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Abstract

In this paper we present the outline of a method that
combines a divide-and-conquer approach, that is com-
mon in knowledge acquisition and software engineer-
ing, with the use of inductive techniques. The idea
is to guide decomposition of a knowledge acquisition
problem into subpr oblems by the expected costs and
benefits of applying elicitation or induction t o acquire
the knowledge for part of the target knowledge. The
method is illustra ted with a "rational reconstruction"
of a knowledge acquisition process that involved induc-
tive techniques.

Keywords: Knowledge acquisition, learning goals,
decomposition

Introduction

Knowledge acquisition for knowledge-based systems in-
volves the formalisation of human knowledge about a
certain task to build a system that can perform this
task. Knowledge can be acquired in different ways. The
classical way is to elicit knowledge from a human ex-
pert and formalise this in an operational language, e.g.
using an expert system shell. This is often extended
to acquiring knowledge not only from a single human
expert but also from documents and several different
experts. Machine learning gives the prospect of (par-
tially) automating this process. There are several ways
to apply machine learning techniques to knowledge ac-
quisition. The most direct approach is to collect a set
of examples of problems with solutions that are pro-
vided or approved by a human expert and to apply an
induction technique to automatically construct a knowl-
edge based system. Other approaches focus on the task
of refining or debugging knowledge that was acquired
manually (e.g. (Shapiro 1982), (Ginsberg 1988), 
&; Sleeman 1990)). Either approach can be improved 
using domain specific prior knowledge, for example in
the form of descriptions of rules that are to be learned.

Many knowledge acquisition problems are charac-
terised by the availability of sources of relatively un-
structured information that can be used to construct
a knowledge-based system. Examples of sources are
documents, human experts on related tasks, collections

of observations or even existing knowledge in computa-
tional form. Another source is the possibility to acquire
data on an aspect of a task. In addition to selecting
appropriate sources, a choice has to be made for an ac-
quisition approach: manual elicitation, collecting exam-
ples of solved problems and machine induction, or some
combination of these. Once a choice of an approach is
made, a particular method and a tool must be selected.
Here we focus on the choice of the approach.

If a domain involves a complex relation between prob-
lem data and solutions then direct knowledge elicita-
tion is not effective: it will lead to too global questions
to a domain expert. For example, if only the possible
problems and solutions are known, a knowledge engi-
neer can only ask: "how do you find solutions like ..
from problem data like ...?" which is hard to answer
for a complex domain. An inductive approach also en-
counters problems if the knowledge acquisition problem
is complex. One problem is that uncovering a com-
plex structure will require many data. Another prob-
lem is that machine learning systems explore a partic-
ular hypothesis space. A hypothesis space is charac-
terised by a language that involves an implicit bias on
the possible hypotheses (that is: the mapping between
problems and solutions), an ordering on the generation
of hypothesis and usually a criterion for stopping the
search. For many domains, a single uniform hypothesis
space may not be adequate. This means that it is either
necessary to search a space of "biases" or to search a
very large space of hypotheses (in a space with little
bias). Evidence for this is the current interest in multi-
strategy learning systems that construct hypotheses in
"hybrid" languages, mixing decision trees, neural nets,
linear threshold functions, etc.

Here we argue that solving real world knowledge ac-
quisition problems requires a divide-and-conquer ap-
proach that aims at optimal use of available sources
of knowledge. In knowledge acquisition and in soft-
ware engineering in general, a "divide-and-conquer" ap-
proach based on top down development is a standard
method. Many authors have defined languages that sup-
port top-down development (e.g. (Schreiber, Wielinga,
& Breuker 1993)). However, these methods are not very
specific about how to reduce a complex knowledge ac-
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quisition problem to simpler subproblems. In this paper
we describe a method for decomposing knowledge ac-
quisition problems into subproblems that can be solved
better than the original problem. There are two main
differences with standard development methods: (1) our
method includes the possibility of using induction to ac-
quire a component and (2) decomposition is directed 
the structure of the available knowledge or "sources" of
knowledge and not at processes like data selection, data
cleaning and data conversion (see for example (Engels,
Lindner, &5 Studer 1997)). In knowledge acquisition,
and software engineering in general, decomposition is
directed at efficiency or modularity (e.g. (Schreiber,
Wielinga, & Breuker 1993)) but here the decision to de-
compose a task is based on the possibility of acquiring
an adequate component.

