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Abstract

The allocation of discrete, complementary resources is
a fundamental problem in economics and of direct in-
terest to e-commerce applications. In this paper we
establish that competitive equilibrium bundle prices al-
ways exist that support the efficient allocation in dis-
crete resource allocation problems with free disposal.
We believe that this is an important step in the quest
for a mechanism that performs well in the face of com-
plementary preferences. We present a family of auc-
tions that use this bundle pricing policy, and make
some initial observations on several of its members, in-
cluding the new Ascending k-Bundle auction.

Introduction

In many potential e-commerce applications, agents have
complementary preferences for objects in the market-
place. Consider an agent trying to construct a com-
puter system by purchasing components. Among other
things, the agent needs to buy a cpu, harddrive, and
monitor, and may have a choice of several models for
each component. The agent’s valuation of a package
depends on the combination of components that it can
accumulate. This example is an instance of the a gen-
eral allocation problem characterized by heterogeneous,
discrete resources and complementarities in agent pref-
erences.

Discrete resource allocation has been the focus of
auction theory since Vickrey’s seminal work on the
second-price auction (Vickrey 1961). The allocation
of single objects, or multiple homogeneous objects, is
well understood (Demange, Gale, & Sotomayor 1986;
McAfee & McMillan 1987; Milgrom 1989), however 
general solution to the allocation of heterogeneous ob-
jects has proven elusive. The landscape seems com-
posed of various mechanisms that make different trade-
offs among desirable properties.

One branch of research is focused on identifying con-
ditions under which price equilibria exist. For in-
stance, it has been shown that price equilibria ex-
ist if a gross substitutability condition holds (Kelso 
Crawford 1982), or if utility functions satisfy the no-
complementarities condition (Gul & Stacchetti 1997).
Bikhchandani and Mamer (Bikhchandani & Mamer
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Table 1: An example without equilibrium prices for in-
dividual goods.

1997) demonstrated that equilibria exist iff the social
value of the optimal allocation is equal to the value of
the corresponding relaxed linear program.

However, it is easy to construct examples in which
price equilibria fail to exist. A simple example pre-
sented by McAfee and McMillan (McAfee & McMillan
1996), reproduced in Table 1, illustrates the problem.
One agent values the pair of goods at 3 and gets no
benefit from the goods singly. The second agent val-
ues either good at 2, but gets no added benefit from
getting both goods. The efficient solution, from a so-
cial perspective, assigns both goods to agent 1.1 For
any assignment that includes agent 2 receiving one or
more goods, both agents can be made better off by a
transfer of money from agent 1 to agent 2 in exchange
for agent 2’s allocation. In this example, however, no
equilibrium prices exist. In order to exclude the first
agent from the allocation, the price of each good indi-
vidually must be greater than or equal to 2. However,
these prices put the cost of the pair at 4--above the
second agent’s valuation.

Another subject of research in this area is the gen-
eralization of Vickrey’s original results and related re-
sults by Clarke (Clarke 1971) and Groves (Groves 1973).
This mechanism, which alternately goes by the moniker
Vickrey-Clarke-Groves mechanism or the Generalized
Vickrey Auction (GVA), is an incentive compatible, in-
dividually rational, efficient, direct revelation mecha-
nism. The mechanism’s attractive properties come from
the fact that an agent pays (receives) the difference 
utility that other agents lose (gain) by its presence.
Thus, the agent’s payment is not dependent upon its
own stated preferences, which removes the incentive to
misrepresent those preferences.

1Throughout the examples in this paper we indicate the
socially efficient allocation in boldface.
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However, the GVA does have several undesirable
properties. Foremost among these is that, in the two-
sided market, it is not budget-balanced. Even when
we restrict our attention to the single-sided case, the
mechanism has very high computational costs for the
auctioneer, and requires complete information revela-
tion by the agents. We suspect that in many cases it
is not necessary for agents to fully disclose their utility
function in order to reach the efficient allocation.

