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Abstract

Applications in image processing and remote sensing
raise questions that have so far received only marginal
attention from the machine learning community. And
yet, each of our issues, we believe, represents a rich
research topic, in addition to being of practical im-
portance. The task of the presented case study is to
expose some of them in the context where we encoun-
tered them, and to encourage discussion that might
spawn further research.

Introduction

Our intention is to briefly report on some of our experi-
ence from a major project that employed machine learn-
ing techniques for the recognition of oil spills in satellite-
borne radar images of the sea surface. The work is now
finished, and its product is being field tested and mar-
keted. The main observations made during the research
have been published in two conference papers (Kubat,
Holte, and Matwin, 1997; Kubat and Matwin, 1997)
and the technical results are detailed in a full-length
journal paper (Kubat, Holte, and Matwin, 1998). Nev-
ertheless, as is often the case, some of the issues turned
out to be weak and/or insufficiently documented to en-
ter an article in a leading journal. Still, they deserve
to be discussed, and this workshop is surely the right
forum. To raise these issues at this workshop is im-
portant to us because we felt that some vital problems
that regularly accompany major applications have so
far been insufficiently addressed in the literature.

As already indicated, a detailed description and moti-
vation of the learning task, together with the attendant
technical results, are the subject of Kubat, Holte, and
Matwin (1998). The objective was to develop a tool
that would learn to detect oil spills in radar images.
Oil spills appear as dark regions in a radar image. Un-
fortunately, so do several commonly occurring natural
phenomena, such as wind slicks (winds with speeds ex-
ceeding 10m/sec decrease the reflectance of the radar
beam, hence the affected area looks darker in a radar
image), rain, algae, plankton, etc. These are called
“lookalikes,” and the main challenge in detecting oil
spills is to distinguish the oil spills from the lookalikes.
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Image processing techniques are used to normalize
the image in certain ways (e.g. to correct for the radar
beam’s incidence angle), to identify suspicious dark re-
gions, and to extract features (attributes) of each region
that can help distinguish oil spills from lookalikes. The
list of the dark regions then forms the training set. Oil
spills are treated as positive examples, and the looka-
likes as negative. The examples are described by dozens
of attributes such as size, average brightness, length-vs-
breadth ratio, average sharpness of the edges, “jagged-
ness” of the edges, etc. The image processing part was
developed by Macdonald Dettwiler Associates, a com-
pany specializing in remote sensing. The input of image
processing is thus a raw image, the output being a set
of fixed length attribute vectors, one for each suspicious
region (if the system failed to discover any dark region
in the image, no new vectors are output). During nor-
mal operation, the vectors are fed into a classifier to
decide which image, and which regions within an im-
age, are to be presented for human inspection for the
final decision.

The classifier is created by a learning algorithm whose
development was the main task of our project. Prior to
learning, the examples (regions) are classified by a hu-
man expert as oil slicks and lookalikes, but these classi-
fications are, admittedly, imperfect: on some occasions,
the expert was unsure whether or not a particular re-
gion was an oil slick. The class labels can thus be er-
roneous. The learner outputs a classifier capable of de-
ciding, with a certain degree of reliability, whether a
specific dark region is an oil spill.

In the sequel, we focus on three classes of problems.
First, those issues that are encountered at the time of
problem specification are discussed in Section 2. They
include the decision whether to deliver a classifier or a
user-tailored learner, and the question of the appropri-
ate granularity of the data. Section 3 then discusses
some general data characteristics that are likely to be
encountered also in other similar domains: imbalanced
distribution of positive and negative examples, and the
fact that the training set is substructured into small
batches. Section 4 summarizes the experiences.
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Problem-Specification Issues

Prior to beginning the development, the designer of a
machine learning system has to answer a few vital ques-
tions related to the way the product is to be employed,
and to the nature of the learner’s, and classifier’s, input.
Let us discuss these issues in following two subsections.

A Classifier or a Learner?