This paper is organised as follows: in section 2 we
define what we mean by a "knowledge acquisition prob-
lem", in section 3 illustrate this with an example, in sec-
tion 3 we give the arguments for decomposing a "knowl-
edge acquisition problem" (recursively) into subprob-
lems, in section 4 we give a method for decomposing
"knowledge acquisition problems", also illustrated with
an example (section 5) and in section 6 we discuss the
implications and applicability of this method.

What is a knowledge acquisition

problem?

How are knowledge acquisition problems represented?
To describe reduction of knowledge acquisition prob-
lems to subproblems, we need a more precise notion of
knowledge acquisition problem. The goal of knowledge
acquisition is to obtain knowledge that can be used for
solving a certain class of problems. A "knowledge acqui-
sition problem" therefore includes a description of pos-
sible problems, a description of possible solutions and a
description of the relation between problems and solu-
tions. Possible problems and solutions can be described
in a number of ways but for simplicity we assume here
that a problem is a subset of possible problem data and
a solution is an element of a set. The relations be-
tween problems and solutions is described by reference
to certain "sources" of knowledge or is left unspecified,
which means that any source can be used. The goal
can be for example, to construct a system that behaves
like a given human domain expert, that follows certain
prescribed methods, that finds solutions as entailed by
the knowledge in certain documents or that predicts
empirical phenomena. Decomposition of a knowledge
acquisition problem recursively divides a problem into
subproblems that are connected in a dataflow structure.
Each subproblem is itself a knowledge acquisition prob-
lem. Decomposition therefore introduces intermediate
datatypes (or splits datatypes into subtypes). Each "in-
terface" between two components is associated with a
description of the data that pass through it. At the
lowest level of decomposition, problems are identified
in terms of primitive tasks. At this point details of

the representation become important because these de-
termine the particular acquisition or machine learning
system that is to be applied.

Finally, we assume that information is available about
the costs and benefits of acquisition operations. In par-
ticular, the methods described below uses estimates of
accuracy and acquisition costs of acquisition operations.

Example

Consider the following example, taken from (Polderdijk
et al. 1996). The acquisition goal is:

construct a knowledge system that takes as input
information on a batch of fruits that arrives from
abroad and that produces a recipe for storing the
fruits.

The solution of the planning procedure is a storage
recipe. A recipe is a prescription of external conditions
over a certain period of time. The time interval is di-
vided in a number of fixed-duration time slices. For
each time slice the recipe contains prescriptions for a set
of storage conditions. Storage conditions may include
temperature, relative humidity and ethylene concentra-
tion. The choice of a recipe depends on the following
information:

¯ administrative information, e.g. identification of the
grower, harvest date, country and field of origin, ex-
porter, transport medium and duration, maturity at
harvest, etc.

¯ a record of information on external conditions, i.e.
data on the behaviour of the set of relevant external
conditions (see above), registered for the postharvest
life of the product on the basis of fixed-duration time-
slices

¯ a record of quality measurements, containing for a
some moments in the product life measurement re-
suits on a number of indicative quality parameters; a
typical parameter set may include colour, firmness,
sugar content and qualitative measures for diseases,
mould appearance and injuries

¯ planned destination, storage period duration, or date
and quality specification; in case of a storage period,
the assumption is that certain quality standards are
still met at the end of the storage period; the duration
of the storage period may be indefinite, in which case
maximisation of the period is the target.

Figure 1 shows the problem in diagrammatical form.

To solve this knowledge acquisition problem, that is,
to construct a system that can find an adequate recipe,
several sources of knowledge are available. In general,
knowledge can be acquired from a human expert, a doc-
ument, a set of data or an existing system. Table 1 lists
some sources that can be used for this knowledge ac-
quisition problem. These sources include both machine
learning, knowledge elicitation from experts and extrac-
tion from documents. The sources include information
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Figure 1: Overall learning problem

.recipe

that is not part of the original problem. For exam-
ple, the source Measure Quality 1 refers to "Quality
Data" and "Sampling Instructions" that were not men-
tioned in the original problem statement. This means
that there is a way to acquire knowledge to find Quality
Data from Sampling Instructions and Batch. Including
this in the decomposition means that this source will
be used to acquire this knowledge. A consequence is
that the relation between Quality Data, Sampling In-
structions and the other types of information must be
acquired. These become new subgoals. Table 1 gives
the name, the conclusions and the data about which a
source contains knowledge, the expected accuracy of the
resulting knowledge and the costs of acquiring it. The
expected accuracy and costs must be estimated.