Under some conditions, the payments computed by
the GVA can be interpreted as prices (Leonard 1983).
However, in the general case, we run into two prob-
lems. First, the GVA computes payments per agent,
not prices per object. When a single agent is allocated
a combination of objects, there is no way in which to
determine the relative price of each object in the bun-
dle. Moreover, the GVA may not compute anonymous
prices, where anonymity implies that every agent has
the opportunity to purchase the same object at the
same price? Consider an example with two buyers and
two identical units of a good. Agent 1 values one unit
of the good at 5, and two units at 7. Agent 2 values
one and two units at 5 and 8, respectively. The efficient
allocation is to give one unit to each agent. However,
the GVA payment for agent 1 is 8 - 5 = 3, whereas the
payment by agent 2, for a unit of the same good, is 2.
Thus, if participants care that prices be uniform, the
GVA will not be an acceptable mechanism.

There are a few notable alternatives to the GVA that
attempt to allocate heterogeneous goods under comple-
mentarities. The most well-known mechanism is the Si-
multaneous Ascending Auction (SAA) used by the FCC
to allocate spectrum rights (McAfee &; McMillan 1996;
McMillan 1994). Two other promising mechanisms
have been studied in laboratory experiments: the Adap-
tive User Selection Mechanism (AUSM) introduced 
Banks, et al. (Banks, Ledyard, ~ Porter 1989), and 
combination of the previous two called the Resource Al-
location Design (RAD) auction (DeMartini et al. 1998).

These three mechanisms differ in many subtle ways.
Two dimensions of particular relevance to this discus-
sion are the semantics of bids and the scope of objects
being priced. SAA accepts bids on individual goods,
and sets prices on the individual goods. RAD accepts
bids on bundles, but still computes prices exclusively for
the individual goods. AUSM accepts bids on bundles
and makes those bids public, essentially announcing the
prices of the bundles.3

All three auctions use ascending rules to assure ter-
mination, however none of them have been analyzed
for their equilibrium properties. In particular, we do

2The antithesis of anonymous pricing is discriminatory
pricing.

3This is an oversimplification. The mechanism an-
nounces the prices of the winning bundles, and provides
a secondary queue with which agents bidding on smaller
bundles can coordinate their bids to displace larger bun-
dles. The prices listed in this queue imply prices for their
complements with respect to supersets that have bids.

not know whether, given the final prices and the final
allocation, any agent would prefer some other bundle
to its allocation. In other words, we do not know if
competitive equilibria exist for the underlying allocation
models.

In this paper we present a method for setting prices
on bundles that ensures that equilibrium bundle prices
always exist that support the efficient allocation when
agents act competitively. We introduce a family of auc-
tions, the k-bundle auctions, based on this price setting
scheme. Finally, we present some observations about
several members of this family.

Model

We consider a benevolent auctioneer with an objective
to allocate a set of heterogeneous objects in the most
socially efficient manner. There are N agents, indexed
by i, and M objects, indexed by j. There are 2M - 1
different combinations of objects (excluding the empty
set). Let b E {0, 1}M where bJ = 1 implies that object
j is an element of the bundle b. For two bundles, b and
c, we use the superset notation b D c to indicate that
Vj, bJ >_ cJ.

The utility that an agent derives from a bundle is
given by vi(b). We assume the existence of a currency,
denoted m, and that agents have utility quasilinear in
m.

U(b) = v (b) 
Further, we assume free disposal, which allows us to
assume valuations increase monotonically as items are
added to a bundle. Formally, b D c implies vi(b) 

A solution to the allocation problem is an assignment
of bundles to agents that satisfies the material balance
constraint. Let Xib E {0, 1} take the unit value only
when b is assigned to i.

The socially efficient allocation satisfies the following
maximization problem:

max (1)
i b

~ Xlb < 1, Vis.t.

b

i b

xib e {0, 1}.
The first constraint implies that each agent receives

at most one bundle. The second constraint ensures that
no object is allocated more than once.

Let X* be a solution to this integer program. The
value of the solution is simply

v(x’) = Z Z
i b

A vector of bundle prices, P, specifies a non-negative
real number, Pb, for each b. We admit nonlinear prices.
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That is, for two disjoint bundles b and c, Pbuc = Pb + Pc
does not necessarily hold.