(From the user’s point of view, machine learning can
in principle be employed in two different ways. More
commonly, the customer is provided with a classifier. A
host of fielded applications falling into this category is
summarized by Langley and Simon (1998). A machine
learning specialist receives a set of classified training
examples, and is asked to deliver a tool, say, a decision
tree, that will be used to classify future examples.

In our project, an alternative task was chosen: to de-
velop a learning program, rather than a mere classifier.
Why would a user prefer this option? The answer is
simple. In our domain, each end user will deal with a
somewhat different type of oil slicks whose characteris-
tics will depend largely on various geographical factors
(climate, vicinity of land mass, abundance of plankton,
etc.) and specific circumstances such as the proximity
of oil platforms. These factors and circumstances are
virtually unknown at the time of the classifier develop-
ment. Moreover, since the data available for learning is
limited, the relevant examples for learning are simply
not available. It is well known that when a classifier has
been trained in one context, and then applied in another
context, the classification performance can significantly
drop, as discussed at one of th recent ICML’96 work-
shops (Kubat and Widmer, 1996). Given this situation,
a skeptic can rightly ask why to employ machine learn-
ing at all. Why not simply take some of off-the-shelf
learning product and train it on the data?

It is true that we did not have enough data. How-
ever, from what we had we could at least make sound
judgements about the kind of data that will typically
characterize oil-spill learning. For instance, the training
set will nearly always be imbalanced: among the many
training examples, only a few will be positive—this is
due to the high price of the images, and by the relative
scarcity of oil spills in these images. Second, the ex-
amples will be described by dozens of attributes, from
which only few will be relevant (although different sets
of attributes might be relevant in different contexts).
Finally, the attributes differ in ranges and scales (e.g.
some can of them give numbers of pixels, others are in
decibels). Given that these are very likely the character-
istics of the data encountered by the system’s users, we
decided to develop a learning system tailored to these
features. Although we did not have as many examples
as we would like, we could side-step this deficiency by
resorting to those benchmark data that are known to
have similar characteristics.

There is one more reason for delivering a learner
rather than a classifier. At the beginning, the user does

not have enough data, but still wants a classifier and
is willing to tolerate its imperfectness. In the future,
more examples will become available, and these exam-
ples can be incorporated in a new, much larger, training
set. The learning process can then be repeated, and a
better classifier obtained.

The idea of deploying a learner, rather than a clas-
sifier, is far from being common in the literature. As
one of the rare exceptions, Armstrong et al. (1998) de-
serves to be cited. In their case, a WW W-user provides
examples of articles to be filtered out from the many
available electronic journals.

Choosing the Right Granularity

An important decision in learning to identify objects in
images concerns granularity. Essentially, three different
approaches come into question. The first works with the
whole image, and its output simply states whether the
given image contains an oil slick. The second approach
works with the dark regions detected in the images, and
provides the user with their coordinates. The third ap-
proach classifies individual pixels (“this pixel is part of
an oil slick”), as has been done, for instance by Os-
sen et al (1994). The approach operating with pixels
represents the finest granularity, whereas the approach
operating with the images represents the coarsest gran-
ularity.

The choice of granularity heavily affects the memory
requirements, computational demands, as well as relia-
bility. For one thing, finer granularity yields more ex-
amples. In our project we used 9 images that contained
about one thousand dark regions. However, these im-
ages contained several millions pixels. Obviously, mil-
lions of examples are not as easy to handle as hundreds
of regions or just a few images. But then, with finer
granularity, a higher misclassification rate can be tol-
erated: an image containing several regions considered
as positive with only moderate confidence will be clas-
sified as “slick-containing” even if none of the regions
is suspicious enough to be individually classified as an
oil spill. On the other hand, single pixels can only be
described with a substantially impoverished set of fea-
tures. After all, it is the relations among pixels that
contain most of the information. Another unpleasant
aspect of working with single pixels is that the result
will not look coherent—there is no guarantee that the
“oil slick” pixels will form coherent regions in an image.

