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Abstract

We have designed configurable agents to represent
users in online auctions, specificMly the Michi-
gan AuctionBot. The agents can be configured,
started, and monitored from a web interface. We
implemented three types of agents, distinguished
by their different ways of using information in the
auctions. A competitive agent does not use any
information in the auction market. It chooses
its actions based on its individual optimization
problem. A price modeling agent uses price his-
tory as its only information. A bidder-modeling
agent uses other agents’ bidding histories to pre-
dict their next bids and infer the next clearing
price. Our experiments suggest that an agent’s
performance in the auctions depends not only
on its bidding strategy, but also on the bidding
strategies of others. When all the agents behave
strategically they may reach a sub-optimal equi-
librium, in which they receive worse payoffs than
behaving competitively.

keywords: Web agents, internet auctions, online learn-
ing, strategic bidding

Introduction
Intelligent agents for electronic commerce are a popu-
lar research topic. There are shopping agents that col-
lect price information for users (Doorenbos, Etzioni, 
Weld 1997), and information filtering agents that collect
interesting publications (Bollacker, Lawrence, & Giles
1998). We are interested in designing agents for online
auctions, where buyers and sellers interact with each
other. Such agents can work on the behalf of users
since users usually do not have time or inclination to
monitor the activities in an auction. Sometimes an opti-
mal bidding strategy may be computationally intensive,
in which case it is especially useful to have a software
agent carry out the bidding. The interesting research
issue for us is how an agent takes advantage of the in-
formation available and achieves maximal profit in the
transactions. This usually refers to how an agent uses
past observations to make predictions and choose its
optimal bids. We also address design issues such as
how an agent works in a web environment and how it
gathers information and makes decisions in real time.

We have designed an agent server that works on
a user’s behalf to submit bids to one of the online
auctions--the Michigan AuctionBot. The users spec-
ify the names of the auctions they want to participate
in, the initial amounts of the goods, and the bidding
strategies they prefer. The agent then starts bidding
on the AuctionBot for the users. The agents keep bid-
ding until the auction closes, and then report the results
back to the users.

Our experiments suggest that an agent’s performance
in the auction depends not only on its bidding strategy,
but also on the bidding strategies of others. A greedy
bidding strategy may help the agent to gain in the short
run, but may also cause it to lose in the long run.

Design Overview

Michigan AuctionBot

The Michigan AuctionBot (Wurman, Wellman, 
Walsh 1998) is a configurable auction server. It allows
human agents to create auctions and submit bids via
web forms, and software agents to perform the same op-
erations via TCP/IP. This auction server has been oper-
ational since September 1996. Currently, the Michigan
AuctionBot supports many auction types including En-
glish auctions, Dutch auctions, and Vickrey auctions.
These different auctions are distinguished by the way
bidders submit bids and how the allocations and prices
are determined (McAfee & McMillan 1987). As far 
we know, the Michigan AuctionBot is the only auction
site that provides an API to enable software agents to
directly talk to the server.

The AuctionBot API (O’Malley & Kelly 1998) is 
client/server communication protocol that is straight-
forward to implement for client developers in any lan-
guage on any platform. The AuctionBot API functions
reside on a server. Interfaces to the functions are well-
defined messages encoded as strings that are sent to the
server through a socket and invoke the API functions
that run on the server. The server functions return
string-based messages through the socket to the API
client, informing it of the results of the request.
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Figure 1: Agent server overview

Agent server AuctionBot

User Interface
Our agent server provides an easy-to-use web interface
to assist users. First-time users are required to regis-
ter before using the service. The registration verifies
that the user has a valid account with the Michigan
AuctionBot. Once the user ID and password pair is
verified, the user’s ID, encrypted password, and emall
address are stored in a protected directory.

When users request an agent bidding service, they
can specify one of three types of agents provided by the
service. The details of these types are discussed in later
sections. Users also specify the initial endowments for
the two types of goods. The user’s utility is computed
as a function of these endowments. This utility function
is defined by the agent service based on certain param-
eters. For security purposes, users have to authenticate
themselves every time they request an agent service.

Agents are started through an HTML form and cor-
responding CGI script which invokes the agent program
on the agent server. The agent will then try to estab-
lish the TCP/IP connection and authenticate with the
AuctionBot using the AuctionBot’s API. After a con-
nection is established, the agent starts submitting bids
for the user. The agent keeps track of the bid status
and submits subsequent bids after each clear of the auc-
tion. This process continues until the auction closes or
the user stops the agent.

