
Toward a Declarative Language for Negotiating Executable
Contracts

Daniel M. Reeves, Benjamin N. Grosof, Michael P. Wellman, and Hoi Y. Chan

University of Michigan Artificial Intelligence Laboratory
1101 Beal Avenue, Ann Arbor, MI 48109-2110 USA

{wellman, dreeves~@umich.edu
http://ai.eecs.umich.edu/people/{wellman, dreeves}/

IBM T.J. Watson Research Center
30 Saw Mill River Road, room H2-B48

Hawthorne, NY 10532 USA
~grosof, hychan}@us.ibm.com

http://www.research.ibm.com/people/g/grosof/

Abstract

We give an approach to automating the ne-
gotiation of business contracts. Our goal
is to develop a language for both

partially-specified contracts that are in the
midst of being negotiated, including via au-
tomated auctions. Our starting point for
this language is Courteous Logic Programs
(CLP’s), a form of logic-based knowledge rep-
resentation (KR) that is semantically declar-
ative, intuitively natural, computationally
tractable, and practically executable. A CLP
is suitable in particular to represent a fully-
specified executable contract. The basic CLP
KR also facilitates modification during nego-
tiation, because it includes prioritized con-
fllct handling features that facilitate modifi-
cation. Beyond the basic CLP KR, we have
developed an initial ontology, and an asso-
ciated style of representation, to specify ad-
ditional aspects of a partial contract and of
a negotiation process. The initial ontology
specifies the set of negotiables and the struc-
ture of a contract in terms of its component
goods/services and attributes. Specifying the
negotiable aspects of a good or service in-
cludes specifying its attributes, their possi-
ble values, and dependencies/constraints on
those attributes. Building upon the repre-
sentation of these negotiable aspects, we are
in current work developing methods to struc-
ture negotiations, especially to select and con-
figure auction mechanisms to carry out the
negotiation. This work brings together two
strands of our previous work on business pro-
cess automation in electronic commerce: rep-
resenting business rules shared between enter-
prises, and conflgurable auction mechanisms.

Introduction

One form of commerce that could benefit substan-
tially from automation is contracting, where agents
form binding, agreeable terms, and then execute
these terms. The overall contracting process com-
prises several stages, including broadly:

1. Discovery. Agents find potential contracting
partners.

2. Negotiation. Contract terms are determined
through a communication process.

3. Ezecution. Transactions and other contract pro-
visions are executed.

In this work we are concerned primarily with
negotiation, and specifically with the process by
which an automated negotiation mechanism can
be configured to support a particular contracting
episode. Our goal is a shared language with which
agents can define the scope and content of a ne-
gotiation, and reach a common understanding of
the negotiation rules and the contract implications
of negotiation actions. Note that we make a sharp
distinction between the definition of the negotiation
mechanism, and the actual negotiation strategies to
be employed by participating agents. Our concern
here is with the former, though of course in de-
signing a mechanism one must consider the private
evaluation and decision making performed by each
of the negotiating parties.

Overview of Problem and Approach

The central question in configuring a contract ne-
gotiation is "What is to be negotiated?" In any
contracting context, some features of the potential
contract must be regarded as fixed, with others to
be determined through the contracting process. At
one extreme, the contract is fully specified, except
for a single issue, such as price. In that case, the

39

From: AAAI Technical Report WS-99-01. Compilation copyright © 1999, AAAI (www.aaai.org). All rights reserved.

negotiation can be implemented using simple auc-
tion mechanisms of the sort one sees for specified
goods on the Internet. The other extreme, where
nothing is fixed, is too ill-structured to consider au-
tomating to a useful degree in the current state of
the art.

Most contracting contexts lie somewhere in be-
tween, where an identifiable set of issues are to be
determined through negotiation. Naturally, there
is a tradeoff between flexibility in considering is-
sues negotiable and complexity of the negotiation
process. But regardless of how this tradeoff is re-
solved, we require a means to specify these issues,
so that we can automatically configure the nego-
tiation mechanisms that will resolve them. That
is, we require a contracting language--a medium
for expressing the contract terms resulting from a
negotiation.

Contracting Language

In developing a shared contracting language, we
are concerned with all three stages of contracting:
discovery, negotiation, and execution. This mul-
tiplicity of purpose is one argument for adopting
a declarative approach, with a relatively expressive
knowledge representation (KR). "Declarative" here
means that the semantics say which conclusions are
entailed by a given set of premises, without depen-
dence on procedural or control aspects of inference
algorithms. In addition to flexibility, such an ap-
proach promotes standardization and human un-
derstandability.

