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Abstract
A key benefit of modular learning is the ability to

apply different algorithms to suit the characteristics of each
subtask. This approach requires methods for task
decomposition, classifier fusion, and matching of
subproblems to learning techniques. In this paper, we
present a new method for technique selection from a
"repertoire" of statistical learning architectures
(specifically, artificial neural networks and Bayesian
networks) and methods (Bayesian learning, mixture
models, and gradient learning). We first discuss the
problem of learning heterogeneous time series, such as
sensor data from multiple modalities. We then explain
how to construct composite learning systems by selecting
model components. Finally, we outline the design of a
composite learning system for geospatial monitoring
problems and present an application (precision agriculture)
that demonstrates its potential benefits.

Keywords: metric-based technique selection, time series
learning, probabilistic networks, modular task
decomposition, data fusion

Introduction
Decomposition of statistical machine learning tasks can
reduce both complexity and variance [JJ94]. The
mixture-of-experts model, or mixture model, is a divide-
and-conquer approach that integrates multiple sources of
knowledge (including committees of experts or agents)
[JJB91, JJ94, Bi95]. Aggregation mixtures reduce
variance by replicating training data across the mixture
components [Wo92, Br96]; partitioning mixtures use
interaction among these components (at the level of data
fusion) to force specialization among them [JJ94, FS96].

In this paper, we discuss a third function of mixture
models in concept learning: to combine classifiers that are
specialized to different projections, or partitions, of the
training data. Such multistrategy learning approaches,
where the "right tool" is analytically identified for each
subtask, are useful in problems that exhibit heterogeneity.
An example is spatiotemporal sequence learning for time
series classification. We develop a collection of
probabilistic (artificial neural and Bayesian) network
architectures with complementary learning methods for
inductive supervised learning, a new metric-based model

selection system, and an algorithm for selecting the
learning components indicated by the data set
characteristics.

The key novel contributions of our system are:

1. Recombinable and reusable learning components for
time series

2. Metrics for temporal characteristics that prescribe
learning techniques

3. A framework for task decomposition and fusion of
classifiers learned by different techniques

Heterogeneous Time Series Learning

In heterogeneous time series, the embedded temporal
patterns belong to different categories of statistical
models, such as moving average (MA) and autoregressive
(AR or exponential trace) models [MMR97]. A
multichannel time series learning problem can be
decomposed into homogeneous subtasks by aggregation
or synthesis of attributes. Aggregation occurs in
multimodal sensor fusion (e.g., for medical, industrial,
and military monitoring), where each group of input
attributes represents the bands of information available to
a sensor [SM93]. In geospatial data mining, these
groupings may be topographic [Hs97]. Complex
attributes may be synthesized explicitly by constructive
induction, as in causal discovery of latent (hidden)
variables [Pc88, He96]; or implicitly by preprocessing
transforms [HR98].

This section presents an analogy between concept
learning in heterogeneous time series and compression of
heterogeneous files. The significance of this analogy is
that, given a system that selects the most appropriate
compression algorithm for segments of a file, we can
construct a similar learning system. This system selects
the most appropriate inductive learning techniques for an
attribute subset of a given time series. The subsets are
evaluated based on available learning architectures (cf
[KJ97]) and intermediate target concepts are formed (cf
[FB85, CKS+88]) to achieve task decomposition.

We briefly present a successful heterogeneous
compressor that employs metric-based file analysis and
extend our analogy to the design of a modular,
probabilistic network-based learning system.
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Network Type Arcllltectural Metric
Simple recurrent network (SRN) Exponential trace (AR) autocorrelation
Time delay neural network (TDNN) Moving average (MA) autocorrelation
Gamma network Autoregressive integrated moving average (ARIMA) autocorrelation
Temporal na’l’ve Bayesian network Knowledge map score (relevant attribute count)
Hidden Markov model (HMM) Test set perplexity

Table 1. Network types and their prescriptive metrics

l,carnin~ Method 1)istrilmtional Metric
HME, gradient
HME, EM
HME, MCMC
Specialist-moderator, gradient
Specialist-moderator, EM
Specialist-moderator, MCMC

Modular cross entropy
Modular cross entropy + missing data noise
Modular cross entropy + sample complexity
Dichotomization ratio
Dichotomization ratio + missing data noise
Dichotomization ratio + sample complexity

Table 2. Learning methods and their prescriptive metrics

Compression of Heterogeneous Files
Heterogeneous files are those that contain multiple types
of data such as text, image, or audio. We have developed
an experimental data compressor for that outperforms
several commercial, general-purpose compressors on
heterogeneous files. The interested reader is referred to
[HZ95] for details on the comparative experiments, which
are beyond the scope of this paper.

The heterogeneous compressor divides a file into
fixed-length segments and empirically analyzes each (cf.
[Sa89, HM91]) for its file type and dominant redundancy
type. For example, dictionary algorithms such as Lempel-
Ziv coding are most effective with frequent repetition of
strings; run length encoding, on long runs of bits; and
statistical algorithms such as Huffman coding and
arithmetic coding, when there is nonuniform distribution
among characters. These correspond to our redundancy
metrics: string repetition ratio, average run length, and
population standard deviation of ordinal character value.