In this table, Measure Quality is not done by inference
but by observation of the fruit, which is not automated.
There are two alternative versions of Measure Quality,
one that uses Sampling Instructions and one that does
not. Note that Revise Recipe takes a Detailed Recipe as
input and also produces one as output. The table lists
elementary sources but knowledge can also be acquired
from compound sources. For example, knowledge can
be acquired that directly relates External Conditions
and Planning Destination to a Detailed Recipe. Table 1
lists the costs of these sources and the expected accuracy
of the resulting knowledge. Some sources have no costs
because the knowledge already exists. These costs and
accuracies must be estimated with heuristics. If no good
estimate is possible then it is necessary to empirically
evaluate these. In the example, this was the case with
Measure Quality 2. A system was built with decision
tree learning to evaluate if the accuracy and costs of
this. The test showed that costs were relatively low and
accuracy was significantly better than that of Measure
Quality 1. The knowledge acquisition problem is now to
find sources and acquisition operators that will produce
the target knowledge from available sources, at minimal
cost and with maximal accuracy.

Solving a knowledge acquisition problem

In general a knowledge acquisition problem can be
solved in three ways: (a) by direct elicitation of the
knowledge from a source such as a human expert or a
document, (b) by induction from observations and (c)
by further decomposition into subproblems. Each of
these options involves further choices. The main cri-

terion for these choices is acquisition economy the
expected costs of implementing the option and the ex-
pected accuracy of the resulting knowledge (see (O’Hara
& Shadbolt 1996)).

In the case of inductive methods the accuracy of the
result will depend to quite some extent on the availabil-
ity of reliable data, the complexity of the actual relations
and on knowledge about the type of relation that is to
be induced. If many reliable data are available, the un-
derlying relation is not very complex and the type of
function is known then induction is likely to be success-
ful but otherwise there is a serious risk of constructing
knowledge that is incorrect. In the case of manual ac-
quisition methods, the accuracy depends on the quality
of the sources (e.g. human experts) and of the commu-
nication process.

More specifically, to decide if decomposition is a
good idea, we compare the expected costs and benefits
of acquisition with and without decomposition. The
benefit of an acquisition operation (elicitation based
or induction based) is the accuracy of the resulting
knowledge1. The costs of the acquisition process
depend on the acquisition process. In case of elic-
itation, this involves time of the expert and of the
knowledge engineer, equipment, etc. In case of an
inductive approach this involves the costs of collecting
and cleaning data and of applying an induction system
to the result. If we decompose the acquisition problem,
the costs and benefits are simply the sum of those of
the subproblems. So we get:

for elicitation:

expected Gain(elicitation) = (wl * expected Accu-
racy(elicitation)) - expected Costs(elicitation)

for induction:

expected Gain(induction) = (wl * expected Accu-
racy(induction)) - expected Costs(induction)

for decomposition:

expected G ain ( oper at ions z . .i ) 
sum(expectedCosts(operation~)) (wl * mi ni
mum(expected Accucary(operation~ ))
Here the weight parameter wl indicates the impor-

tance of accuracy relative to "real" costs of acquisition.
The expected accuracy of a compound acquisition is
derived from the minimal accuracy of its components,
which is a pessimistic estimate. As we argued above,
in some cases elicitation is almost impossible because
the expert cannot answer very global questions. This
means that the "costs" are very high and the accuracy
of the knowledge is 0. In machine learning applications
the costs of actually running a system are usually rather
small compared to other costs, such as designing the
target system, collecting data and tuning the induction
tool, so this could be left out.

1Ultimately the benefit may be expressed in terms of fi-
nancial benefits but these are often even more difficult to
estimate than the accuracy and the acquisition costs.
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Name Conclusions Determined by Cost hcc

Measure Quality 1 Quality data Batch (of fruit), 0.1 0.5
Sampling Instructions

Measure Quality 2 Quality Data Batch 0.3 0.9
Select Products Sampling Iinstructions Administrative Data, 0.3 0.8

ExternalConditions
Make Global Recipe Specification Administrative Data, 0.5 0.8

External Conditions, Quality
Data, Planned Destination

Specify Recipe 1 Detailed recipe Specification, 0.3 0.4
Planned Destination

Specify Recipe 2 Detailed recipe Specification, Discrepancy 0.3 0.7
(required/predicted fruit
quality), Planned
Destination