As the agent runs, it updates the user’s browser dy-
namically by maintaining a persistent HTTP connec-
tion. New data is sent to the client until either the
server or the client stops the connection. The continu-
ous updates allow the user to keep track of the bidding
process dynamically.

Communication with AuctionBot
Our agent opens a TCP/IP connection, and then au-
thenticates itself with the AuctionBot. It can then sub-
mit bids, get information on other agents’ bids, find out
about clearing prices, and determine the transactions it
has been involved in. The agent can continuously check
its bidding status by polling the auction server.

For example, to find out about its transactions, the
agent sends the string

Figure 2: Communication with AuctionBot

Agent Server

Authenticate° en~ne.,,

= Submit bids~

Get other users’ bid info’’’I

Get transaction info’’’’ ’’’’~

Uplate local state

AuctionBot

tramsid?order="time"

This returns a list of transaction IDs, ordered by time,
such as

transid?id=123&id=124&id=125...

The agent then parses this result to get the ID of the
latest transaction, say 125, and asks for more detailed
information by sending

transinf o?transid= 125

to which AuctionBot responds

transinf o?id=125&auction=78986cleart ime=
886015200&buyer=782~seller=12 l~priee=3.14
&quant ity= l~st atus=0

This means that in auction number 789 which cleared
at the specified time between user 782 and 121, one unit
was bought for $3.14. The status of zero indicates no
error.

The most difficult design issues in the communication
with the AuctionBot are timing issues and network de-
lays. Since the auction that the agents are bidding in is
synchronized, the agents need to submit their bids and
then check the bids of other agents before the auction
clears. After waiting for the clear, they check to see if
they transacted and update their endowments and util-
ities accordingly before submitting another set of bids
and repeating the cycle. Figure 2 illustrates this pro-
cess.

The auction environment

Double auctions
In a double auction (Friedman & Rust 1993), there are
multiple buyers and multiple sellers. An agent may
submit both buy bids and sell bids. A typical double
auction has the following features: (1) One unit of 
good is traded each time period; (2) Bids are observable
to all agents once they are submitted; (3) Each agent’s
preferences are unknown to other agents.

Based on the timing of the bidding protocol, double
auctions can be classified as synchronous (or synchro-
nized) or asynchronous double auctions. In a synchro-
nized double auction, all agents submit their bids in
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lockstep. Bids are "batched" during the trading pe-
riod, and then cleared at the end of the period. This
type of auction can be seen in a clearing house. In an
asynchronous double auction, also called a continuous
double auction, agents offer to buy or sell and accept
other agents’ offers at any moment. Continuous dou-
ble auctions have been widely used in stock exchange
markets (Friedman 1993) and Internet auctions. The
auctions we have designed agents for are synchronized
double auctions.

The book edited by Friedman and Rust (Friedman 
Rust 1993) collects several studies of double auctions,
including both simulations and game-theoretic analy-
ses. Game-theoretic studies (Satterthwaite & Williams
1993) (Friedman 1993) on double auctions generally
adopt the framework of static (one-shot) games with
incomplete information, for which the equilibrium so-
lution is Bayesian Nash equilibrium. Double auctions
are essentially dynamic games. Since agent interaction
takes more than one round, the static game framework
fails to address the basic dynamics of the system. Other
theoretical studies (Easley & Ledyard 1993) try to ex-
plain the experimental data generated from human sub-
jects. They assume that each buyer or seller has a reser-
vation price and has a way to recalculate its reservation
price after trading. While the study of human behavior
is interesting, we are more interested in designing arti-
ficial agents who can bid as intelligently as possible to
get maximum payoffs.

Gode and Sunder (Gode & Sunder 1993) designed
zero-intelligence agents who submit random bids within
a range such that their utilities never decrease. To im-
prove upon zero-intelligence agents, Cliff (Cliff 1998)
designed zero-intelligence-plus agents who submit bids
within the utility increasing range, but the bids are cho-
sen so that their utilities will increase by some propor-
tion which is adjusted over time. The effectiveness of
the learning depends on several parameters including
the learning rate. Cliff implemented a genetic algo-
rithm (GA) to let the agent learn about these param-
eters. The training for the GA requires the agent to
know the final convergence price of the whole auction.
It is not clear how such GA training can be applied to
online settings.