Traditionally, of course, contracts are specified
in legally enforceable natural language ("legalese"),
as in a typical mortgage agreement. This has great
expressive power--but often, correspondingly great
ambiguity, and is thus very difficult to automate,l,

and is thus very difficult to automate. At the other
extreme are automated languages for restricted do-
mains; in these, most of the meaning is implicit in
the automated representation. This is the current
state of Electronic Data Interchange (EDI). We are
in the sparsely occupied middle ground, aiming for
considerable expressive power but also considerable
automatability.

Our point of departure for our KR is pure logic
programs (in the knowledge-representation-theory
sense, not Prolog). (Baral & Gelfond (Baral & Gel-
fond 1994) provide a helpful review.) Logic pro-
grams are not only declarative and relatively pow-
erful expressively, but also practical, relatively com-
putationally efficient, and widely deployed.

We embody the representation concretely as
XML messages. This choice enhances human read-
ability (via standard XML rendering/UI tools) and

IEven if a natural language contract is completely
unambiguous, it would require a vast amount of back-
ground and domain knowledge to automate.

supports inclusion and generation of textual infor-
mation. It also facilitates integration with EDI
components. The XML approach further facilitates
developing/maintaining parsers (via standard XML
parsing tools), integrating with WWW-world soft-
ware engineering, and the enriching capability to
(hyper-)link to ontologies and other extra informa-
tion. See (Grosof & Labrou 1999) for details about
the XML representation, its advantages, and its re-
lationship to overall inter-agent communication.

Our KR builds on our prior work represent-
ing business rules in Courteous Logic Programs
(CLP’s) (Grosof 1997a)(Grosof 199Zb)(Grosof
1999a) (Grosof 1999b) (see also Section "Courte-
ous Logic Programs as KR"). To express executable
contracts, these rules must specify the goods and
services to be provided, along with applicable terms
and conditions. Such terms include customer ser-
vice agreements, delivery schedules, conditions for
returns, usage restrictions, and other issues relevant
to the good or service provided.

As part of our approach, we extend this KR with
features specific to negotiation. Foremost among
these is the ability to specify partial agreements,
with associated negotiable parameters. A partial
agreement can be viewed as a contract template.
Some of its parameters may be bound to particular
values while others may be left open.

Negotiable Parameters

Once we have this contracting language, our next
step will be to use it to establish the automated ne-
gotiation process. As noted above, a key element of
this is to identify the negotiable parameters. The
contract template effectively defines these parame-
ters by specifying what the contract will be for any
instantiation of parameter values.

The problem then, is to enable the contract lan-
guage to allow descriptions of contract templates.
In addition, we require auxiliary specification of
possible values for parameters, and dependencies
and constraints among them. Given this specifica-
tion of what can be negotiated, we require a policy
to determine what is actually to be included in the
given negotiation episode (rather than assigned
default value, or left open for subsequent resolu-
tion).

This answers the question of what is to be nego-
tiated; the remaining question is hoe#. In general,
there are many ways to structure a negotiation pro-
cess to resolve multiple parameters. We focus on
processes mediated by auctions. As we describe be-
low, the problem then becomes one of configuring
appropriate auctions to manage the negotiation.

Auction-Based Negotiation

Mechanisms for determining price and other terms
of an exchange are called auctiona. Although the

40

most familiar auction types resolve only price, it is
possible to define multidimensional generalizations
and variants that resolve multiple issues at once.
This can range from the simple approach of run-
ning independent one-dimensional auctions for all
of the parameters of interest, to more complicated
approaches that directly manage higher-order in-
teractions among the parameters.

Auctions are rapidly proliferating on the
Internet. 2 Although typical online auctions sup-
port simple negotiation services, researchers have
begun to deploy mechanisms with advanced fea-
tures. For example, our own Michigan Inter-
net AuctionBot supports a high degree of con-

figurability (Wurman, Wellman, & Walsh 1998)
(http://auction.eecs.umich.edu/), and IBM’s auc-
tion system supports one-sided sales auctions in-
tegrated with other commerce facilities (Kumar
Feldman 1998).