For all these reasons we decided that our system
would work with regions as detected by the image-
processing subsystem. It is important to bear in mind
that this means to increase the burden imposed on the
image processing specialists. In our case this worked
fine because our partner was a leading company in the
remote-sensing industry. However, in a “normal” uni-
versity environment, the effort related to the description
of regions can easily become a prohibitive factor.

The issue of the degree of granularity arises in many
applications. For instance, in semiconductor manu-
facturing (Turney, 1995), circuits are manufactured in
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Table 1: The numbers of positive and negative examples
in the images

im. 1 2 3 4 5 6 7 8 9 all

pos. 8 4 2 6 2 4 3 5 7 41
neg. 3 180 101 1290 60 70 76 80 197 896
total 11 184 103 135 62 74 79 85 204 937

batches of wafers, and the system can be required to
classify an entire batch, wafer, or to operate at even
lower levels. Likewise, the text-to-speech mapping dis-
cussed by Dietterich et al. (1995) can be addressed in
four distinct levels of granularity.

Data Characteristics

Table 1 summarizes a typical data set for learning. As
a matter of fact, we experimented with many such sets,
but for reasons irrelevant to this study, these sets could
not be combined. The reader should understand the
table as a good illustration of typical training data.
Two observations can be made. First, there are rel-
atively few positive examples, heavily outnumbered by
the negative examples. Second, the data come in small
batches.

Scarcity of Positive Examples

The first aspect is the scarcity of positive examples.
Although satellites are continually producing images,
most of these images contain no oil spills, and we did
not have access to an automatic system for identifying
those that do. A human expert had to view each image,
detect suspicious regions (if there we any), and clas-
sify these regions as positive and negative. In addition
to the genuine infrequency of oil spills and the limited
time the expert was willing (and able) to spend on the
data preparation, the amount of data was restricted by
financial considerations: images cost hundreds, some-
times thousands of dollars each. For our experiments
it was decided to purchase a set of 9 carefully selected
images that were known to contain oil spills. The sit-
uation with scarce positive examples is quite common
in real-world applications. For example, in the drug ac-
tivity application reported by Dietterich et al. (1997)
the two datasets contain 47 and 39 positive examples
respectively.

Moreover, we deliberately worked with training sets
whose distribution of positive and negative examples
did not truly reflect the actual domain. In reality, only
a fairly small percentage of images contain oil spills.
However, as the training images had to be purchased for
a relatively high price, economic constraints forced us
to concentrate only on images that provably contained
positive examples (otherwise, given the maximum ex-
amples that we could purchase, the number of positive
examples would be even smaller). This means that in
reality the ratio between oil spills and lookalikes is sup-

posed to be lower that during the training, which only
adds to the importance of the considerations in the next
section.

As a final note, the number of positive and nega-
tive examples was far from being fixed. The image-
processing system that was used to detect the dark re-
gions contained several parameters whose actual set-
ting could substantially affect the size of the training
set. For instance, one parameter determined whether
a region was dark enough to be considered as an ex-
ample. This threshold was able to affect the number of
examples by an order of magnitude. Another parameter
determined the minimum size (in pixels) of a region.

The lesson is that in major applications of machine
learning the designer will often have a control of the
contents of the training set, which is somewhat at vari-
ance with the common practice to work with fixed and
immutable training sets. Frankly, the lack of this ex-
perience at the beginning of our project caused that
we largely underestimated the consequences of the need
to use machine intelligence to finalize the training set.
Tailoring of the training set perhaps should have been
made an integral part of the learning process.

Imbalanced Training Sets

Another characteristic of the oil spill domain is that
there were many more negative examples (lookalikes)
than positive examples (oil slicks)—the majority class
usually represented more than 95% of the data. Again,
this is, we think, by no means an exceptional situation.
Highly imbalanced training sets occur in applications
where the classifier is to detect a rare, though impor-
tant event, such as fraudulent telephone calls (Fawcett
and Provost, 1996), unreliable telecommunications cus-
tomers (Ezawa, Singh, and Norton, 1996), failures or
delays in a manufacturing process (Riddle, Segal, and
Etzioni, 1994), or rare diagnoses (e.g. the thyroid dis-
eases in the UCI repository (Murphy and Aha, 1994)).
Extremely imbalanced classes also arise in information
retrieval and filtering tasks: in the domain studies by
Lewis and Catlett (1994), only 0.2% (1 in 500) examples
are positive.

