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Abstract

This paper presents eMediator, a next generation elec-
tronic commerce server that demonstrates some ways
in which AI, algorithmic support, and game theoretic
incentive engineering can jointly improve the efficiency
of ecommerce. First, its configurable auction house
includes a variety of generalized combinatorial auc-
tions, price setting mechanism, novel bid types, mo-
bile agents, and user support for choosing an auction
type. Second, its leveled commitment contract opti-
mizer determines the optimal contract price and de-
committing penalties for a variety of leveled commit-
ment contracting protocols, taking into account that
rational agents will decommit insincerely in Nash equi-
librium. Third, its safe exchange planner enables unen-
forced anonymous exchanges by dividing the exchange
into chunks and sequencing those chunks to be deliv-
ered safely in alternation between the buyer and the
seller. Each of the three components is based on differ-
ent types of game theoretic equilibrium analysis, and
also required development of new algorithms and GUI
designs to make it feasible.

1 Introduction

Electronic commerce is taking off rapidly, but the
full power of AI, algorithmic support, and game the-
oretic tools has not been harnessed to improve its
efficiency. This paper presents eMediator, a next
generation electronic commerce server that demon-
strates some ways in which these techniques can im-
prove ecommerce both in terms of processes and
outcomes. The result of our 2-year implementa-
tion effort is now available for use on the web at
http ://ecommerce. cs. wustl, edu/emediator/.
Three components of eMediator are discussed: an auc-
tion house, a leveled commitment contract optimizer,
and a safe exchange planner. Each one exhibits inter-
esting interplay between algorithms and game theoretic
incentive engineering.

* This material is based upon work supported by the
National Science Foundation under CAREER Award IRI-
9703122, Grant IRI-9610122, and Grant IIS-9800994.

2 eAuctionHouse

Several successful commercial Internet auction sites
exist--such as eBay and OnSale--and interesting aca-
demic auction houses have recently appeared on the In-
ternet (Wurman, Wellman, & Walsh 1998; Rodriguez-
Aguilar et al. 1997). Our motivation in developing an
auction server was to prototype novel next generation
features, and test their feasibility both computation-
ally and in terms of user comfort. One of the services
that eMediator provides is a free-to-use Internet auction
prototype called eAuctionHouse. It allows users from
across the Internet to buy, sell, and set up auctions.
It is a third party site, so both sellers and buyers can
trust that it executes the auction protocols as stated.
It is implemented in Java, with some of the computa-
tionally intensive matching algorithms in C++. The
information about the auctions is stored in a relational
database to increase reliability. To our knowledge, our
server is the first--and currently only--Internet auc-
tion that supports combinatorial auctions, bidding via
graphically drawn price-quantity graphs, and by mobile
agents. It also offers a wide range of auction types to
be chosen from, and supports the user in that choice.
These features are now discussed in order.

2.1 Combinatorial auctions
In a sequential auction, items are auctioned one at a
time. If a bidder has preferences over bundles, i.e. com-
binations of items (as is often the case e.g. in electricity
markets, equities trading, bandwidth auctions (McAfee

McMillan 1996; McMillan 1994), and transportation
exchanges (Sandholm 1993)), then bidding in such auc-
tions is difficult. To determine her valuation for an
item, the bidder needs to guess what items she will re-
ceive in later auctions. This requires speculation on
what the others will bid in the future because that af-
fects what items she will receive. Furthermore, what
the others bid in the future depends on what they be-
lieve others will bid, etc. This counterspeculation in-
troduces computational cost and other wasteful over-
head. Moreover, in auctions with a reasonable number
of items, such lookahead in the game tree is intractable,
and then there is no known way to bid rationally. Bid-
ding rationally would involve optimally trading off the
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cost of lookahead against the gains it provides, but that
would again depend on how others strike that tradeoff.
Furthermore, even if lookahead were computationally
manageable, usually uncertainty remains about the oth-
ers’ bids because agents do not have exact information
about each other. This often leads to inefficient allo-
cations where bidders fail to get the combinations they
want and get ones they do not.

In a parallel auction the items are open for auction
simultaneously and bidders may place their bids during
a certain time period. This has the advantage that
the others’ bids partially signal to the bidder what the
others’ bids will end up being for the different items,
so the uncertainty and the need for lookahead is not as
drastic as in a sequential auction. However, the same
problems prevail as in sequential auctions, albeit in a
mitigated form.

