
Specifying and Learning Inductive Learning Systems
Using Ontologies

Akihiro SUYA1VIA and Takahira YA~IAGUCHI
School of Information, Shizuoka University

3-5-1 Johoku Hamamatsu Shizuoka, 432-8011 JAPAN
{suyama, yamaguti}@cs.inf.shizuoka.ac.jp

Abstract

Here is presented a platform for automat-
ic composition of inductive learning system-
s using ontologies called CAMLET, based on
knowledge modeling and ontologies engineer-
ing technique. CAMLET constructs an induc-
tive learning system with better competence
to a given data set, using process and objec-
t ontologies. Afterwards, CAMLET instanti-
ates and refines a constructed system based
on the following refinement strategies: greedy
alteration, random generation and heuristic
alteration. Using the UCI repository of ML
databases and domain theories, experimental
results have shown us that CAMLET supports
a user in constructing a inductive learning sys-
tem with best competence.

Introduction
During the last ten years, knowledge-based sys-
tems (KBSs) have been developed using knowl-
edge modeling techniques. In particular, in order
to exploit reusable knowledge components, exten-
sive research effort has been placed on exploiting
problem solving methods (PSMs) at high levels 
abstraction, such as Generic Tasks (T.Bylander et
al., 1987), PROTEGE-II (Musen et a]., 1992) 

Common-KADS (J.Breuker et al., 1994). PSM-
s are high-level languages specify problem solv-
ing processes independent of implementation de-
tails. Now the research effort moves into ontolo-
gies engineering, together with PSMs. An ontol-
ogy is an explicit specification of a conceptualiza-

tion (Gruber, 1992). According to (Gertjan 
Heijst, 1995), there are several distinguished on-

tologies, such as generic ontolpgies for conceptual-
izations across many domainS, domain ontologies

to put constraints on the structure and contents of

domain knowledge in a particular-field, and PSMs
(some researchers call them task ontologies recent-
ly).

On the other hand, during the last twenty years,
many inductive learning systems, such as ID3
(J.R.,Qninlan, 1986), GA based classifier system-
s (L.B.Booker et al., 1989) and data mining sys-
tems, have been developed, exploiting many induc-
tive learning algorithms. However, the competence
with inductive learning systems changes, depend-
ing on the characteristics of given data sets. So
far we have no powerful inductive learning system-
s that always work well to any data set.

From the above background, it is time to decom-
pose inductive learning algorithms and organize in-

ductive learning methods (ILMs) for reconstruct-
ing inductive learning systems. The competence
of ILMs changes depending on such properties of

given data set as liner discrminability or non-liner
dicrminability and much or less noise. Given such
ILMs, we may construct a new inductive learning

system that works well to a given data set by re-
interconnecting ILMs. The issue is to learn (or
search) a inductive learning system good for a giv-
en data set. Thus this paper focuses on specifying
ILMs into an ontology for objects manipulated by
learning processes (called a process ontology here)
and also an object ontology for objects manipulat-
ed by learning processes. After constructing two
ontologies, we design a computer aided machine

(inductive) learning environment called CAMLET
and evaluates the competence of CAMLET using
several case studies from UCI Machine Learning
Repository.
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Ontologies for Inductive
Learning

Before specifying ontologies for inductive learn-
ing processes, we have analyzed popular induc-
tive learning systems, such as ID3 (J.R.,Quiulan,
1986), GA based classifier systems (L.B.Booker 
al., 1989) and data mining systems. A process on-

tology is for ILMs that compose inductive learning
systems. An object ontology is for objects manipu-
lated by ILMs from the process ontology. In order
to specify process and object ontologies, we need
to specify conceptual hierarchies and conceptual
schemes (definitions) on two ontologies.

Process Ontology

In order to specify the conceptual hierarchy of a

process ontology, it is important to identify how to
branch down processes. Because the upper part is
related with general processes and the lower part
with specific processes, it is necessary to set up
different ways to branch the hierarchy down, de-
pending on the levels of hierarchy.