Other types of intelligent agents have also been de-
signed for double auctions. Park et al (Park, Durfee,
& Birmingham 1998) designed an adaptive p-strategy
agent to participate in continuous double auctions. Her
experiment showed that the p-strategy out-performed
other strategies. In the Santa Fe Tournament (Rust,
Miller, & Palmer 1993), 30 different intelligent pro-
grams competed in a synchronized double auction. A
simple non-adaptive agent won that tournament by al-
ways waiting in the background and letting the others
do the negotiation. When the bid and ask prices were
sufficiently close the agent would jump in and steal the
deal. Such an agent is not applicable when there is no
negotiation process in the auction.

Mth Price Auctions
We are interested in designing agents for Mth-Price
Auctions--a subclass of synchronized double auctions
(Wurman, Walsh, & Wellman 1998). When there is 
single seller (M = 1), the Mth-price auction is equiv-
alent to the standard first-price auction, with the pro-
vision that the seller is allowed to specify a reservation
price.

Consider a set of bids, of which M(M >_ 1) are sell
bids, N are buy bids. The Mth-price auction sets the
clearing price at the Mth highest among all M + N
bids. All buy bids at prices greater than or equal to the
clearing price can be matched to all sell bids at prices
less than the clearing price. The order of matching is
arbitrary.

The Mth-price setting and can be seen more clearly
with the example in Figure 3. In the example, the sell
bids are {1, 2.5, 3} and the buy bids are {2, 4, 7}. The
clearing price is therefore 3, which is the third highest
price among all bids. The sellers with bids in {1, 2.5}
are then transacted with the buyers having bids in {4,
7}.

Figure 3: An Mth-price auction

0 1 2 2.5 3 4 7
I I I I I I

PM+N PM

Agent design
Modeling the auction
We assume that each agent i has a CES (Constant Elas-
ticity of Substitution) utility function,

v(z) ~gx , (1)
\g=l /

where x = (xl,..., xm) is a vector of goods, the ag are
preference weights, and p is the substitution parameter.
We choose the CES functional form for its convenience
and generality--including quadratic, logarithmic, lin-
ear, and many other forms as special cases. In our
agent design, we let ag = 1 for all g, and p = ½, and so

the utility function becomes U(x) = ~(xg)½

The reward for agent i at time t is given by

= U~
t+l -- Vt2

= U(e’(t 1)) - V(ei(t))

In constructing agent strategies, we dictate that they
always choose actions leading to nonnegative payoffs.
We can characterize this in terms of the agents’ reser-
vation prices (Varian 1992). The reservation price 
defined as the maximum (minimum) price an agent is
willing to pay for the good it wants to buy (sell). We can
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define agent i’s buying and selling reservation prices,/55
and Ps, as the prices such that its utility stays constant
when buying or selling one unit of a good.

For example, in the case of one good, g, and money,
m, the reservation buy price,/55, is the price such that
the current utility is equal to the utility with one ad-
ditional good of type g (the one we would be buying)
and reduction in money of Pb (the price we would pay).
In other words, since the utility remains constant, an
agent would be indifferent to making such a transac-
tion. At any lower price than the reservation buy price,
the agent will increase its utility by transacting.

It is shown in (Hu & Wellman 1998) that for quasi-
concave (such as CES) utility, the agent’s reservation
buy price is always lower than its reservation sell price.

Pb Ps

Figure 4: An agent’s reservation prices and its actual
bids

Three types of agents
We designed three types of agents. One is competitive
agents who always bid their true reservation prices. The
other two are strategic learning agents who choose their
bidding prices based on their possible influence on the
market. They include price modeling agents and agents
who model the bidding of other agents.

Let pb and ps be an agent’s reservation buy and sell
prices. The best sell bid that an agent can submit is
ps. This is because Mth-price auctions are incentive

compatible for a seller, given that the seller considers
only one period’s payoff (Wurman, Walsh, & Wellman
1998).

A price modeling agent looks at the history data of
clearing prices, and predicts the next clearing price. It
estimates a time series model,

Pt = apt-1 +~.

After predicting the next clearing price P~, which is
the Mth price in the auction, the agent then choose its
best response buy bid such that

pb = min{Pb, p~ _ 6}, (4)

where 6 is a predefined constant which reflects the
greediness of the agent.

A bidder-modeling agent models the actions of other
agents by looking at the history data of those actions,
and uses time series techniques to predict the actions
in the next time period. For any other agent k, the
bidder-modeling agent predicts agent k’s bid in the next
period, Pf, by

P~ = flPk_ 1 + ~ (5)

where fl is a parameter estimated from agent k’s price
history.

After forming predictions of other agents’ bids, the
strategic agent chooses its new bids as a best response
to these estimates.