Although multidimensional mechanisms are
more complicated, and not yet widely available,
we expect that they will eventually provide an im-
portant medium for automated negotiation. For
example, combinatorial auctions allow bidders to
express offers for combinations of goods, and de-
termines an allocation maximizing overall revenue.
We are aware of one prototype system currently
supporting combinatorial auctions over the Inter-
net (Sandholm to appear). Multiattribute auctions,
typically employed in procurement, allow specifica-
tion of offers referring to multiple attributes of a
single good (Branco 1997).

Whether a multiattribute auction, a combinato-
rial auction, or an array of one- or zero-dimensional
auctions is appropriate depends on several factors.
Although a full discussion is beyond the scope of
this paper, we observe that these factors can bear
on any of:

¯ The legality of auction configurations. For exam-
ple, if some attributes are inseparable (i.e., both
must be specified in the contract), then it makes
no sense to treat them as separate goods in a
combinatorial auction.

¯ The expected performance of auction configura-
tions. For example, if parameters represent dis-
tinct and separable contract options, then they
could be handled either by separate or combined
auctions. Whether they should be combined de-
pends on how complementary they are as per-
ceived by the negotiating agents.

¯ The complezity of auction configurations, for
both the mechanism infrastructure and partici-
pating agents. Dimensionality plays a large role
in complexity tradeoffs.

aLooking at Yahoo alone yields 104 auction services
listed, and 120,000 active auctions on their own service
(http://auctions.yahoo.com/).

Our Approach

Courteous Logic Programs as KR
Next, we discuss our approach to the fundamental
KR used for describing contract agreements.

Rules as an overall representational approach
capture well many aspects of what one would like to
describe in automated contracts. Rules are useful
generally to represent much of the substantive con-
tents of negotiation messages, especially to describe
products and services that are offered or requested.
This includes, for example: offers, bids, and propos-
als; requests for bids or proposals; requests for quo-
tations (RFQs); and surrounding agreements such
as contractual terms and conditions, and customer
service agreements. Rules are also useful to rep-
resent relevant aspects of business processes, e.g.,
how to place an order, return an item, or cancel a
delivery.

The usefulness of rules in a declarative KR for
representing executable specifications of contract
agreements is based largely on their following ad-
vantages relative to other software specification
approaches and programming languages. First,
rules are at a relatively high level of abstraction,
closer to human understandability, especially by
business domain experts who are typically non-
programmers. Second, rules are relatively easy to
modify dynamically and by such non-programmers.

Our point of departure is a particular form
of rules: predieate-acyclie pure-belief logic pro-
grams (LP’s). Here, we mean "logic programs"
the sense of pure-belief knowledge representation,
rather than in the sense of the Prolog program-
ming language. "Pure-belief" here means with-
out procedural attachments. "Predicate-acyclic"
means without cyclic/recursive paths of depen-
dence among the rules’ predicates,s

This KR has a deep semantics that is useful, well-
understood theoretically, and highly declarative.
This semantics reflects a consensus in the rules rep-
resentation community; it is widely shared among
many commercially important rule-based systems
and relational database systems. This core is also
relatively computationally efficient. 4

Logic programs are relatively simple and are not
overkill representationally. Logic programs are also

SA logic program £’s predicate depends,ell graph
PDGz is defined aa follows. The vertices of the graph
are the predicates that appear in ~. (pi,p$) is a (di-
rected) edge in PDGe iff there is a rule r in £ with pi
in its head (i.e., consequent) and pj in its body (i.e.,
antecedent). "Predlcate-acyclic" means that there are
no cycles in the predicate dependency graph.

4The general case of LP’s, with unrestricted recur-
sion/cyclicity interacting with negation-as-failure, has
problems semantically, is more complex computation-
ally and, perhaps even more importantly, is more diffi-
cult in terms of software engineering. It requires more
complicated algorithms and is not widely deployed.

41

relatively fast computationally. Under commonly
met restrictions (e.g., no logical functions of non-
zero arity, a bounded number of logical variables
per rule), inferencing -- i.e., rule-set execution --
in LP’s can be computed in worst-case polynomial-
time.s

The KR we are using to represent contracts is
Courteous Logic Programs. Courteous LP’s ex-
pressively generalize the ordinary LP’s (described
above) by adding the capability to conveniently
express prioritized conflict handling, i.e., where
some rules are subject to override by higher-priority
conflicting rules. For example, some rules may
be overridden by other rules that are special-case
exceptions, more-recent updates, or from higher-
authority sources. Courteous LP’s facilitate speci-
fying sets of rules by merging and updating and ac-
cumulation, in a style closer (than ordinary LP’s)
to natural language descriptions.