Ripening Model Predicted Output Quality Data, Detailed 1
Recipe

Predict Fruit Quality Predicted Fruit Quality Predicted Output 0.2 0.8
Analyse Recipe Effect Discrepancy Predicted Fruit Quality, 0.1 1

Planned Destination
Revise Recipe Detailed Recipe Detailed Recipe, Discrepancy 0.1 0.9

Table 1: Some sources of knowledge for the example

In general, decomposition is useful if cheap and accu-
rate sources of knowledge are available for subtasks of
the overall knowledge acquisition task but not for the
overall task. For example, there may be abundant data
for a subproblem and an available and communicative
expert for another subproblem but not for the problem
as a whole. This is a reason to split the knowledge
acquisition problem into subproblems that are then ac-
quired separately. Another reason why a decomposition
can be cheaper and give more accurate results than a
single step inductive approach is when there is no prior
knowledge to bias induction. Suppose that we know that
some variables have a "linear threshold" relation with
class membership and others have a "complex boolean"
relation. Induction techniques are usually biased on one
type of relation (e.g. (Langley 1997)) and perform badly
if there is a mismatch between this bias and the actual
relation. For example, decision tree learning will do
badly if the underlying relation can be formulated as a
simple linear function. The type of relation may vary
in a knowledge acquisition problem. For example, some
variables may have a linear relation with a variable that
is to be predicted, where others have a non-linear rela-
tion. If this is known in advance then decomposing the
problem into two subproblems may have a beneficial ef-
fect on the accuracy of the result, even when the effects
of both types of variables on the predicted variable are
not independent.

The method for decomposing a knowledge acquisi-
tion problem is based on the idea that the reasons for
decomposing a knowledge acquisition problem that we
gave in section 3 above are applied in the order given
above. The method is a form of best-first search that
uses expected costs and benefits to evaluate candidate

decompositions.
If a step results in a decomposition then the method is

applied recursively to the subproblems. The method is
as follows (we do not give a detailed algorithm because
some of the steps cannot be automated anyway):

KA(ka-problem, sources, w):

1. IF a source is available for goal THEN use this
ELSE

2. estimate expected gain of elicitation(ka-problem,
sources, w):

(a) estimate costs(elicitation, sources, w)
(b) estimate accuracy of resulting knowl-

edge(elicitation, sources, w)
(c) expected gain(elicitation) -- (w * estimated 

curacy) - estimated costs

3. estimate expected gain of induction(ka-problem,
sources, 71)):

(a) estimate induction costs(elicitation, sources, w)
(b) estimate accuracy of resulting knowl.

edge(elicitation, sources, w)
(c) expected gain(induction) = (w * accuracy)- 

timated costs

4. REPEAT:
(a) use any source to decompose ka-problem into

ka-subproblem
(b) estimate acquisition costs and accuracy and

compute gain
UNTIL no more decompositions

5. select the option (elicitation, induction or a de-
composition) that has the highest expected gain.
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6. IF the result of the last step is a compound ka-
problem THEN FOR EACH ka-subproblem DO
KA(ka-subproblem, sources, w)

A knowledge acquisition problem consists of a de-
scription of the problem data and the solutions of the
task involved. A decomposition consists of knowledge
acquisition problems that are connected in a datafiow
structure with the original problem data and solutions
as input and output. A decomposition is constructed

by
¯ inserting a source description (cf. table 1) that 

connected to a type of data in the current goal

¯ adding or deleting a connection in the dataflow struc-
ture
Estimating the cost and accuracy of elicitation and

induction is of course the main problem here. There are
two methods to obtain these. The first is by using gen-
eral heuristics and prior knowledge (e.g. the number of
variables, the number of data, the strength of bias that
can be put used in induction and the expected com-
plexity of the relation between input and output) can
be used to predict the accuracy of induction and the
costs can often be estimated. The second method is to
perform a pilot study to assess the costs and expected
accuracy. In the context of elicitatiou this amounts to
performing elicitation on part of the task and evaluat-
ing the result. In the context of induction it amounts to
cross validation.

Example- continued
we illustrate the method with the example of planning
fruit storage introduced above, a further development
of the approach of (Verdenius 1996). This problem
involved both knowledge acquisition and machine
learning. The project was not run with this method in
mind but our description can be viewed as a "design
rationale" that was constructed afterward. Figure
1 shows the final decomposition and table 2 gives
an overview of the sources and techniques that were
actaully used to acquire knowledge for the various com-
ponents. Below we reconstruct the process that lead
to this decomposition and choice of acquisition methods.