Combinatorial auctions can be used to overcome the
need for lookahead and the inefficiencies that stem from
the related uncertainties (Rassenti, Smith, & Bulfin
1982; Sandholm 1993; Rothkopf, Peke6, & Harstad
1998; McMillan 1994; Sandholm 1991). In a combina-
torial auction bidders may place bids on combinations
of items. This allows the bidders to express comple-
mentarities between items instead of having to spec-
ulate into an item’s valuation the impact of possibly
getting other, complementary items. This capability
is particularly important in illiquid, highly volatile, or
non-commoditized markets where it is unsure whether
one can acquire the items of a desired bundle one at
a time. Our auction server supports a variety of com-
binatorial auctions. The following subsections discuss
some of them.

OR-bids In the combinatorial auction setting that
has been most commonly discussed (Rothkopf, Peke~,
& Harstad 1998), each bidder can bid on combinations
of indivisible items, and her bids are joined with non-
exclusive OR, meaning that any number of her bids
can be accepted. While combinatorial auctions have
the desirable features that they can avoid the need for
lookahead by the bidders and tend to therefore lead to
more efficient allocations, they impose significant com-
plexity on the auctioneer because the auctioneer needs
to determine the winners. This is a nontrivial task. For
example, the Federal Communications Commission saw
the desirability of combinatorial bidding in their band-
width auctions, but it was not allowed due to perceived
intractability of winner determination.

Formally, winner determination with OR-bids is the
problem of deciding which bids win so as to maximize
the sum of the bid prices, under the constraint that
every item is allocated to at most one bid. This cannot
be done in general in polynomial time in the number,
n, of bids received, unless P = AlP:

Proposlt]on 2.1 Winner determination is AlP
-complete.

Proof. Winner determination is weighted set packing,
and set packing is AlP-complete (Karp 1972). 

Even approximate winner determination is hard if
one is interested in worst case guarantees:

Proposition 2.2 No polytime algorithm can guarantee
an allocation within a bound ~ from optimum for any
e > 0 (unless AlP equals probabilistic polytime).
The proof is based on (H~stad 1999), and we present 
in (Sandholm 1999).

If the bids exhibit special structure, better approxi-
mations can be achieved in polynomial time (Chandra
& Halld6rsson 1999; Halld6rsson 1998; Hochbaum 1983;
Halld6rsson & Lau 1997), but even these guarantees are
so far from optimum that they are irrelevant for auc-
tions in practice (Sandholm 1999).

Polynomial time winner determination can be
achieved by restricting the combinations on which the
agents are allowed to bid (Rothkopf, Peke~, & Harstad
1998). However, because the agents may then not be
able to bid on the combinations they want, similar eco-
nomic inefficiencies prevail as in the non-combinatorial
auctions.

We recently generated another approach to optimal
winner determination. The motivation was to
¯ allow bidding on all combinations.

¯ strive for the optimal allocation.

¯ capitalize heavily on the sparseness of bids. In prac-
tice the space of bids is necessarily extremely sparsely
populated. For example, if there are 100 items, there
are 21°° - 1 combinations, and it would take longer
than the life of the universe to bid on all of them
even if every person in the world submitted a bid per
second. Sparseness of bids implies sparseness of the
allocations X that need to be checked. Our algorithm
constructively checks each allocation X that has pos-
itive value exactly once, and does not construct the
other allocations. Therefore, the algorithm only gen-
erates those parts of the search space which are ac-
tually populated by bids. The disadvantage then is
that the run time depends on the bids received.

We achieve these goals by a tree search algorithm that
capitalizes heavily on the fact that the space of bids is
necessarily sparsely populated in practice. We do this
via provably sufficient selective generation of children
in the search and by using a method for fast child gen-
eration, heuristics that are accurate and optimized for
speed, and four methods for preprocessing the search
space. While the worst case complexity is exponen-
tial (assuming P ~ AlP), the algorithm scales up very
well in practice. For details and experimental results,
see (Sandholm 1999).