In specifying the upper part of the hierarchy, we
have analyzed popular inductive learning systems
and then identified the following five popular and
abstract components : "generating training and
test data sets", "generating a classifier set", "e-
~aluating data and classifier sets", "modifying a
training data set" and "modifying a classifier set.",
with the top-level control structure as shown in
Figure 1. Although we can place finer components
on the upper part, they seem to make up many

redundant composition of inductive learning sys-
tems. Thus these five processes have been placed

on upper part in the conceptual hierarchy of the
process ontology, as shown in Figure 2.
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Figure 1: Top-level Control Structure

In specifying the lower part of the hierarchy, the

above abstract component has been divided down
using characteristics specific to each. For example
"generating a classifier set" has been divided into
"(generating a classifier set) dependent on train-
ing sets" and "(generating a classifier set) inde-
pendent of training sets" from the point of the
dependency on training sets. Thus we have con-
structed the conceptual hierarchy of the process
ontology, as shown in Figure 2. Furthermore, the
division puts restrictions on control structure. For
example, when "generating a classifier set" comes
up after "modifying a training data set", "gener-
ating a classifier set depend on a training set" is
valid, but "generating a classifier set. independence
from a training set" is invalid. In Figure 2, leaf
nodes correspond to the library of executable pro-
gram codes that have been manually developed by
C language.

On the other hand, in order to specify the con-
ceptual scheme of the process ontology, we have i-

dentified the learning process scheme including the
following roles: "input", "output" and "reference"

from the point of objects manipulated by the pro-
cess, and then "pre-process" just before the defined
process and "post-process" just after the defined
process from the point of processes relevant to the
defined process. In order to keep valid inductive
learning systems constructed by CAMLET, CAM-
LET needs much more relationships among process
ontology components but it has not yet been done.

Object Ontology
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Figure 3: Hierarchy of Object Ontology

In order to specify the conceptual hierarchy of
the object ontology, we use the way to branch down
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Figure 2: Hierarchy of Process Ontology

the data structures manipulated by learning pro-

cesses, such as sets and strings, as shown in Fig-
ure 3. Because objects contribute less to construct
inductive learning systems than processes, object
scheme has less information than process. So it has
just one role "process-list" that is a list of processes
manipulating the object.

Basic Design of CAMLET
Figure 4 shows the basic activities for knowledge
systems construction using PSMs (Gertjan van
Heijst, 1995). In this section, we apply the ba-
sic activities to constructing inductive learning sys-

tems using process and object ontologies.

construction [

I instantiati0n

refinement] I1 "
Figure 4: Basic Activities

compilationI

test ]

The construction activity constructs an initial

specification for an inductive learning system.
CAMLET selects a top-level control structure for
an inductive learning system by selecting any path
from "start" to "end" in Figure 1. Afterwards
CAMLET retrieves leaf-level processes subsumed
in the selected top-level processes, checking the
interconnection from the roles of pre-process and
post-process from the selected leaf-level process-
es. Thus CAMLET constructs an initial specifica-
tion for an inductive learning system, described by
leaf-level processes in process ontology. In order
to reconstruct the specification later, the selected
leaf-level processes have been pushed down into a
process stack.

The instantiation activity fills in input and out-
put roles of leaf-level processes from the initial
specification, using data types from a given data

set. The values of other roles, such as reference,
pre-process and post-process, have not been in-
stantiated but come directly from process schemes.
Thus an instantiated specification comes up. Ad-
ditionally, the leaf-level processes have been filled
in the process-llst roles of the objects identified by

the data types.

The compilation activity transforms the instaaa-

tinted specification into executable codes using li-
brary for ILMs. When the process is connected
to another process at implementation details, the
specification for I/O data types must be unified.
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To do so, this activity has such a data conversion
facility that converts a decision tree into classifier.

The test activity tests if the executable codes
for the instantiated specification goes well or not,
checking the requirement (accuracy) from the us-
er. The evaluation will come up to do a refinement
activity efficiently, which is explained later. This

activity evaluates how are good a top-level control
structure in Figure 1 and four sub-control struc-
tures in Figure 5.
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Figure 5: Sub-Control Structures

When the executable codes do not go well, the
refinement activity comes up in order to refine or
reconstruct the initial specification and get a re-

fined specification back to the instantiation activ-
ity. The refinement activity is a kind of search
task for finding out the system (or control struc-
ture) satisfied with a goal of accuracy. Although
several search algorithms have been proposed, ge-
netic programming (GP) is popular for composing
programs automatically. GP goes well for global

search but no so well for local search. So, in order
to solve this problem, here is presented the hy-
brid search that combines GP with a local search
with several heuristics based on empirical analy-
sis. This activity has been done with the following
three strategies: greedy alteration, random gener-

ation and heuristic alteration.
Greedy alteration makes a new system from t-

wo parent systems. This operation works like
G-crossover in GP. Because evaluation values are
added to sub-control structures at test activity,
CAMLET can identify just sub-control structures
with better evaluation values from parent systems

and then put them into one new child system, as

o x
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Figure 6: Greedy Alteration

shown in Figure 6.