The estimated costs of acquiring the complete system
by elicitation are very high (because there is no expert)
and the same is true for induction. There are about 30
input variables and between 20 and 60 output variables
(depending on the duration of the storage). The relation
is therefore likely to be very complex and it would take
many data to find an initial model if it is possible at
all. We estimate costs and accuracies of single step ac-
quisition (elicitation or induction). The estimates are 
table 3. The last column gives the expected gain using
a weight of 1.

We now consider decomposition. The available
sources and the causal and temporal structures define a
number of possible decompositions of the initial knowl-
edge acquisition problem. There are many possibilities

Method Expected Exp. Gain
accuracy costs

Elicitation 0.2 1 -0.8
Induction 0.7 1 -0.3

Table 3: Estimated cost and accuracy of single step
acquisition

Component Exp. accuracy Exp. costs
C1 .8 .5
C2 .9
C3 .3 .9

Table 4: Expected costs and accuracies for decomposi-
tion 1

and here we describe some possibilities with estimates
of the expected accuracy and acquisition costs.

Decomposition 1 Quality Data are obtained by first
finding Sampling Instructions and then applying these
to sample fruits from the batch. The resulting quality
measures are used directly to find a Detailed Recipe.
This is summarised in the diagram in 3.

The expected costs and accuracies of acquiring the
components is given in table.

The 0uality Data are not suitable as input for the
Ripening Modol and therefore an additional step must
be inserted. Recipes are high dimensional: a small
recipe covers ca. 14 days, with 2-6 prescribed values
a day. Learning this in one step will require huge data
sets, with as an additional problem that identical batch
characterisations may lead to different recipes (for 
complex of reasons). However, all these recipes will
share their global specification. With w equal to 1, this
gives a total expected gain of (1 * 0.3) - 1.4) = -1.1.
This is no improvement over single step elicitation or
induction.

Decomposition 2 This decomposition does not con-
struct sampling instructions but takes measures from a
random sample. It uses this with other available data to
first construct a Specification of a recipe (global recipe)
that is then refined. This can be summarised in 4. The
expected costs and accuracies are in table .

This gives a total expected gain of-0.4 for decompo-
sition 2. This option is better than the previous one.

Decomposition 3 This is summarised in 5. The es-
timated costs of acquiring and accuracies of components
are in table 6.

Component Exp. accuracy Exp. costs
C1 .6
C2 .7 .9
C3 .9 .1

Table 5: Expected costs and accuracies decomposition
2
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Figure 2: Decomposition of the learning problem

Component Name By
C1 select products machine learning (Decision tree)
C3 specify recipe machine learning (Case-Based Reasoning)
C4 detail recipe elicitation
C5 evaluate recipe - (given)

C6 assess recipe effect common sense
C7 analyse recipe effect common sense
C8 adapt recipe common sense

Table 2: Acquisition methods and sources for components

batch
adm. data--......~q 1 sampl.

"~
---"-"-’~-~2 ~ data

ext’c°nds/~’/-’---~ instr

qualitY~3

Figure 3: Decomposition 1
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Figure 4: Decomposition 2
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Component Exp. accuracy Exp. costs
C1 .5
C2 .5 .5
C3 .6 .9
C4 .8 .1

Table 6: Expected costs and accuracies decomposition
3

batch

ext.conds~, l=, sampling ~-C2 r _quality
admin./vvl~ instructions data
data

Figure 6: Decomposition C1.1

This gives a total expected gain of-l.0. This suggests
that at this level the best decomposition is decomposi-
tion 2. The next step is to find the best way to acquire
C1, C2 and C3. This can be done by elicitation, induc-
tion or further decomposition and we apply the approach
recursively.

Acquiring component C1

First consider C1 in decomposition 2 above. This com-
ponent means that fruits are taken from a batch and
quality measurements are taken on the fruits. This does
not involve inference because it is done outside the sys-
tem by a human user, who enters the quality data into
the system. For this component no knowledge needs
to be acquired and therefore it involves no acquisition
costs. We estimate the accuracy as only 0.3, because un-
sophisticated sampling gives less relatively poor quality
data. This is also the gain. Using the sources from table
1 there are many decompositions for C1. Again, rather
than reviewing them all we give two examples, see 6 and
7.