XOR-blds The above methods for conquering the
intractability of winner determination are based on
the common assumption that the bids are superad-
ditive: b(S tA S’) >_ b(S) + b(S’). But what would
happen if agent 1 bid bl((1)) = 5, b1({2}) = 
b1({1,2)) = 7, and there were no other bidders? 
auctioneer could allocate items 1 and 2 to agent 1 sep-
arately, and that agent’s bid for the combination would
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value at 5 + 4 = 9 instead of 7. So, the current tech-
niques focus on situations where combinational bids are
introduced to capture synergies (positive complemen-
tarities) among items. On the other hand, in many
real world settings local subadditivities can occur as
well. For example, when bidding for a landing slot for
a plane, the bidder is willing to take any one of a host
of slots, but does not want more than one.

To address this, we introduced a new bid type, XOR-
bid, i.e. a bid on multiple combinations such that only
one of the combinations can get accepted, eAuction-
House supports XOR-bids. This allows the bidders to
express general preferences with both positive and neg-
ative complementarities.

Optimal winner determination with XOR-bids is at
least as hard as the basic winner determination prob-
lem because the latter is a special case of the former.
Therefore, the negative results, A/P-hardness and inap-
proximability, apply to this setting as well. Our winner
determination algorithm for OR-bids extends to this
setting by inserting the extra constraints that no two
combinations from the same bid can be accepted (Sand-
holm 1999). These extra constraints will actually make
the algorithm faster because the constraints prune some
allocations. Therefore, for a given number of combina-
tions that have received bids, winner determination is
actually faster for XOR-bids than for OR-bids.

To allow an efficient allocation to be reached, it would
be desirable to extract truthful valuation revelations
as the bids to the auctioneer. Bidding truthfully can
be made incentive compatible (a dominant strategy)
by using the Groves-Clarke mechanism (Groves 1973;
Clarke 1971). This means that each bidder is moti-
vated to bid truthfully irrespective of what the others
bid. This renders counterspeculation unnecessary. The
Groves-Clarke mechanism can be applied to the com-
binatorial auction setting as follows. Winning bids are
determined so as to maximize the auctioneer’s revenue
under the constraint that each item can be allocated to
at most one bid. The amount that an agent needs to
pay is the sum of the others’ winning bids had the agent
not submitted any bids, minus the sum of the others’
winning bids in the actual optimal allocation. There-
fore, the winner determination problem has to be solved
once overall, and once per winning agent without any
of that agent’s bids. This makes fast winner determina-
tion even more crucial. Note that for example just re-
moving one winning bid at a time would not constitute
an incentive compatible mechanism. Incentive compat-
ibility can also be lost if either winner determination or
price determination is done only approximately.
OR-XOR-bids In addition to the tractability of win-
ner determination, the convenience of using combinato-
rial auctions is another important issue. While XOR-
bids allow the bidder to express general preferences, in
the worst case this would involve placing a bid for each
of the 2m - 1 possible combinations, where m is the
number of items. A shorter representation of prefer-

ences without loss of expressive power could be possi-
ble by allowing a richer input language. One idea to-
ward this direction was presented early on by Rassenti
et al (Rassenti, Smith, & Bulfin 1982). They allowed
the bidder to place combinational bids and to state
the maximal number of combinations that could be ac-
cepted. An XOl~-bid can be viewed as a special case of
this where that number is one. In our auction server,
we allow the user to submit multiple XOR-bids. We do
this in table form, where each row is a combinational
bid, and the rows are combined with XOR, see Figure 1.
These multiple bids are combined together with a non-
exclusive OR. We do this by allowing the user to submit
multiple tables. This method maintains full expressive
capability, but we believe that it is a more natural way
to input preferences, and that it will lead to shorter
input descriptions than XOR-bids only. Other enrich-
ments to the language are also possible. Since even
basic XOl%bids have full expressive power, expressive-
ness should be viewed as a necessary but not a sufficient
condition in designing combinatorial auctions. Between
fully expressive input languages the appropriate com-
parison criterion is the convenience of their use in the
particular application domain in question.

Other generalizations of combinatorial auctions
Our input representation, Figure 1, also allows com-
binatorial double auctions instead of just single-sided
auctions. In other words, there can be multiple buy-
ers and multiple sellers. In addition to double auction
extensions, it allows combinatorial auctions where the
agents can bid for multiple units of each item in a com-
bination (the number of units is specified in each cell
of the table). The latter splits into two cases depend-
ing on whether the matches of units have to be ex-
act or whether partial matches are allowed. Currently
while we are developing optimal matching algorithms
for these more general combinatorial auctions, we use
approximate matching algorithms in our server.

