetsky-Shapiro, G.; and McNeill,
D. 1996. Selecting and reporting what is interest-
ing: The KEFIR application to healthcare data. In
Fayyad, U. M.; Piatetsky-Shapiro, G.; Smyth, P.; and
Uthurusamy, R., eds., Advances in Knowledge Discov-
ery and Data Mining. Menlo Park, CA: AAAI Press.
495-515.

Michalski, R. S., and Tecuci, G., eds. 1994. Machine
Learning: A Multistrategy Approach. San Mateo, CA:
Morgan Kaufmann.

Nakhaeizadeh, G., and Schnabl, A. 1997. Develop-
ment of multi-criteria metrics for evaluation of data
mining algorithms. In Proceedings of the Third In-
ternational Conference on Knowledge Discovery and
Data Mining, 37-42. Newport Beach, CA: AAAI
Press.

Pazzani, M.; Merz, C.; Murphy, P.; Ali, K.; Hume, T;
and Brunk, C. 1994. Reducing misclassification costs.
In Proceedings of the Eleventh International Confer-
ence on Machine Learning, 217-225. New Brunswick,
NJ: Morgan Kaufmann.

Piatetsky-Shapiro, G. 1991. Discovery, analysis, and
presentation of strong rules. In Piatetsky-Shapiro,

G., and Frawley, W. J., eds., Knowledge Discovery in
Databases. Menlo Park, CA: AAAI Press. 229-248.

Provost, F., and Fawcett, T. 1997. Analysis and visu-
alization of classifier performance: Comparison under
imprecise class and cost distributions. In Proceedings
of the Third International Conference on Knowledge
Discovery and Data Mining, 43-48. Newport Beach,
CA: AAAI Press.

Rao, R. B.; Gordon, D.; and Spears, W. 1995. For
every action, is there really an equal and opposite re-
action? Analysis of the conservation law for gener-
alization performance. In Proceedings of the Twelfth
International Conference on Machine Learning, 471-
479. Tahoe City, CA: Morgan Kaufmann.

Schaffer, C. 1994. A conservation law for general-
ization performance. In Proceedings of the Eleventh
International Conference on Machine Learning, 259—
265. New Brunswick, NJ: Morgan Kaufmann.

Silberschatz, A., and Tuzhilin, A. 1995. On subjec-
tive measures of interestingness in knowledge discov-
ery. In Proceedings of the First International Confer-
ence on Knowledge Discovery and Data Mining, 275~
281. Montréal, Canada: AAAI Press.

Turney, P. 1995. Cost-sensitive classification: Em-
pirical evaluation of a hybrid genetic decision tree al-
gorithm. Journal of Artificial Intelligence Research
2:369-409.

Turney, P. 1997. Cost-sensitive learning bibliography.
Online bibliography, Institute for Information Tech-
nology of the National Research Council of Canada,
Ottawa, Canada. http://ai.iit.nrc.ca/bibliographies/-
cost-sensitive.html. .

Wolpert, D. 1996. The lack of a priori distinctions
between learning algorithms. Neural Computation
8:1341-1390.