An important implication of the fact that the classes
are unevenly distributed is the fact that the most popu-
lar performance metric, the classification accuracy, loses
much of its appeal. To see why, consider the case where
the relative frequency of negative examples is 96%. A
classifier that labels all regions as negatives will achieve
the seemingly impressive accuracy of 96%. And yet
it would be useless because it totally fails to achieve
the fundamental goal: to detect oil spills. A system
achieving 94% on spills and 94% on non-spills will have
a worse overall accuracy in spite of being deemed as
highly successful. This indicates that a proper choice
of the performance metric deserves particular attention.

In many applications, the accuracy is defined using
the confusion matrix from Table 2 as acc = 7% +‘c' rwrl
In other words, accuracy is the percentage of examples
correctly classified. Informally, we want to present to
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Table 2: Confusion matrix

guessed:
negative positive
true: negative a b
positive c d

the user as many spills as possible provided that the
total number of false alarms is not too large. Curves
used to visualize the tradeoff between these two require-
ments are called ROC curves (Swets, 1988). Figure 1
shows a typical ROC curve obtained on the oil-spill data,
with the system described by Kubat, Holte, and Matwin
(1998). It is a plot with the percentage of correctly
d

classified positive examples (;{5) on the y-axis and the

false positive rate (aL_H)) on the z-axis. The perfect clas-
sifier corresponds to the point (0,100): 0 false positives
(i.e., 0% error on the negative examples) and 100% ac-
curacy on the positive examples. The extreme points
of the curve, (0,0) and (100,100), correspond to classi-
fiers that classify all examples as negative and positive,
respectively.

To measure performance in environments with im-
balanced classes, the information retrieval community
works with recall (r = ;£3) and precision (p = 3;) and
combines them by way of a geometric mean (/7 p)
or the more sophisticated F-measure (Lewis & Gale,
1994). Other measures have been suggested (van Ri-
jsbergen, 1979, Chapter 7), including an information
theoretic formula suggested by Kononenko and Bratko
(1991).

We decided that in the version of the system that
will be delivered to end users there will not be a pre-
programmed way of condensing the ROC curve to a
single performance measure. Instead, the user will be
able to move along the curve and choose the point that
best meets his/her current needs. In this way, the user
perceives the performance in terms of two parameters
(the frequency of true positives and of false positives).
This is typical of fielded systems. As pointed out by
Saitta, Giordana and Neri (1995), systems that serve
as tools for users confronting a specific decision (e.g.,
whether to send an aircraft to verify a spill and docu-
ment the incident) should not be constrained to use a
scalar performance measure. The user needs to be able
to tune the system’s behavior so as to trade off various
conflicting needs.

Although, in general, the challenge is to build a sys-
tem that can produce classifiers across a maximally
broad range of its ROC curve, in the course of devel-
opment we did not have access to the users that would
tune the system to their particular circumstances. How-
ever, we needed a performance measure to provide im-
mediate feedback (in terms of a single value) on our
design decisions. This measure would have to address
the clear inadequacy of accuracy, which is unusable in
our problem. To this end, we have mainly used the
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Figure 1: An ROC curve

geometric mean (g-mean), g = v/acc+ % acc—, where
acc+ = c_;_Ld is the accuracy on the positive examples,
and acc— = 743, is the accuracy on the negative ex-
amples. This measure has the distinctive property of
being independent of the distribution of examples be-
tween classes, and is thus robust in circumstances where
this distribution might change with time or be differ-
ent in the training and testing sets. Another impor-
tant and distinctive property is that g-mean is non-
linear. A change of p percentage points in acc+ (or
acc—) has a different effect on g-mean depending on
the magnitude of acc+: the smaller the value of acc+,
the greater the change of g-mean. This property means
that the “cost” of misclassifying each positive example
increases the more often positive examples are misclas-
sified. A learning system based on g-mean is thereby
forced to produce hypotheses that correctly classify a
non-negligible fraction of the positive training exam-
ples. On the other hand, g-mean is less than ideal for
filtering tasks because it ignores precision.