The normalization function over these metrics is
calibrated using a corpus of homogeneous files. Using the
metrics and file type, our system predicts, and applies, the
most effective algorithm and update (e.g., paging)
heuristic for the segment. In experiments on a second
corpus of heterogeneous files, the system selected the best
of the three available algorithms on about 98% of the
segments, yielding significant performance wins on 95%
of the test files [HZ95].

Adapting Statistical File Analysis to
Heterogeneous Learning
The analogy between compression and learning [Wa72] is
especially strong for technique selection from a database
of components. Compression algorithms correspond to
network architectures in our framework; heuristics, to
applicable methods (mixture models, learning algorithms,
and hyperparameters for Bayesian learning). Metric-
based file analysis for compression can be adapted to
technique selection for heterogeneous time series

learning. To select among network architectures, we use
indicators of temporal patterns typical of each; similarly,
to select among learning algorithms, we use predictors of
their effectiveness. The analogy is completed by the
process of segmenting the file (corresponding to problem
decomposition by aggregation and synthesis of attributes)
and concatenation of the compressed segments
(corresponding to fusion of test predictions).

A noteworthy result from the compression
experiments is that using metric-based technique selection
yields improvements over the brute force method of
keeping the most compressed segment (i.e., trying all
possibilities). This is due to the overhead of restarting the
model (for both statistical and dictionary compression
methods) at each segment. For details, we refer the reader
to [HZ95]. We hypothesize similar consequences for
model selection in machine learning. Degradation in
learning quality is likely due to the nearsightedness of the
brute force assumptions (namely, the lack of a model of
interaction among subtasks). Furthermore, tile number of
models (even at the coarse level of granularity of this
technique selection system) is large enough to be
prohibitively slow when exhaustive testing is used. This
loss of performance is more pronounced than in
compression [Hs98].

The importance of the overall analogy is that it
illustrates a useful correspondence between metric-based
selection of compression techniques for heterogeneous
files and metric-based selection of learning models for
heterogeneous time series.

Composite Learning

Database of Learning Components

Table 1 lists the network types (the rows of a "lookup
table" of learning components) and the indicator metrics
corresponding to their strengths [Hs97]. SRNs, TDNNs,
and gamma networks are all temporal varieties of
artificial neural networks (ANNs) [MMR97]. temporal
na~’ve Bayesian network is a global knowledge map (as
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defined by Heckerman [He91]) with two stipulations.
The first is that some random variables may be temporal
(e.g., they may denote the durations or rates of change of
original variables). The second is that the topological
structure of the Bayesian network is learned by naive
Bayes. The last architecture listed, a hidden Markov
model (HMM), is a stochastic state transition diagram
whose transitions are also annotated with probability
distributions (over output symbols) [Le89].

Table 2 lists the learning methods (the columns of the
"lookup table"). A hierarchical mixture of experts
(HME) is a mixture model composed of generalized linear
elements (as used in feedforward ANNs) [JJB91, JJ94]. 
can be trained by gradient learning, expectation-
maximization, or Markov chain Monte Carlo (MCMC)
methods (i.e., random sampling as in the Metropolis
algorithm for simulated annealing) [Ne96]. A specialist-
moderator network, which also admits these learning
algorithms, is a mixture model whose components have
different input and output attributes [HR98].

Metric-Based Model Selection
In Table 1, our prototype architectural metrics for
temporal ANNs are average conditional entropy values
for the preprocessed data. For example, to compute
autocorrelation for an AR model, we first apply
convolution of an exponential decay window (an AR
kernel function) [MMR97]. This estimates the predictive
power of the model if chosen as the learning architecture.
The knowledge map score for a diagnostic Bayesian
network is the average number of variables relevant to
each pair of diagnosable causes in an associative
knowledge map [He91]. This knowledge map is
constructed using na’fve Bayes or by thresholding on the
correlations between causes and observable effects.
Finally, a typical indicator metric for HMMs is the test set
perplexity (empirical mean of the branch factor) for 
constructed HMM [Le89].

In Table 2, the prototype distributional metrics for
HME networks are based on modular cross entropy (i.e.,
the Kullback-Leibler distance between conditional
distributions in each branch of the tree-structured mixture
model) [JJ94]. The metrics for specialist-moderator
networks are proportional to dichotomization ratio (the
number of distinguishable equivalence classes of the
overall mixture divided by the product of its components’)
[HR98]. To select a learning algorithm, we use gradient
learning as a baseline and add a term for the gain from
estimation of missing data (by EM) [JJ94] or global
optimization (by MCMC) [Ne96], adjusted for the
conditional sample complexity.

Definition. A composite is a set of tuples

L = ((AI,B,,6, , ~ , ,S, ), .... (Ak ,Bk,6k , ) k ,Sk 
where Ai and Bi are constructed input and output

attributes, 6i and )l are network parameters, and

hyperparameters cf. [Ne96], and & is a learning
algorithm.

The general algorithm for composite time series
learning follows.