Random generation makes a system with a new
top-level control structure in the same way as con-

struction activity. This activity is done, keeping
various control structures in population.

Heuristic alteration change sub-control struc-
tures using several heuristics, which replace one
process in a sub-control structure with another

process from process ontology based on evalua-
tion results. Heuristic alteration is a kind of local
search.

Figure 7 summarizes the above-mentioned activ-
ities. A user gives a data set and a goal of accuracy
to CAMLET. CAMLET constructs the specifica-
tion for art inductive learning system, using process
and object ontologies. When the specification does
not go well, it is refined into another one with bet-
ter performance by greedy alteration, random gen-
eration and heuristic alteration. To be more opera-
tional, in the case of a system’s performance being
higher than 8(= 0.7* goal accuracy), the heuristic
alteration comes up. If not so, in the case of that
system population size is equal or larger than some
threshold (N > r = 4), CAMLET executes greedy
alteration, otherwise, executes random generation.
All the system refined by three strategies get into
a system population. As a result, CAMLET may
(or may not) generate an inductive learning system
satisfied with the accuracy from the user. When it
goes well, the inductive learning system can learn
a set of rules that work well to the given data set.

Case Studies and Discussions
Based on the basic design, we have implemented
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Table 1: Corn )arison of CAMLET and Po mlar Inductive Learning Systems

Data C4.5 ID3 CS B_C4.5 CAMLET

e= (%) err (%) err (%) err (%) err (%) go a (%)
annealing 9.00 18.00 21.00 11.00 9.00 10.00
audiology 26.92 15.38 84.62 11.54 11.54 12.00
breast-w 7.18 7.46 20.44 7.46 5.36 8.00
credit-s 18.48 20.38 24.18 16.85 13.53 15.00
glass 32.69 41.35 80.77 33.65 32.69 33.00
hepatitis 24.29 27.14 18.57 20.00 11.72 15.00
iris 5.00 5.00 12.50 7.50 2.50 5.00
labor 17.65 17.65 23.53 12.76 5.88 12.00
soybean 16.76 26.33 74.47 15.16 15.16 16.00
vote 5.09 6.94 14.35 6.94 2.59 5.00
water 60.28 38.65 57.80 41.48 38.65 39.00
waveform 45.84 31.45 34.01 38.76 31.45 32.00

wine 8.33 11.90 28.57 8.33 5.47 9.00
ZOO 8.89 15.56 22.22 13.33 4.44 5.00

average 20.46 20.23 36.93 17.48 13.57

.<::E:::,
goal of accuracy

data set

’-( instatiaton ~ compe 

I~nt

a machine learning system (rule base)

Figure 7: An Overview of CAMLET

CAMLET

CAMLET on UNIX platforms with C language, in-
cluding the implementations of fifteen components
in the process ontology with C language. We did
case studies of constructing inductive learning sys-
tems for the fourteen different data sets from the
UCI Machine Learning Repository. Five complete
5-fold cross-validations were carried out with each
data set.

The results of these trials appear in Table 1.
For each data set, the second to fifth column show
mean error rates over the five cross-validations of
popular inductive learning systems, such as C4.5
(J.R.,Quinlan, 1992), 1I)3, Classifier Systems 

Bagged C4.5 (Leo Breiman, 1996). The sixth col-
umn contains similar results for inductive learning
systems constructed by CAMLET. The final col-
umn shows error rates given as goal accuracy. Ta-

ble 1 says CAMLET constructs inductive learning
systems with best competence.