This behavior is depicted in Figure 2 that shows the
performance achieved by C4.5 (Quinlan, 1993) for vary-
ing numbers of lookalikes while the set of oil spills re-
mains unchanged. The figure shows the detrimental ef-
fect that severe imbalance in the class distribution can
have on the quality of the classifier: the g-mean and the
accuracy on the positives both decrease considerably as
the number of negative examples increase. On account
of the dominant representation of negative examples,
the average accuracy would generally follow the dashed
curve, “pretending” improvement in a situation where
the utility of the system actually drops.

Small Batches of Training Examples

As already mentioned, the examples were naturally
grouped: examples drawn from the same image con-
stitute a single batch. Whenever data is collected in
batches, there is a possibility that the batches system-
atically differ from one another, or that there is a much
greater similarity of examples within a batch than be-
tween batches. In our domain, for example, the ex-
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Figure 2: Performance of C4.5 for different numbers of
negative examples. Solid: g-mean; dashed: accuracy on
negative examples; dotted: accuracy on positive exam-
ples.
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act parameter settings of the radar imaging system or
low-level image processing are necessarily the same for
examples within a batch but could be different for dif-
ferent batches. Clearly, in our case, the classifier will be
learned from one set of images, and it will be applied on
images that were not part of this set. This fact should
be taken into account in the evaluation of the system.

This problem has been mentioned by several other
authors, including Fawcett and Provost (1996), Ezawa,
Singh, and Norton (1996), Kubat, Pfurtscheller, and
Flotzinger (1994), and Pfurtscheller, Flotzinger, and
Kalcher (1992). For instance, in the SKICAT system
(Fayyad, Weir, and Djorgovski, 1993), the “batches”
were plates, from which image regions were selected.
When the system trained on images from one plate
was applied on a new plate, the classification accuracy
dropped well below that of manual classification. The
solution used in SKICAT was to normalize some of the
original features.

One of the chief methodological issues is the require-
ment that the classifier be trained on one set of images
and tested on another set of images. Table 3 illustrates
this point using some results obtained from experiment-
ing with SHRINK (8 = 0). The first row (CV) contains
the results obtained using the 10-fold cross-validation
(average from 5 random runs) applied to the dataset
containing all the examples from all images (so that
examples from the same image can occur in both the
training and the testing sets). These results are clearly
superior to those in the second row (LOBO), which are
obtained using the leave-one-image-out methodology.

The experiment indicates that the images differ sys-
tematically, and therefore cannot be safely combined
into one large dataset. This observation suggests an-
other experiment that builds on the following conjec-
ture. In domains where the examples can be mixed,

Table 3: Leave-one-batch-out (LOBO) and the conven-
tional cross-validation (CV)

training set

testing set

g-mean acc+ acc- g-mean acc+  acc-
()% 74.9 90.6 61.8 70.9 82.5 60.9
LOBO 75.0 85.7 65.6 62.5 78.1  50.1
Table 4: The effect of ignoring one image.
ignored training set testing set
image g-mean acc+ acc- g-mean acc+  acc-
1 74.7 93.9 594 60.0 78.8 45.7
2 71.3 84.9 59.9 61.3 70.3 53.5
3 71.7 84.3 61.1 57.5 79.5 41.6
4 70.0 87.4 56.1 53.3 65.7 43.2
5 75.5 89.0 64.0 62.0 84.6 45.5
6 75.6 946 60.5 59.8 81.1 441
7 76.5 87.2 67.1 62.6 73.7 53.2
8 81.6 944 705 67.3 86.1 52.6
9 75.1 87.8 64.2 60.9 64.7 57.2

many previous studies have shown that the learning sys-
tem will give better results if some harmful (e.g. noisy)
examples are removed from the training set. This sug-
gests the question: can some of the batches be similarly
harmful?