2.2 Bidding via price-quantity graphs

Price-quantity graphs are supported so that bidders can
express continuous preferences, see Figure 2. For ex-
ample when a bidder buys a larger quantity, she might
only accept a lower unit price. Naturally, a bidder ac-
cepts anything below the curve as well (automatically
colored region) because she will get the same quantity
as on the curve, but at a lower price. Similarly, a seller
would accept anything above her curve.

In the implementation, the curves are piecewise linear
both for drawing convenience and for the convenience
of winner determination. In single sided auctions with
price-quantity graph bidding, the winner determination
algorithm works as follows. It sums the demand for ev-
ery unit price (it does not loop though prices but uses
the endpoints of each linear piece of the curve to do
this). Then, it picks the aggregate solution that maxi-
mizes the unit price under the constraint that not more
is demanded than is available. Each bidder then gets
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http://~.cs.wustl, edu/-mas/AuctionHouse.ht~

Bid in Electricity auction (19980723192509)

[E~ec~EicI~ for EoflnoE~
1

}[OR bid

good un~ fulfilled or canceled.

Within each row of the following table, you are bidding for a combination of items, Different rows represent alternative combinations which are
XORed to gether: at mo st one of them will be fulfilled, Negative numb ers mean you want to sell Both selling end buying can exist tn the same row,

Figure 1: A XOR-bid in our auction server. The example is from an electricity market scenario where the agents
can bid for combinations of electricity for different hours of the day, and for multiple Mega Watt hours for each hour
of the day. In this example, a refinery operator needs three consecutive hours of electricity for her plant. She prefers
to start at 8 am because that is a more suitable time and running the plant at that time requires less electricity.
However, starting at 6 am or 7 am is also feasible.

the amount that she bid at that unit price. In dou-
ble auctions, both supply and demand curves are sepa-
rately aggregated, and any one of the points were supply
meets demand is chosen. If the curves were noncontin-
uous, it is possible that no match exists. This holds
both for single and double auctions. To prevent this,
we use continuous curves, i.e. the slope of each linear
segment is finite. We do not assume that the curves are
monotonic, see e.g. Figure 2.

2.3 Support for choosing an auction type
The auction server supports a wide variety of auction
types. The user that sets up a given auction (she may
be a buyer, a seller, or a third party facilitator) decides
the auction type. However, since the space of different
auction types is enormous, the auction server helps the
user in making the choice. First, only choices that are
sensible based on game theoretic analyses or economics
experiments are provided as alternatives. Furthermore,
there is an expert system that restricts the choice of
auction types given the auction setting, see Figure 3.
For any given auction setting, it tells the user what
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Figure 2: A price-quantity graph allows the user to express continuous preferences in the auction server of eMediator.
This figure corresponds to the user being able to hold a video-conference at three alternative picture resolutions
requiring a bandwidth of 15, 60, or 120 Mbps. The auctioned item could be a prebundled combination of items. For
example, the virtual circuit from LA to Prague can use several network links owned by different backbone providers.

kinds of bids can be accepted, and what price deter-
mination schemes should be used. The auction setting
differs based on whether it is a single or double auction,
whether there is one or multiple items, and whether
there is one or multiple units of each item. Further-
more, the units can be divisible or indivisible. The bid
types include a regular price bid where the user speci-
fies the price for a good; a price-quantity graph bid as
in Figure 2; an OR-bid; and an OR-XOR-bid.

The first-price pricing scheme charges the buyer the
price of her bid. This scheme leads to underbidding. In
single unit ascending open-cry auctions, each bidder’s
dominant strategy is to bid a small increment more
than the current price, and stop when her valuation
is reached. In sealed-bid auctions with common knowl-

edge assumptions about the priors from which the bid-
ders’ private valuations are drawn, a Nash equilibrium
analysis can be conducted to determine how much each
agent should underbid as a function of her valuation.

The second-price (Vickrey) auction charges the win-
ning bidder the price of the second highest bid. Under
certain restrictions (Sandholm 1996a), it is each bid-
der’s dominant strategy to bid her true valuation (Vick-
rey 1961).