The systems constructed by CAMLET are spec-
ified in Table 2. Because the competence of the
systems constructed by CAMLET are over those
of popular inductive learning systems, it turns out
for the grain size of process ontology to be proper
for the task of composition of inductive learning
systems. Table 2 shows us that CAMLET also in-
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Table 2: Systems Constructed by CAMLET

Data System

1 2 3 4 5

annealing C4.5 C4.5 C4.5 c4.5(w)1 C4.5
audiology B_C4.5 B_C4.5 B_C4.5 B_C4.5 B_C4.5
breast-w AQ15 C4.5 New(l)1 AQ15 VS1

credit-s ID3 C4.5 New(2) New(3) ID3
glass C4.5 C4.5 C4.5 C4.5 C4.5
hepatitis C4.5 New(4) C4.5 New(3) ID3
iris c4.5(w) C4.5(w) c4.5(w) c4.5(w) ID3
labor ID3 New(5) New(5) New(5) C4.5
soybean B_C4.5 c4.5(w) B_C4.5 B_C4.5 B_C4.5
vote New(4) B_VS New(4) C4.5 VS
water B_ID3 B_C4.5 ID3 ID3 ID3
waveform CS ID3 ID3 ID3 ID3
wine B_ID3 C4.5 c4.5(w) ID3 ID3
zoo New(5) New(5) New(5) C4.5 New(5)

vents new systems different from popular systems.
Figure 8 specifies a new system constructed by

CAMLET. This system consists of bootstrap, s-
tar algorithm, windowling, and apportionment of

credit.

start
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I star I
[ apportionment of credit [

[ T-E modify [

[ apportionment of credit [

Figure 8:

(5) 

(P1.1-.4,1 

(P2.L4.2)

(P3.L3.2)

(Pa.L4.2)

(P2.L4.2)

(P3.L3.2)

Specification of A New System - New

Table 3 shows the comparison of CAMLET and
Neural Network from the point of mean error rates
over five fold cross-validations. The competence of
CAMLET is better than that of Neural Network on

1C4.5(w):C4.5 with windowling strategy, VS: Version 
pace (Michalski, 1983), New(x): new systems different 
popular systems

the average, except the following three data sets:
annealing, breast-w and waveform.

Although the processes from Neural Network
have been implemented in the process ontology, the
case studies do not have them for constructing in-
ductive learning systems. When a neural network
is converted into another data type, such as clas-
sifters, much information is missing. So we have
just low performance of inductive learning system-
s constructed by CAMLET, using the processes
from Neural Network. Maybe using the processes

from Neural Network, we should take into account
another meta-learning process without decompos-
ing the whole control structure of Neural Network.

Table 3: Comparison of CAMLET and Neural Net-
work

Data

annealing
audiology
breast-w
credit-s
glass
hepatitis
iris

[ NN [ cAMLET I Data I NN I CAMLET I

~labor ~

soybean
vote
water
waveform
wine

ZOO

average 22.57 13.57
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Related Work
Although basic activities based on PSMs have usu-
ally been done by hands in constructing knowledge
systems, CAMLET tries to automate the basic ac-
tivities at the level of specifications (not yet at the

level of codes).
Besides PSMs, there are several ontologies spe-

cific to processes, such as Gruninger’s enterprise
ontologies specific to business processes and PIF
(Lee and Yost et al, 1994) and software process
ontologies. Although our learning process ontolo-
gy has some similarities to PSMs and other pro-
cess ontologies about how to decompose processes,
it decomposes processes, using more information
specific in the field of task-domain (learning in our

case).
From the field of inductive learning, CAMLET

has some similarities to MSL (Raymond J.Mooney,
1994). MSL tries to put two or more machine
learning systems together into an unified machine
learning system with better competence. MSL
does not decompose machine learning systems (the
adaptation of machine ]earning systems sometimes
comes up for interconnection). So the grain size of
the components in CAMLET
the grain size of ones in MSL.
has no competence to invent a
ing system like CAMLET.

is much finer than

Furthermore, MSL
new machine learn-

MLC++ (Kohavi.R, 1996) is a platform for con-
structing inductive learning systems. However,
MLC++ has no facility for automatic composition

of inductive learning systems like CAMLET.

Celine et al. also (Celine and Patrick, 1994) de-
compose learning systems and construct decompo-
sition of bias similar to process ontology presented
here. However, the decomposition of bias covers
just limited inductive learning systems and auto-

matic composition facility has not yet been done.

Conclusions and Future Work
This work comes from inter-discipline between ma-
chine learning and ontologies engineering. We put
recent efforts on specifications and codes for on-
tologies and less on efficient search mechanisms to
generate inductive learning systems with best per-
formance. We need to make the refinement activity
more intelligent, and efficient with failure analysis

and parallel processing. The refinement activity
should move into an invention activity to invent

new learning processes and new objects manipu-
lated by learning processes.
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