Courteous LP’s include priorities, between rules,
that are partially-ordered. Classical negation is
enforced: p and classical-negation-of-p are never
both concluded, for any belief expression p. Pri-
orities are represented via a fact comparing rule la-
bels: o~errides(rulel, rule2) means that rule1 has
higher priority than rule2. If rule1 and rule2 con-
flict, then rule1 will win the conflict.

The version of Courteous LP’s we are using,
partially described in (Grosof 1999b) and (Grosof
1999a), is further expressively generalized as com-
pared to the previous version in (Grosof 1997c) and
(Grosof 1997b).

Example: Modification Lead-Time
The English description of a business-to-consumer
electronic commerce preferred-customer draft con-
tract communicated from a airline (seller) to a trav-
eler (buyer) might include a contract clause that
comprises the following two business rules. De-
scribed in English, the first rule is:

Buyer can modify the departure time up
until 14 days before scheduled
departure, if
- the buyer is a preferred customer.

The second rule is:

Buyer can modify the departure time of
an item up until 2 days before
scheduled departure, if
- the buyer is a preferred customer, and
- the modification is to postpone the

departure, and
- the current flight is full.

This second rule is a special-case rule and overrides
the more general-case rule. (The rationale is that

nunlike classical logic, e.g., first-order logic, which
is NP-complete under these restrictions, and semi-
decidable without these restrictions

when the current flight is full the airline has de-
mand for extra seats.)

These rules are straightforwardly represented in
Courteous LP’s, e.g., as:

<leadTimeRule I>
modif icat ionNot ice (?Buyer, ?Seller,

?Flight, 14days) <-
preferredCustomerOf(?Buyer, ?Seller).

<leadTimeRule2>
modif icat ionNot ice (?Buyer, ?Seller,

?Flight, 2days) <-
preferredCustomerOf(?Buyer, ?Seller) AND
modificationType(?Flight, postpone) AND
flightIsFull (?Flight).

overrides (leadTimeRule2, leadTimeRule I)

Here the arrow ("<-") indicates "if" and the "?"
prefix indicates a logical variable.

Courteous LP’s have several virtues semantically
and computationally. A Courteous LP is guaran-
teed to have a consistent, as well as unique, set
of conclusions. Priorities and merging behave in
an intuitively natural fashion. Execution (inferenc-
ing) of courteous LP’s is fast: only relatively low
computational overhead is imposed by the conflict
handling,e

Our work on representing contracts via cour-
teous LP’s builds on our prior work on rep-
resenting business rules via courteous LP’s (see
http://www.research.ibm.com/people/g/grosof).
We have a running prototype implementation
(Grosof 1999b) of Courteous LP’s as a Java li-
brary, including XML formatting, rule specifi-
cation, and rule inferencing/execution. An initial
version of the prototype will be released as a free
Web alpha in the spring of 1999.

Ontology for Specifying Partial
Contracts
At an abstract level, what distinguishes a contract
template from a fully-specified contract is that the
contract template contains a set of variables, and
the goal of the negotiation is to find an assignment
to those variables. Once the variables are bound to
specific values, there is a fully-specified contract.
We call these variables the negotiable parameters
(or negotiable attributes). To support performing
this negotiation, the language of the contract must
express the appropriate value ranges for, and con-
straints upon, the negotiable parameters.

We have talked about CLP as a basic KR suitable
for specifying (via rules) an executable agreement.

SFor a previous version of courteous LP’s, (Grosof
1999a) gives the computational complexity analysis.
The computational complexity of the further expres-
sively generalized version is similar.

42

Beyond the basic KR we provide negotiation-
specific ontology for expressing partially specified
contracts and guiding and constraining the negoti-
ation process. Below we give an initial set of such
negotiation-level predicates,z

The first predicates we introduce allow bundling
of attributes. The predicate attribute (?Parent,
?Child) allows us to create a tree of attribute bun-
dles. If specified with the attribute predicate, the
bundle of attributes is considered non-separable,
i.e., it is not possible for a buyer to get some of
the attributes from one seller and some from an-
other. When it is possible to separate sets of at-
tributes in this ways, we use the predicate com-
ponent (?Parent, ?Child) which again is used
impose an arbitrary tree structure of components
and subcomponents on the negotiable attributes.