When adopting nonlinear pricing, it may be neces-
sary to have some regulator enforce the allocation. Oth-
erwise, if pbuc > Pb-[-Pc, an agent may wish to purchase
b and c separately to assemble the bundle. Similarly,
if Pbuc < Pb + Pc, two agents may have an incentive
to collude in order to purchase the combined set at a
discount, and reallocate the objects later.

We require that the price of a bundle be at least
as great as any of its subsets, and that the prices
be anonymous--a single price vector is reported to all
agents.

A competitive equilibrium is one in which each agent
treats prices as exogenous and demands the objects that
maximize its surplus. In effect, the agent ignores the
impact of its actions on prices. Agent i is in equilibrium
at prices P with respect to an allocation X if

mb[v~(b) - Phi = m ax[vi(b) - Pb]. 
b

The allocation X* and the price vector P support a
competitive equilibrium if (2) holds for all agents.

Equilibrium Prices

Construction

We start with the solution to equation 2, and wish to
construct equilibrium prices to support the optimal al-
location X*. The construction proceeds in two steps.
First, we compute prices on the bundles that are as-
signed in X*, then we compute prices on the rest of the
bundles.

Let B+ be the subset of bundles which are assigned
in X*, and B_ be the unassigned bundles. Let A be the
set of all agents, .4+ the agents which are assigned non-
empty bundles, and A- be the agents that are excluded.
For each agent i E A_, we introduce a dummy good ¢i
which represents the agent’s null allocation. Let (I) =
{¢i[i E A_}. Every agent has a valuation of zero for
every dummy good. Let G = B+ U (I), and 9 E 

We have now constructed a pseudo-assignment prob-
lem for which we already have the solution. Our goal
is to compute prices that support the mapping A --~ G.
To accomplish this, we adopt the dual program used by
Leonard (Leonard 1983) to compute minimal prices for
the assignment problem. First, we solve LPmin:

min :~--~ P9 (3)
g

s.t. si + Pa > vi(g),Vi,g

si,Pg > O,

s~ + ~pg: v(x*).
i g

The sl term represents the surplus achieved by agent
i. LPmin maximizes the agent’s surplus within the range

of equilibrium prices that support the efficient alloca-
tion. Note that the introduction of the objects in (I) 
simply a trick to include the agents in A- in the pseudo-
assignment problem. In the solution, si - pc, = 0 for
all i ~ A-.

LPmin has a complementary problem, LPm~x, which
computes upper bound prices:

min ~ si (4)
i

s.t. si +pg > vi(g),Vi, 
si~Pg >_ O,

Z s, + ~p~ = vex’).
g

Clearly the price vector produced in finding a solution
to either of these linear programs is a competitive equi-
librium for the pseudo-assignment problem--the first
constraint requires that an agent cannot gain any more
surplus from another bundle than it receives from the
one allocated to it.

Given a solution to either LPmin or LPmax we must
now set prices on the bundles in B-. This can be done
quite simply. For all b E B-,

Pb = m.ax[vi(b) - si]. (5)

By construction, these prices cannot distract any
agent from the allocation it receives in X*. Moreover,
these prices satisfy the same monotonicity constraint
we imposed on utility functions.

Let P* be a vector of prices where the pbs are cal-
culated by LPrn~x and (5). Similarly, P* is the price
vector resulting from solving LPmin and applying (5).
We can now consider a range of equilibrium prices that
support the optimal allocation.

Lemma 1 For any k E [0,1], kP* + (1- k)-P* is 
competitive equilibrium.

Proof: Consider two bundles, b and c, where agent i
prefers b to c at P-*. Because P* and P* both support
the same allocation, i must prefer b to c at P*. Thus
we have

v,(b) - -p*~ >_ ~,(e) ~,
and

vi(b) - P__; > vi(c) - 
In both cases, the relation is invariant to positive

scalar transformations. Thus, for k E [0, 1],

ki~(b) - Y;] > k[~,(c) - F;],
and

(1 - k)[v,(b) - > (1 - k)[,~(c) - ~
Adding the two equations and simplifying gives

v,(b) - k~; - (1 - k)£; _ ~,(~) - kT: - (~ - 
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A B C ]AB AC BC ABC
Agent 1 6 6 5 10 7 8 12
Agent 2 3 3 2 8 5 6 II
Agent 3 4 2 1 7 6 5 10

Table 2: An example with three agents.