The multi-unit Vickrey auction is a generalization of
the Vickrey auction to settings with multiple units of
an item, or in other words, multiple indistinguishable
goods. Each bidder can submit multiple bids. The units
are assigned from highest bid downward until they run
out. Each winning bid is charged the price of the bid
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Figure 3: Expertise showing valid combinations of
choices of some of the parameters of eAuctionHouse.

that it displaces from the set of winning bids. This
achieves incentive compatibility, i.e. each bidder is mo-
tivated to bid truthfully, independent of what others
bid. Another possible generalization of the Vickrey auc-
tion for this setting is to charge every bidder the price
of the highest bid that just did not win. Our auction
server uses the former method because the latter is not
incentive compatible: it falls prey to demand reduction
lies by the bidders (Ausubel & Crampton 1996).

For multi-item auctions (with one or more units per
item), the Groves-Clarke mechanism, discussed earlier,
is the appropriate generalization of the Vickrey auction.
Each bidder’s dominant strategy is to bid truthfully.

In double auctions, our server splits the gains equally
in the standard way. The price is hMf way between the
bid and the ask.

The auctions in eAuctionHouse also have several
other parameters, including:

* Whether or not matches have to be exact in multi-
unit auctions.

* Tie-breaking rule: random, older bid overrides, or
newer bid overrides.

¯ When to clear the auction: when a specific time is
reached, every time a bid is received, periodically, or
when no bids have been received for a specified time.

¯ When the auction permanently closes: when it is
cleared, when no bids have been received for a spec-
ified time, or when the auction’s owner cancels it.

. Whether or not bid retraction is allowed (possibly for
a penalty) before winners are determined.

. Whether or not bid retraction is allowed (possibly for
a penalty) after winners are determined.

¯ What information is revealed to the bidders during
bidding: all bids, highest bids, or none.

¯ What information is revealed to the bidders after
clearing: all bids, winning bids, or none.

2.4 NOMAD: Mobile agents as auction
participants

Our auction house supports mobile agents so that a user
can have her agent actively participating in the auction
while she is disconnected. For example, the user can
launch her agent over the phone from an airplane using
a laptop, and then disconnect. Mobile agents that ex-
ecute on the agent dock which is on (or near) the host
machine of the auction server also reduce the network
latency--an issue of key importance in time-critical bid-
ding. The Michigan Internet AuctionBot (Wurman,
Wellman, & Walsh 1998) provides a TCP/IP-level mes-
sage protocol via which agents could participate in their
auction. Their auction server differs from ours in that
they do not provide support for mobile agents. Our auc-
tion server uses the commercial Concordia agent dock
from Mitsubishi to provide mobile agents a safe exe-
cution platform from where they can observe what is
transpiring in the auctions, bid, set up auctions, move
to other hosts, etc. The user has the full flexibility of
Java programming at her disposal when designing her
mobile agent. We also provide an easy-to-use HTML in-
terface for non-programmers where the user can specify
what she wants her agent to do, and our system auto-
matically generates the Java code for the corresponding
mobile agent, and launches it. The following parame-
terizable mobile agent templates are currently available:

1. The information agent goes to an auction and sends
email to the user when specified events occur. Using
this agent, the user does not have to poll the auction,
and gets notified of important events immediately.

The incrementor agent implements the dominant
strategy on the user’s behalf in single-item single-
unit ascending open-cry first-price private value auc-
tions. It bids a small increment more than the current
highest price, and stops if the user’s reservation price
is reached. With this agent the user does not have
to follow the auction, and her dominant strategy in
these settings is to report her valuation truthfully to
the agent.

The N-agent underbids optimally on the user’s be-
half in single-item single-unit seMed-bid first-price
auctions where the number of bidders, N, is known,
and the bidders’ private valuations are independently
drawn from a uniform distribution. Specifically, the
symmetric Nash equilibrium strategy is to bid the
user’s valuation times N-1/N (Rasmusen 1989). The
user is then motivated to reveal her true valuation to
the agent.

The control agent goes to an auction and submits
very low noncompetitive bids. It is a speculator’s
tool to artificially increase the number, N, of bidders
in an auction to mislead others, e.g. the N-agent. For
example, it is in the seller’s interest to submit control
agents so that N-agents would bid higher.

.

.

,
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5. The discover agent computes the expected gain from
bidding a small amount more than the current high-
est price according to the agent’s current distribution
of her valuation. This is intended for settings where
the user does not know her exact valuation for the
item, but only a probability distribution on it. In the
future, the probability distribution could be updated
by new events, or in non-private value auctions, by
what others have bid.