The attribute and component predicates are
used to impose a hierarchy on negotiable param-
eters in the contract. Only the leaves of this
tree structure may actually be negotiated, and this
is indicated explicitly in our ontology with the
predicate negotiable (?Name0fNegot iablePredi-
care). This predicate indicates that the named
predicate9 represents a negotiable parameter of the
contract.

Some parameters may be %egotiable" only in
the sense that one party determines them and they
are not open to counter-offers. We refer to these
as internal parameters. Since these parameters
are determined in the negotiation phase just like
every other, we do not want to treat them spe-
cially in our ontology for representing negotiable
aspects of the contract. Instead we introduce a
special predicate, negot iat ionType (?Pred i care-
Name, ?Type0fNegotiation), where the second
argument can take values such as sellerChooses
or buyerChooses. It is straightforward in CLP to
specify a default, %pen for discussion."

The power of the negotiation-level predicates
above is that they can be fully integrated into the
existing framework of CLP. For example, we can
specify that an attribute of the contract is only ne-
gotiable under certain conditions, or that the ne-
gotiation type depends on several factors including
results of other negotiation. Results of other nego-
tiations are easily reasoned about because they are
simply facts in the rule set, such as buyer(alice)
or price(17).

ZThey happen to all be predicates currently. In more
extended versions of this approach we might find it use-
ful to add logical functions as well.

SAlthough it is still up to the negotiation mechanism
to determine whether or not components are actually
supplied by different sellers.

SThis is currently restricted to unary predicates of
the form attribute(?Value) but we may lift this re-
striction in the future to allow attributes that can be
assigned tuples.

Using the negotiation-level predicates presented,
we now show the overall process for transform-
ing a partial contract (or contract template) into
a fully executable contract. A contract template
consists of rules whose execution will fulfill the
agreement (see Section "Courteous Logic Programs
as KR"), a set of negotiable attributes (predicates
whose names appear as arguments of negotiable),
and rules about these attributes (those involving
the negotiation-level predicates above as well as
rules which have negotiable predicates as the head).
First, the list of negotiable attributes is fed to the
negotiation mechanism (considered a black box at
this stage). Also feeding to the negotiation mecha-
nism is the tree structure implied by the attribute
and component rules. Additionally, the negotiation
mechanism needs the results of inferencing from the
rules about negotiable attributes (possibly it will
need the rules themselves as well, i.e., the premises
of that inferencing). This specifies constraints and
dependencies among attributes.

When the negotiation mechanism completes, its
output will be an assignment to all of the nego-
tiable attributes. These will be represented as facts
(recall that a negotiable attribute is simply a pred-
icate whose name correspond to the attribute itself
and whose argument is the value assigned to that
attribute). When these facts are added to the orig-
inal rule set (the partial contract) the contract will
be fully executable.I°

Examples

Here we present some example negotiation rules in
the domain of travel packages to demonstrate the
representation we are using. Note that these ex-
amples are meant to be illustrative of the expres-
siveness and flexibility of our representation, not as
examples of how actual travel contracts should be
specified.

Consider a contract for the purchase of a flight
and hotel. The first thing we would like the partial
contract to express is that the flight and the hotel
are separable components--a single buyer will not
nece88ar~/ly get both from the same seller. Each
component has some (non-separable) attributes,
yielding the following simple hierarchy:

component (contract, flight).
attribute(flight, airline).
attribute(flight, stopovers).
attribute (flight, seatClass).

component (contract, hot el).
attribute(hotel, quality).

The flight has various attributes, such as which
airline (e.g., Northwest, Transworld, or American

*°These facts must be added at high priority (see)
to ensure that they override any default values or
constraints.

43

Airlines) and the number of stop-overs. An exe-
cutable CLP contract would express such informa-
tion with rules like the following:
flight(?Airline, ?FromCity, ?ToCity,

?Stopovers) <-
airline (?Airline)
AND stopovers (?Stopovers)
AND possibleRoute(?Airline,

?FromCity, ?ToCity).

To specify that certain attributes are negotiable,
we use the predicate negotiable which takes the
name11 of a predicate from the contract as an ar-
gument:

negotiable (’ airline).
negotiable (’ stopovers).