AB C
Agent 1 10 5
Agent 2 8 2
Agent 3 7 1

Table 3: The pseudo-assignment problem.

[-].

The k parameter here is analogous to the parameter
used in the k-double auction (Satterthwaite & Williams
1989). P* and P* represent the range of prices for
which supply equals demand. Reducing any price in
P* would create excess demand for some of the objects.
There is a slightly weaker analogy for the upper bound
side. We cannot raise the price of any b E B+ without
disequilibrating supply and demand. However, in some
cases we can increase the prices of bundles in B_ without
adverse affects.

Example
Consider the example in Table 2. The efficient alloca-
tion is to assign AB to agent 2 and C to agent 1. Agent
3 gets nothing. This allocation has a social welfare of
13.

In order to construct equilibrium prices, we introduce
the dummy good ¢3. We then solve the linear programs
LPmin and LPmax for the pseudo-assignment problem in
Table 3.

The solution to LPmin for this problem is PAB ~- 7,

Pc = 1, and of course P¢3 = 0. This leaves sl = 4,
s2 = 1, and s3 = 0. We leave the computation of the
solution to LPrn~x as an exercise for the reader. The
final upper and lower equilibrium price vectors are given
in Table 4.

Discussion
Unfortunately, by expanding the pricing space we ad-
mit inefficient equilibria. For example, the price vector
(2, 2, 2.5/ supports a competitive equilibrium for both
the problem in Table 1 and the problem in Table 5.
However, in the latter case the allocation it supports
is inefficient--agent 1 gets both goods. For this ex-
ample, the price vector (2, 2, / supports the efficient

[A B CIAB AC BCIABC

Table 4: Equilibrium prices.

]A BlAB
Agentl 02

023
Agent 2 2 2 2
Agent 3 2

Table 5: An example with multiple equilibrium bundle
price vectors.

allocation. 4 Clearly, one of the challenges in developing
an efficient allocation mechanism will be avoiding these
degenerate equilibria.

Recently, Bikhchandani and Ostroy (Bikhchandani
& Ostroy 1998) (B&O) thoroughly analyzed the equi-
librium properties of a particular package assignment
model. They demonstrated that discriminatory, non-
linear pricing is required to ensure that competitive
equilibria exist in the single-seller case. However, their
allocation model differs from the one presented herein
in a crucial respect. In BL:O’s model, the seller must
desire to sell the packages in exactly the bundles that
buyers demand. In our model, we have ignored the
seller and assumed that all of the goods are available
for reallocation by the auctioneer. More importantly,
we assume that the auctioneer is interested in maxi-
mizing efficiency, and not revenue.

It is also appropriate to question whether the com-
petitive assumption holds for such small problems. We
argue that in this complex domain, competitive equi-
librium analysis is a good starting point for analysis. A
more thorough treatment of agent incentives and strate-
gies will need to be done in the context of specific auc-
tion mechanisms based on the k-bundle prices. It is
worth noting that some recent algorithms for comput-
ing the optimal allocation from bundle bids have per-
formed surprisingly well when the bids are sparse and
exhibit complementarities (Fujishima, Leyton-Brown,
& Shoham 1999; Sandholm 1999).

The Family of/c-Bundle Auctions
Although we have presented the price setting policy un-
der the assumption of an omniscient mediator, the al-
gorithms can be used directly on bids. Thus, we can
combine the k-bundle price policy with the full set of
auction parameters (Wurman, Wellman, & Walsh 1998;
Wurman, Walsh, £~ Wellman 1999). This gives poten-
tially hundreds of new auction types to explore. We
have not completed an in-depth analysis of any mem-
ber of this auction family, but have a few preliminary
observations.

Throughout this section we assume that bids are of
the form ri(b), where ri(b) E T¢+, but is not necessarily
equal to vi (b). An agent can bid on any or all bundles.
There is an important subtlety in the interpretation of

4We present the upperbound price vector that is com-
puted by our algorithm, but in this problem, the efficient
solution actually has an equilibrium that is supported by
prices on individual goods.
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bids by the auctioneer. When an agent does not bid
on all bundles, the bids on the other superset bundles
must be inferred. For example, if an agent bid 2 on A,
and has not bid on AB, the mechanism must assumes
that it "values" AB at 2.