Unlike current electronic commerce servers which
usually only provide an auction house, eMediator pro-
vides other types of services for facilitating ecommerce
in addition, such as a leveled commitment contract opti-
mizer, and a safe exchange planner. These are discussed
in Sections 3 and 4 respectively.

3 Leveled commitment contract opti-
mizer

eMediator includes an optimizer for leveled commit-
ment contracts. Normal full commitment contracts are
unable to take advantage of the possibilities that such
future events provide. Once an agent agrees to a con-
tract, she has to follow through no matter how future
events unravel. Although a contract may be profitable
to an agent when viewed ex ante, it need not be prof-
itable when viewed after some future events have oc-
curred, i.e. ex post. Similarly, a contract may have too
low expected payoff ex ante, but in some realizations of
the future events, it may be desirable.

Contingency contracts have been suggested for uti-
lizing the potential provided by future events among
self-interested agents (Raiffa 1982). The contract obli-
gations are made contingent on future events. In some
games this increases the expected payoff to both parties
compared to any full commitment contract. However,
contingency contracts are often impractical because the
space of combinations of future events may be large and
unknown. Also, when events are not mutually observ-
able, the observing agent can lie about what transpired.

Leveled commitment contracts are another method
for capitalizing on future events (Sandholm &; Lesser
1996). Instead of conditioning the contract on future
events, a mechanism is built into the contract that al-
lows unilateral decommitting. This is achieved by spec-
ifying in the contract the level of commitment by de-
commitment penalties, one for each agent. If an agent
wants to decommit--i.e, to be freed from the obliga-
tions of the contract--it can do so simply by paying the
decommitment penalty to the other party. The method
requires no explicit conditioning on future events: each
agent can do her own conditioning dynamically. No
event verification mechanism against lying is required
either. The decommitment possibility increases each
agent’s expected payoff under very general assump-
tions (Sandholm ~ Lesser 1996).

We analyze contracting situations from the perspec-
tive of two risk neutral agents each of which attempts to
maximize his own expected payoff: the contractor who

pays to get a task done, and the contractee who gets
paid for handling the task. The framework can be in-
terpreted as modeling other types of settings than task
allocation also, for example general allocation of rights
and obligations where the agents’ costs and gains of the
rights and obligations may change. In what follows, we
word the results in the context of task allocation.

The contractor tries to minimize the contract price
p that he has to pay to get the task handled. The
contractee tries to maximize the payoff p that she re-
ceives from the contractor for handling the task. We
study a setting where the future of the agents involves
uncertainty. Specifically, the agents might receive out-
side offers. 1 The contractor’s best outside offer ~ is
only probabilistically known ex ante by both agents,
and is characterized by a probability density function
f(~). If the contractor does not receive an outside of-
fer, ~ corresponds to its best outstanding outside of-
fer or its fall-back payoff, i.e. payoff that it receives if
no contract is made. The contractee’s best outside of-
fer b is also only probabilistically known ex ante, and
is characterized by a probability density function g(b).
If the contractee does not receive an outside offer,
corresponds to its best outstanding outside offer or its
fall-back payoff. 2 The variables 5 and b are assumed
statistically independent, and f and g are assumed to
be common knowledge.

The contractor’s options are either to make a contract
with the contractee or to wait for 5. Similarly, the con-
tractee’s options are either to make a contract with the
contractor or to wait for b. The two agents could make a
full commitment contract at some price. Alternatively,
they can make a leveled commitment contract which
is specified by the contract price, p, the contractor’s
decommitment penalty, a, and the contractee’s decom-
mitment penalty, b. We restrict our attention to con-
tracts where a ~ 0 and b ~ 0, i.e. agents do not get
paid for decommitting. The contractor has to decide
on decommitting when he knows his outside offer 5 but
does not know the contractee’s outside offer b. Sim-
ilarly, the contractee has to decide on decommitting
when she knows her outside offer b but does not know
the contractor’s. This seems realistic from a practical
contracting perspective.

3.1 Nash equilibria for a given contract

One concern is that a rational self-interested agent is re-
luctant in decommitting because there is a chance that
the other party will decommit, in which case the for-
mer agent gets freed from the contract, does not have to
pay a penalty, and collects a penalty from the breacher.

1The framework can also be interpreted to model situ-
ations where the agents’ cost structures for handling tasks
and for getting tasks handled change e.g. due to resources
going off-line or becoming back on-line.