If hotel cost were a parameter to the contract de-
termined solely by the seller, this could be specified
with the negotiationType predicate:

negotiable (’ hot elCost).
negot iat ionType (’ hotelCost, sellerChooses).

By definition, every subcomponent in the con-
tract must have a price attribute 1~, but this need
not always be a negotiable parameter in the con-
tract. For example, the total price of the travel
package may be determined based on the negoti-
ated values of flight price (adjusted by choice of
seat class), hotel price, and discount:

flightPrice(?X) <-
flightBasePrice(?BP) AND
seatClassPrice(?SCP) AND
discount (?D) AND
?X == (1 - ?D) * (?BP + ?SCP).

pric.e(?X) <- flightPrice(?FP) AND
hotelCost (?HC) AND
quantity(Q) AND X == {~ * (?FP + ?HC).

Adding Negotiation Constructs to
Existing Contracts

One important aspect of a contract template that
does not at first appear to lend itself to our method
of breaking down the template into a set of at-
tributes with possible values, is the negotiation of
what clauses to adopt or which criteria in the body
of a given rule should actually be adopted. To cap-
ture this form of negotiation within our framework,
we use boolean parameters to specify the adoption
of rules and conjuncts/disjuncts as follows:

For a rule:

nWe specify the name of the predicate rather
than the predicate itself to avoid second-order
logic. The quoting syntax used here is similar to
Knowledge Interchange Format (KIF) quoting (see
http://www.cs.umbc.edu/KIF).

12Price and quantity will remain distinguished by the
mechanism since they are used in the scoring algorithm
for multiattribute auctions (Branco 1997).

ruleHead <- ruleBody
AND isRuleIncluded (yes).

negotiable (’ isRuleIncluded).

Note that when the negotiation mechanism com-
pletes it will add to the above rules exactly one of
the following:

i sRule Included (yes).
isRuleIncluded (no).

For a conjunct:

... (conj OR isConjIncluded(no))
negotiable (’ isConj Included).

For a disjunct:

... (disj AND isDisjlncluded(yes))
negotiable (’ isDisj Included).

For example, consider the rule from Section
"Courteous Logic Programs as KR" that the buyer
can (conditionally) modify its order up until 2 days
before scheduled delivery:

odificationNotice(?Buyer, ?Seller,
?Flight, 2days) <-

preferredCustomer0f(?Buyer, ?Seller) AND
modificationType(?Flight, postpone) AND

flightIsFull(?Flight).

For our mechanism to support negotiating the
form of this rule (adoption of the rule itself and
adoption of the two conjuncts), we modify it as
follows:

modificationNotice(?Buyer, ?Seller,
?Flight, 2days) <-

isRuleIncluded~yes) AND
(preferredCustomer0f(?Buyer, ?Seller)
OR isPreferredCustomerRequired(no))

(modificationType(?Flight, postpone)
OR isPostponeRequired(no))

flightIsFull(?Flight).
negotiable(’isRuleIncluded).
negotiable(’isPreferredCustomerRequired).
negotiable(’isPostponeRequired).

Also, the above example included two constants
(2days and reduce) which could be made neg~
tiable by changing the constants to logical variables
(e.g., NoticeAmt and Type), adding unary pred-
icates (noticeAmt and modificationType), and
making those predicates negotiable. In general,

foo(constantl, constant2) <- conditions.

would become

foo(?Varl, ?Var2) <- conditions AND
var1(?Varl) AND var2(?Var2).

negotiable(’varl).
negotiable(’var2).

44

Discussion and Future Work

We have presented our approach of using a rule-
based contract description language to specify ne-
gotiable parameters in a contract and discussed our
planned approach for translating such a contract
template into a set of auctions. It is worth men-
tioning that this work differs from existing work
under similar names. Notably, Tuomas Sandholm’s
Contract Net and other work in distributed AI and
industrial engineering describe mechanisms for sub-
contracting among agents in order to divide work
in accomplishing a task. By contrast, our approach
is to support an automated negotiation mechanism
for agents to decide upon agreeable terms of a con-
tract, which can then be executed electronically.