Let {P~,...,/5~} and {P~,...,/Sn} be the strategic
agent’s projected buy and sell prices of other agents.
Let PM be the predicted Mth price, and PM+I be the
predicted M+lst price. If pb < PM, the agent cannot
be matched as a buyer then it does not matter what bid
it submits. Since the agent has uncertainty about the
actual bids in the market, the best bid it can submit is
its reservation price pb. If f)b ~ PM, the agent wants
to reduce the Mth price so that it can make more profit.
The way to do this is to submit a price pb that is lower
than PM but higher than PM+I so that this price will
become the Mth price.

f

I ~

pb

PM+I PM pb

Figure 5" Choose best-response bid

Therefore, the agent’s best response buy bid is

pb = min{pb, PM+I + e}, (6)

where e is a small positive constant representing the
minimal bid increment. Note that the above equation
automatically satisfies the condition pb <_ [’b which
means that the agent’s utility will never decrease.

Experiments
There are six agents and two types of goods in our ex-
periments. Each agent starts with a random endow-
ment of both goods. Prices are in units of good 2; thus,
all auction activities are for good 1.

Each agent has the same CES utility function as de-
fined in (1). We let aj = 1 for all j, and p= ½, and

so the utility function becomes U(x) - - (Y~j(xj)½)2.
\ 

According to (2) and (3) we have reservation prices 

Ps = -2(v/eg(ea - 1) + v/e,,,(e9 - 1) - ~ - eg) 
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We test three types of agents: the competitive agent,
price modeling agent, bidder-modeling agent. We put
these agents in three kinds of environments where all
other agents are: (1) competitive agents; (2) price 
eling agents; (3) bidder-modeling agents. A competitive
agent does not use any information in the auction mar-
ket. It chooses its action based on its individual op-
timization problem. A price modeling agent uses the
previous clearing prices to predict the clearing price in
the next period and then chooses its best-response bid.
A bidder-modeling agent uses other agents’ bidding his-
tory to predict their next bids and choose its best re-
sponse bid.

In each of the three environments, we randomly con-
figure the initial endowment of all agents. We compare
the performance of the first agent for each type it as-
sumes. Our results are averaged over 6 different sets of
initial endowments.

Figure 6 presents results for an environment where
all other agents are competitive agents. When Agent
1 chooses the price modeling strategy, at the beginning
it performs better than behaving competitively. How-
ever, this advantage goes away over time when the price
modeling agent’s bid distorts the market clearing price
and the auction closes prematurely. Similar results are
seen when the agent adopts the bidder-modeling strat-
egy. In Figure 7, where other agents are price modeling
agents, we observe different results. The main difference
is that when Agent 1 adopts the bidder-modeling strat-
egy its performance is higher than using other strategies
at least for the first 20 rounds. The clearing price strat-
egy outperforms, slightly, the competitive strategy in
the earlier rounds but then leads to worse performance
than the competitive strategy when it causes the mar-
ket to close before all trading opportunities have been
explored.
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Figure 6: Agent l’s performance when others are com-
petitive agents

Figure 8 shows the results when others are bidder-
modeling agents. In this case both modeling strategies
perform worse than the competitive strategy almost all
of the time. This is probably because all the agents are
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Figure 7: Agent l’s performance when others are price
modeling agents
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Figure 8: Agent l’s performance when others are bid-
ders modeling agents

trying to model each other rather than bidding truth-
fully. This leads to some sub-optimal equilibrium, as
we have discussed in a previous paper (Wellman & Hu
1998).

Summary
In this project we have created a configurable agent that
can participate in certain auctions hosted on the Michi-
gan AuctionBot using three different bidding strategies.
We perform regression on the bidding histories of other
agents and use this to predict a clearing price for the
auction. We then make an adjustment to the reserva-
tion prices in hopes of getting more surplus when the
transaction is made. The bidding agents are started
with parameters specifying the AuctionBot user, the
type of bidding strategy, and the initial endowments.

This project was designed for a specific type of auc-
tion (synchronous, Mth-price auctions) but in the fu-
ture we would like to generalize our agents to partici-
pate in other types of auctions as well. For example,
stock exchanges are asynchronous double auctions. An-
other future enhancement will be to add additional bid-
ding strategies. We will then be collecting detailed per-
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formance statistics to determine which strategies per-
form better under which types of auctions. We would
also like to compare these strategies to human strate-
gies. We will also provide semi-automated bidding ser-
vices which allow a human to have control over the bid-
ding process.
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