Given:
1. A (multichannel) time series data set

D = ((x¢°, yW) ..... (x("), y("))) with input attributes
A = (al ..... at) such that xt°= (xltO ..... xt(°) and
output attributes B = (bj ..... bo) such that
y(O= (yl(i) ..... yo(O)

2. A constructive induction algorithm F such that
F(A, B, D) = {(A’, B’)}

Algorithm Select-Net
repeat

Generate a candidate representation (e.g, attribute
subset partition [KJ97]) (A’, B’) F(A, B,D) 

Compute architectural metrics that prescribe the
network type.
Compute distributional metrics that prescribe the
learning method.
Normalize the metrics using a precalibrated model
(see Figure 1).
Select the most strongly prescribed network type
(6 ,~ )and learning method S for (A’, B’), i.e., the table
entry (row and column) with the highest metrics.
if the fitness (strength of prescription) of the selected
model meets a predetermined threshold
then accept the proposed representation and learning
technique (A’, B’, 0, r, S)

until the set of plausible representations is exhausted
Compile and train a composite, L, from the selected
complex attributes and techniques.
Compose the classifiers learned by each component of L
using data fusion.

Figure 1. Normalization of metrics xr
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Preliminary Experimental Results
Figure 2 depicts an (atemporal) spatially referenced data
set for diagnosis in precision agriculture. The inputs are:
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Figure 2. A Geospatial Diagnosis Problem
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yield monitor data, crop type, elevation data and crop
management records; the learning target, cause of
observed yield (e.g., drought) [Hs98]. Such classifiers
may be used in normative expert systems [He91] to
provide decision support for crop production planning in
subsequent years. We use biweekly remote sensing
images and meteorological, hydrological, and crop-
specific data to learn to classify influents of expected crop
quality (per farm) as climatic (drought, frost, etc.) or non-
climatic (due to crop management decisions) [Hs98].

Figure 3.
Phased Correlation Plot of Corn Condition, 1985-1995
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Figure 3 visualizes a heterogeneous time series. The
lines shown are autocorrelation plots of (subjective)
weekly crop condition estimates, averaged from 1985-
1995 for the state of Illinois. Each point represents the
correlation between one week’s mean estimate and the
mean estimate for a subsequent week. Each line contains
the correlation between values for a particular week and
all subsequent weeks. The data is heterogeneous because
it contains both a moving average pattern (the linear
increments in autocorrelation for the first 10 weeks) and
an exponential trace pattern (the larger, unevenly spaced
increments from 0.4 to about 0.95 in the rightmost
column). The MA pattern expresses weather "memory"
(correlating early and late drought); the AR pattern,
physiological damage from drought. Task decomposition

can improve performance here, by isolating the MA and
AR components for identification and application of the
correct specialized architecture (a time delay neural
network [LWH90, Ha94] or simple recurrent network
[El90, PL98], respectively).

Figure 4.
Rnal Tndl¢"~ Error for 5 Runs of Corn Condition, lg85.1~5
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Figure 4 contains bar charts of the mean squared
error from 125 training runs using ANNs of different
configurations (5 architectures, 5 momentum or’ delay
constant values for gradient learning, and 5 averaged error
values per combination). On all runs, Jordan recurrent
networks with a delay constant of 0.99 and time delay
neural networks (TDNNs) with a momentum of 0.99
failed to converge, so the corresponding bars are omitted.

Tables 3 and 4 list the percentages of exemplars
correctly classified after training. Cross validation results
were obtained by holding out one year at a time. Minor
overtraining was observed for suboptimal delay constants.

/R
78.25 78.55 78.55 177.04

44.44 I 4444 38.89 52.78 155.56]
!85.50 !83.08 82.48 81.57 ,
155.56 I 55.56 52.78 41.67
197.58 1%.68 90.63 77.04 77.04’
155.56 155.56 55.56 47.22 52.78

Table 3. Classification accuracy (in percent) for corn
condition using simple recurrent networks

Table 4. Classification accuracy (in percent) for corn
condition using time-delay and feedforward ANNs

As a preliminary study, we used a gamma network (a
type of ARMA model) to select the correct classifier (if
any) for each exemplar from among the two networks
with lowest mean squared error. These were the input
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recurrent network with delay constant of 0.9 and TDNN
with momentum of 0.7, listed in boldface in Tables 3 and

¯4. The error rate was further reduced, as reported in
Table5. Thus, even a simple mixture model with
identical inputs and targets can reduce variance [Hs98].

99.09 98.19 90.63
61.11 58.33 55.56

Table 5. Performance boost from classifier fusion

Conclusions and Future Work
We have presented the design of a heterogeneous time
series learning system with metric-based model selection,
which evolved from a successful heterogeneous data
compressor [HZ95, Hs98]. Our current research applies
this system to a heterogeneous time series concept
learning problem: monitoring and diagnosis for precision
agriculture [Hs97, Hs98]. Other applications include
control automation and computer-assisted instruction for
crisis management [GHVW98, HGL+98]. We are
addressing the related problems of task decomposition by
constructive induction (aggregation and transformation of
ground attributes) and fusion of test predictions from
probabilistic network classifiers [HR98, RH98].
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