Another area that we will be working on, when
looking at aspects of execution/enforcement of ne-
gotiated contracts, will be to link more closely
with the procedures that will be performed as
part of such execution/enforcement. For that pur-
pose, it is desirable for the KR to conveniently ex-
press "procedural attachments": the associa-
tion of procedure calls (e.g., a call to a Java method
ProcurementAuthorization.setApprovalLevel) with
belief expressions (e.g., a logical predicate such
as approvalAuthorizationLevel). We will thus ex-
pressively generalize further to Situated Courte-
ous LP’s. Situated logic programs (Grosof 1997a)
hook beliefs to drive procedural APIs. More pre-
cisely, situated LP’s permit two semantically-clean
kinds of procedural attachments for condition-
testing ("sensing") and action-performing ("effect-
ing"). Later we will also want to take a further
step of expressive generalization to relax the cyclic-
ity/recursion prohibition.

References

Baral, C., and Gelfond, M. 1994. Logic program-
ming and knowledge representation. Journal of
Logic Programming 19,20:73-148. Includes exten-
sive review of literature.

Branco, F. 1997. The design of multidimensional
auctions. Rand Journal of Economics 28:63-81.
Grosof, B. N., and Labrou, Y. 1999. An Ap-
proach to using XML and a Rule-based Con-
tent Language with an Agent Communication
Language. In Proceedings of the IJCAI-99
Workshop on Agent Communication Languages.
Held in conjunction with the Sixteenth Inter-
national Joint Conference on Artificial Intel-
ligence (IJCAI-99) http://www.ijcai.org. Ex-
tended version available in May 1999 as IBM
Research Report, http://www.research.ibm.com,
search for Research Reports; P.O. Box 704, York-
town Heights, NY 10598, USA.

Grosof, B.N. 1997a. Building Commer-
cial Agents: An IBM Research Perspective

(Invited Talk). In Proceedings of the Sec-
ond International Conference and Bzhibition on
Practical Applications of Intelligent Agents and
Multi-Agent Technology (PAAM97). P.O. Box
137, Blackpool, Lancashire, FY2 9UN, UK.
http://www.demon.co.uk./ar/PAAM97: Practi-
cal Application Company
Ltd. Held London, UK. Also available as IBM
Research Report RC 20835 at World Wide Web
http://www.research.ibm.com.

Grosof, B.N. 1997b. Courteous logic pro-
grams: Prioritized conflict handling for rules.
Technical report, IBM T.J. Watson Research Cen-
ter, http://www.research.ibm.com, search for Re-
search Reports; P.O. Box 704, Yorktown Heights,
NY 10598. IBM Research Report RC 20836. This
is an extended version of (Grosof 1997c).
Grosof, B. N. 1997c. Prioritized conflict handling
for logic programs. In Maluszynski, J., ed., Logic
Programming: Proceedings of the International
Symposium (ILPS-97), 197-211. Cambridge, MA,
USA: MIT Press. Held Port Jefferson, NY, USA,
Oct. 12-17, 1997. http://www.ida.1iu.se/’ilps97.
Extended version available as IBM Research Re-
port RC 20836 at http://www.research.ibm.com

Grosof, B. N. 1999a. Compiling Prioritized De-
fault Rules Into Ordinary Logic Programs. Tech-
nical report, IBM T.J. Watson Research Cen-
ter, http://www.research.ibm.com, search for Re-
search Reports; P.O. Box 704, Yorktown Heights,
NY 10598. USA. IBM Reserach Report RC 21472.

Grosof, B. N. 1999b. DIPLOMAT: Compiling Pri-
oritized Default Rules Into Ordinary Logic Pro-
grams, for E-Commerce Applications (extended
abstract of Intelligent Systems Demonstration).
In Proceedings of AAAI-99. San Francisco, CA,
USA: Morgan Kaufmann. Extended version avail-
able in May 1999 as an IBM Research Report
RC21473, http://www.research.ibm.com, search
for Research Reports; P.O. Box 704, Yorktown
Heights, NY 10598, USA.

Kumar, M., and Feldman, S. I. 1998. Internet auc-
tions. In Third USENIX Workshop on Electronic
Commerce, 49-60.
Sandholm, T. to appear. Approaches to winner
determination in combinatorial auctions. Decision
Support Systems.

Wurman, P. R.; Wellman, M. P.; and Walsh,
W.E. 1998. The Michigan Internet AuctionBot:
A configurable auction server for human and soft-
ware agents. In Second International Conference
on Autonomous Agents, 301-308.

45