Two problems plague auctions that allocate comple-
mentary preferences. The first is the exposure problem:
an agent desires a bundle but can only purchase ele-
ments of the bundle individually, and in order to avoid
getting stuck with only a subset of its desires, does not
express its true valuations. The second is the free rider
problem: one agent is winning a bundle and two agents
value the components of the bundle at a greater com-
bined value, but do not to raise their bids in the hopes
that the other agent will shoulder more of the burden of
displacing the winner. We expect these two problems to
be arise to varying degrees in the analysis of particular
k-bundle auctions.

Sealed-Bid k-Bundle Auctions
The sealed-bid k-bundle auction accepts bids for all
bundles. Then, at a specified time, it computes the
prices and allocation from the bids using the above
method.

First, we consider the sealed-bid bundle auction
where k = 0. From the following example, it is clear
that the incentive compatibility results of the assign-
ment problem (Leonard 1983) do not hold for our gen-
eralized allocation problem.

Consider again the example in Table 5. Assume that
agents 2 and 3 reveal their true valuations. Can agent 1
be better off by lying about its valuation? The answer
is yes. By reporting its true valuation, agent 1 is allo-
cated nothing and receives a surplus of zero. Suppose,
instead, that agent 1 reports rl (AB) = 5. The mecha-
nism will calculate the optimal allocation to be the one
in which agent 1 receives AB, and a supporting price
vector P* = ~2, 2, 2). Thus, by lying, agent 1 receives 
surplus of1.5

Now we turn out attention to the sealed-bid bun-
dle auction where k = 1. This pricing strategy would
discourage manipulations like the one above, because
agent 1 would be forced to pay 5. However, like the
standard sealed-bid first-price auction, it suffers from
potential efficiency losses due to strategic behavior.
This can be seen in the example in Table 1 in which
agent 1 has an incentive to bid 2 + e. If the agent’s
information is imperfect, it risks underbidding its op-
ponents and losing the good.

Ascending k-Bundle Auction
We now introduce a mechanism that performs quite
well in our early tests. We call it the Ascending k-
Bundle (AKB) Auction. In particular, we focus on the
situation where k = 1. The auction accepts bids on
bundles, but requires that an agent’s new bid, r~(b),
beat max(pb, ri(b)) by some fixed e. The auction clears

5In fact, this holds for any rl (AB) >> 

the market and closes after no new bids are received
within a specified period.

After each bid, the auction calculates a new price
vector and announces it as the price quote. Unlike in
RAD, an agent can compare its bid to the price quote
and tell whether it is winning. Because of the manner
in which the prices are determined, the agent knows it
is winning the good that maximizes its revealed surplus,
ri (b)- Pb. However, if more than one bundle provides it
with the maximal revealed surplus, the agent may not
be able to tell from among these which one it is winning.
This difficulty could be addressed by posting the ten-
tative winning combinations (though not the winner’s
identity).

Because agents can bid on bundles in AKB, they do
not suffer from the exposure problem in which they are
reluctant to express their true valuation for a bundle
when they need to purchase the elements individually.
However, there is still an incentive for an agent to free
ride. It may be necessary to adopt activity rules like
those in SAA and RAD to encourage participation.

We have not yet performed large scale experimenta-
tion with AKB, nor empirically compared it with RAD
or AUSM. However in our early experiments with my-
opic, best response agents, the results are promising.

Conclusion

The allocation of discrete, heterogeneous resources
when agents have complementarities in preferences is
a very general problem that is likely to arise in many
e-commerce applications. In this paper we have estab-
lished that competitive equilibrium bundle prices al-
ways exist to support the efficient allocation. We ac-
complish this by solving a pseudo-assignment problem
for the bundles that are assigned in the optimal allo-
cation, and then constructing prices on the rest of the
bundles using a simple rule. We believe that this is an
important step in the quest for a mechanism that per-
forms well in the face of complementary preferences.
We intend to continue our investigation of the family
of k-bundle auctions in general, and the Ascending k-
Bundle auction in particular.
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