2Games where at least one agent’s future is certain, are
a subset of these games. In such games all of the probability
mass of f(~t) and/or g(~) is on one point.

52



(Sandholm &: Lesser 1996) showed that despite such in-
sincere decommitting the leveled commitment feature
increases each contract party’s expected payoff, and en-
ables contracts in settings where no full commitment
contract is beneficial to all parties.

The contractor decommits if he gets a low enough
outside offer, e.g., he can get his task handled at a low
cost. We denote his decommitting threshold by 2", so
his decommitting probability is

po = s(2) a (1)
The contractee decommits if she gets a high enough

outside offer, e.g., gets paid for handling a task. We
denote her decommitting threshold by b*, so her de-
committing probability is

Pb = f~. g(b)db (2)

3.2 Sequential decommitting games

In our sequential decommitting game, one agent has
to reveal her decommitting decision before knowing
whether the other party decommits. While our imple-
mentation analyzes both orders of decommitting, here
we only discuss the setting where the contractee has to
decide first. The case where the contractor decides first
is analogous. There are two alternative leveled commit-
ment contracts that differ on whether or not the agents
have to pay the penalties if both decommit.

If the contractee has decommitted, the contractor’s
best move is not to decommit because -2-a+b < -2+b
(because a > 0). This also holds for a contract where
neither agent has to pay a decommitment penalty if
both decommit since -2 < -2 + b. In the subgame
where the contractee has not decommitted, the con-
tractor’s best move is to decommit if -2 - a > -p,
i.e.
2’ = p - a (3a)

The contractee gets b - b if she decommits, b + a if
she does not but the contractor does, and p if neither
decommits. Thus the contractee decommits if b - b >
Pa(b + a) + (1 Pa)p. If Pa = 1, thi s is equivalent to
-b > a which is false because a > 0 and b > 0. In
other words, if the contractee surely decommits, the
contractor does not. On the other hand, the above is
equivalent to

1-p. = when Pa < 1 (4a)

3.3 Simultaneous decommitting games

In our simultaneous decommitting games, agents have
to reveal their decommitment decisions simultaneously.
We first discuss the variant where both have to pay the
penalties if both decommit. The contractor decommits
if pb " (--2 + b- a) (1--pb)(--2-- a)> Pb " ( -- 2 + b) 
(1 --Pb)(--P). Ifpb = 1, this equates to a < 0, but we
already ruled out contracts where an agent gets paid
for decommitting. On the other hand, this equates to

a def 2" when Pb < 1 (3b)2<p-- 1--pb =

The contractee decommits if (1 -Pa)(b - b) + pa(b 

b+a) > (1-pa)p+pa(b+a). Ifpa = 1, this equates 
b < 0, but we ruled out contracts where an agent gets
paid for decommitting. However, this equates to

b def ~,> p + ~ = when Pa < 1 (4b)
In another type of simultaneous decommitting game,

neither agent has to pay if both decommit. The con-
tractor decommits if Pb ̄  (-a) + (1 - Pb)(-a - 
Pb " (--2 "4- b) (1- Pb)(--P). If Pb --- - 1, thi s equates
to b < 0, but we already ruled out contracts where an
agent gets paid for decommitting. On the other hand,
this equates to
2 < p - a - ~l-pb def: ~, when Pb < 1 (3c)

The contractee decommits if (1 - Pa)(b - b) Pab >
(1 - Pa)P +pa(b + a). Ifpa = 1, this equates to a < 0,
but we ruled out contracts where an agent gets paid for
decommitting. However, this equates to

> p q- b - apa de__f ~, when Pa < 1 (4c)1 --Pa --

3.4 Contract optimizer implementation

For each game, calculating the Nash equilibria amounts
to solving the simultaneous equations (3) and (4) which
use (1) and (2). Given an equilibrium, it is easy to 
pute the agents’ expected payoffs under the contract.
Furthermore, we have developed algorithms for choos-
ing the contract price and the decommitting penal-
ties in a way that maximizes the sum of the agent’s
expected payoffs, and divides the gains fairly, or in
any other way as long as both parties benefit (Sand-
holm, Sikka, & Norden 1999). That optimization al-
gorithm takes into account that the agents decommit
insincerely in Nash equilibrium. To begin, the user in-
puts f and g graphically or textually. The contract
is optimized separately for each one of the protocols,
which vary based on who has to reveal her decommit-
ting decision first--the simultaneous protocols are also
considered--and whether or not the agents have to pay
the penalties if both decommit. The optimal contracts
for each protocol are then presented to the user, see
http :/lecommerce. es. wustl, edu/contraets, html.