This can be examined by an experiment where the
same leave-one-image-out strategy as in the previous
case is applied, only that now one of the images is to-
tally withheld from experimentation: it will appear nei-
ther in the training nor in the testing data. The leave-
one-image-out strategy was thus applied to 8 out of the
9 images. The i-th row of the table contains the results
for the case where the i-th image was ignored. The re-
sults achieved by SHRINK (again, § = 0) are shown in
Table 4.

The results in row 4 indicate that the examples con-
tained in image 4 are very typical of the given task, and
that removing them from the training set reduces clas-
sification performance. The value of g-mean is 53.3%
which is much lower than the value achieved when im-
age 4 was not removed (62.5%). Conversely, image 8
seems to be very important (the g-mean, 67.3%, even
exceeds the value achieved from all images): either its 5
positive examples are very unusual or some of its 80 neg-
ative examples are very similar to the positive examples
in the other images. The great discrepancies between
training and testing set performance in all rows indicate
that every image is somewhat different, and also that
the training data is insufficient.

Conclusion

The oil spill detection workstation has been delivered,
under the name of CEHDS, to Macdonald Dettwiler
Associates and will soon undergo field testing in several
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European countries. It has image processing suites for
two satellites, RADARSAT and ERS-1. Two learning
algorithms were included: 1-NN with one-sided selec-
tion and SHRINK (Kubat, Holte, and Matwin, 1998).
In the latter case, the user can control the rate of false
alarms, and trade false alarms for missed oil spills. The
user can also decide to retrain the system should more
data become available.

In developing the Oil Spill Detection Workstation we
faced numerous issues. Most are not specific to the
oil spill detection problem: they are the consequence
of properties of the application that arise frequently in
other machine learning applications. Although each ap-
plication that has faced these issues has, of necessity,
developed some solution, they have not yet been the
subject of thorough scientific investigation. They are
open research issues of great importance to the appli-
cations community.

Perhaps the most important issue is that of imbal-
anced classes. It arises very often in applications and
considerably reduces the performance of standard tech-
niques. Numerous methods for coping with imbal-
anced classes have been proposed, but they are scat-
tered throughout the literature. At the very least, a
large scale comparative study is needed to assess the
relative merits of these methods and how they work in
combination. Many individual methods, the SHRINK
algorithm for example, can undoubtedly be improved
by further research.

Learning from batched examples is another issue
which requires further research. With the resources
(manpower, data) available in this project, we were not
able to devise a learning algorithm that could success-
fully take advantage of the grouping of the training ex-
amples into batches. However, we believe further re-
search could yield such an algorithm. Learning from
batched examples is related to the issues of learning in
the presence of context, as the batches often represent
the unknown context in which the training examples
were collected. Learning in context has only recently
been recognized as an important problem re-occurring
in applications of machine learning (Kubat and Wid-
mer, 1996).

Various tradeoffs arose in our project which certainly
warrant scientific study. In formulating a problem, one
must choose the granularity of the examples (images,
regions, or pixels in our application) and the number
of classes. Different choices usually lead to different
results. For instance, having several classes instead of
just two reduces the number of training examples per
class but also provides additional information to the
induction process. How can one determine the optimal
choice? Another tradeoff that arose was between the
discriminating power of the features and the number of
examples.

In machine learning applications there is no stan-
dard measure of performance. Classification accuracy
may be useful in some applications, but it is certainly
not ideal for all. The research challenge is to develop

learning systems that can be easily adapted to differ-
ent performance measures. For example, cost sensitive
learning algorithms work with a parameterized family
of performance measures. Before running the learning
algorithm the user selects a specific measure within this
family by supplying values for the parameters (i.e., the
costs).

Our experience in this project highlights the fruit-
ful interactions that are possible between machine
learning applications and research. The application
greatly benefited from—indeed would not have suc-
ceeded without—many ideas developed in the research
community. Conversely, the application opened new,
fertile research directions. Future research in these di-
rections will directly benefit the next generation of ap-
plications.
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