The first of these uses the source Measure Quality
1 and the others use only part of this. Table 7 gives
the expected costs and accuracies of acquiring C1 in
the form of CI.1 and C1.2 respectively. CI.1 can be

batch

ext.conds~. 1=, sampling -~C2 - _ quality
admin.~ --1~ instructions data
data

Figure 7: Decomposition C1.2

Component Exp. accuracy Exp. costs
C1.1 .5
C1.2 .5 .5

Table 7: Expected costs and accuracies of decomposi-
tions of C1

realised by using a source that brings no costs. The
expected costs of acquiring C1.2 are about average as
is the expected accuracy.

This gives gain 0.5 for CI.1 and 0.0 for C1.2. CI.1 is
better than the original C1 so we replace C1 by CI.1.
There is no source for further decomposition. This
leaves only the choice between elicitation and induction.
Because a source is available, CI.1 is not more expen-
sive than C1.2 but it is more accurate.

Acquiring components C2 and C3

Component C2 of decomposition 2 should find a Speci-
cation from Quality Data, External Conditions, Admin-
istrative Data and Planned Destination. This corre-
sponds to the source Specify Recipe and can be acquired
from this source. Similarly, component C2, that should
find a Detailed Recipe from a Specification, can be ac-
quired from source Specify Recipe 1. The accuracies
and costs involved can be found in table 1. We shall
not pursue the example further here. The method finds
that further decomposition of C3 is beneficial and finally
constructs the model in figure 1. This is then used as the
plan for knowledge acquisition for the original problem.

Discussion
We presented a rational reconstruction of decisions to
use machine learning in a knowledge acquisition con-
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text. Applications of machine learning to knowledge
acquisition involve more than selecting and applying
an appropriate induction tool. In general knowledge
or data are not or only partially available and deci-
sions must be taken on how to acquire them. Knowl-
edge acquisition problem are often better solved using a
"divide-and-conquer" approach that reduces the overall
problem to subproblems that can be solved by machine
learning or direct elicitation. The process is guided by
estimations of costs of the acquisition process and of the
expected accuracy of the result.

Several current knowledge acquisition methods rely
heavily on the idea of decomposition (e.g. (Terpstra et
al. 1993), (Schreiber, Wielinga, & Breuker 1993), (Mar-
cus 1988)). However, these methods focus on "mod-
elling" languages and do rarely make the underlying
principles explicit that are needed for a rational appli-
cation of the methods. These methods also do not cover
the use of inductive techniques. Here we reconstruct the
rationale behind these methods and use this to extend
them to include the use of machine learning methods.
We presented criteria and a method for decomposing
knowledge acquisition problems into simpler subprob-
lems and illustrated this with a reconstruction of a real
world application. This method can be applied both
to inductive methods and to, for example, knowledge
elicitation or other manual acquisition methods.

The main limitation of the method is that the deci-
sions for decomposition and tool selection require prior
knowledge about possible decomposition and about ex-
pected benefits and costs. In knowledge acquisition
these are part of the "experience" of knowledge engi-
neers. In machine learning and in statistical data analy-
sis, rules of thumb and experience are used to estimate
the expected accuracy of the result of applying an in-
duction system. For example, for many statistical tech-
niques, rules of thumb relate the number of variables,
the complexity of the function to be induced and the
number of data to an estimate of accuracy. The main
alternative, if the is no prior knowledge, is currently a
"reactive" approach. The expected accuracy of apply-
ing an operator can be determined empirically by trying
it out. For inductive techniques this is done by cross val-
idation which produces an estimate of the accuracy and
in knowledge elicitation this is done by simply asking an
expert to provide the knowledge. If this fails it means
that decomposition is necessary. See (Brodley 1995) for
a method following this approach. A similar approach
in the context of knowledge acquisition is followed by
Graner and Sleeman (Graner 1993). Their model does
not include search through possible decompositions or
the use of estimated costs and accuracies.

The method outlined here can be extended to include
the expected gain of having the resulting system. This
would give a more comprehensive model including both
the costs of acquisition and the costs of having and using
the acquired knowledge. See (van Someren, Torres, 
Verdenius 1997) for a model of induction methods that
include costs of measurements and costs of errors, in

the context of learning decision trees. These two mod-
els can be integrated into a single model, see for example
(DesJardins 1995) for a similar model for robot explo-
ration.
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