4 eExchangeHouse: A safe exchange planner
Contract execution is more difficult in electronic com-
merce than physical commerce because the parties may
be anonymous and can disappear easily. For example,
a shopping agent can vanish by simply killing its pro-
cess, and litigation is infeasible unless the other contract
party knows which real-world entity the agent repre-
sented. Another problem is the lack of uniform laws on
electronic commerce and particularly agent-mediated
commerce in different countries.

An important aspect of contract execution is mak-
ing sure that the seller gets paid, and that the buyer
gets the goods. The risk is that once one party has
received the item, he may be motivated to vanish with-
out delivering his part of the contract. This could be
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avoided by a trusted third party that takes the payment
and goods, and carries out the transaction only after
all parties have delivered their part to the intermedi-
ary. Today’s electronic commerce implements a coarse
one-sided variant of this where the third party takes
the payment into escrow, and releases it to the seller
only after the buyer has verified receipt of the goods.
A disadvantage of these third party escrow companies
like i-Escrow Inc. and Trade-Direct is the cost of run-
ning such an intermediary, which is recovered as fees
- currently about 5% of the contract price - from the
contract parties.

A method for tackling this problem without third
parties was developed by (Sandholm ~ Lesser 1995;
Sandholm 1997). The exchange is divided into chunks
where each party delivers a small amount at a time,
and the exchange proceeds with such alternation. The
method is most suitable for settings where dividing the
goods into chunks is relatively inexpensive, such as is
often the case for example with information goods and
computational services. A sequence is called safe if each
party is motivated to follow the exchange at every step
in anticipation of the profit from the rest of the ex-
change instead of vanishing with what the other party
has delivered so far. Specifically, a safe sequence can be
executed in subgame perfect Nash equilibrium. Some
chunkings allow a safe sequence while others do not.
Similarly, some sequences of delivering given chunks are
safe while others are not.

As part of eMediator, we built a safe exchange plan-
ner called eExchangeHouse. In the case where a single
divisible good is exchanged, the user inputs a graph
of how the buyer’s valuation accrues as a function of
how much has been delivered, and another graph that
shows how the seller’s cost accrues. In the case of mul-
tiple distinguishable goods, the user lists how many
goods are to be exchanged, and how many units of
each good. For each possible state of the exchange
(units of good 1 delivered x units of good 2 delivered
x ...) the user inputs the the buyer’s valuation and
the seller’s cost. Note that combining indistinguishable
goods into units of a single good significantly reduces
the state space since within each good, only the num-
ber of units delivered matters, not which ones. Finally,
the user inputs how much gain the seller is willing to
forego to avoid possible reputation costs from defect-
ing in the exchange, and similarly, how much gain the
buyer is willing to forego. Based on this input, the
planner finds a safe chunking that minimizes the num-
ber of chunks and a safe chunk sequence if they exist.
If they do not exist, the user is alerted of this. The
chunking algorithms and the chunk sequencing algo-
rithms are highly nontrivial (Sandholm ~ Lesser 1995;
Sandholm 1996b). They are currently being coded to
be joined with the GUI that is already complete.

5 Conclusions
The eMediator prototype exemplifies several new fea-
tures that can facilitate more efficient ecommerce in

the future. Its configurable auction house includes a
variety of generalized combinatorial auctions, price set-
ting mechanism, bidding methods, mobile agents, and
user support for choosing an auction type. The leveled
commitment contract optimizer determines the optimal
contract price and decommitting penalties for a variety
of leveled commitment protocols, taking into account
that rational agents will decommit insincerely. Finally,
the safe exchange planner enables unenforced anony-
mous exchanges by dividing the exchange into chunks
and sequencing those chunks to be delivered safely in
alternation between the buyer and the seller. Each one
of the three mechanisms exhibits an interesting inter-
play between algorithms and game theoretic incentive
engineering. In the future we are planning to add to
eMediator next generation reputation services, product
evaluation methods, a nonmanipulable voting server,
coalition formation support, and a meta-auction that
sits on top of other auctions on the web.
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