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Abstract

Many vertical industries within Manufacturing have
already entered or are about to enter a new era of
mass-customization. Customers expect improved level
of service, precise price and date quotes for their per-
sonalized orders. Internet communications in gen-
eral and dedicated e-commerce efforts in particular
greatly facilitated the process of taking orders and
shipping the requested products to anticipating cus-
tomers. However, precise, scalable and effective Order
Promising and Production Planning still constitute se-
rious challenges for manufacturers.
Specialists in Manufacturing Modeling have already
identified the deficiencies of the existing approaches
that traditionally split production models into Bills
of Materials (BOMs) and Routings (Goldratt 1990).
Whereas Artificial Intelligence (AI) understood long
ago the benefit of merging states and actions in a com-
bined planning model, an alternative, constructive so-
lution to the BOM/Routing modeling approach has
not been explicitly proposed.
Re-configurable products may lead to an exponential
explosion of the number of BOMs, if the standard
modeling approach of listing all orderable products is
followed. Another complication may come from the
existence of alternative routings, which are different
production processes (actions) that produce the same
inventory items (lead to the same states). A selection
of a different route may imply substituting already se-
lected group of inventory items by a different group of
items, for example, changing a monitor type for PC
may require a different video card, which in its turn
may need an upgrade of the power supply module.
The above feature is called "kitting" in Manufactur-
ing Modeling.
On one hand, a complicated nature of Manufacturing
Modeling and a need to capture the AND/OR-logic
in presenting inventory items and alternative routings
makes it hard to efficiently derive precise price and
date quote (Order Promising) and to construct the
entire schedule (Production Planning). On the other
hand, customers’ expectations and a broad spectrum
of orderable products state an urgent need for scalable
Order Promising and Production Planning functional-
ities.
In this paper we introduce novel modeling approach

that applies some AI modeling techniques to Manu-
facturing Modeling, allows to avoid the exponential
blow-up for re-configurable products and captures the
AND/OR-logic without additional modeling efforts.
Furthermore, we state a simple, realistic resource shar-
ing assumption. For the introduced type of mod-
els, we construct Order Promising and resource al-
location (scheduling) procedures that are linear under
the stated assumption for any homogeneous objective
function.

Introduction
Modern World has emerged a new era of mass cus-
tomization. This trend is changing the way customers
are making purchases, it also has a strong impact on
how products are made. Known as on-demand manu-
facturing, it spans already a diverse set of manufactur-
ing areas from luxury cars, to computers, books and
toys just to name few. Actually, the greatest stories
of recent success are directly associated with the abil-
ity of the vendor to satisfy customers on an individual
basis without jeopardizing prices and delivery terms.

Traditional, make-to-stock manufacturing world is
undergoing a significant transformation too. In re-
cent years, an increased competition, changing eco-
nomic environment, and new government regulations
have conspired to put pressure on process plant mar-
gins. Computer components, for example, decline in
value at a rate of about one percent a week. In such
an intensive environment, the key test for the system
is to ensure that the right products are delivered to the
right place at the right time. This test determines the
whole suite of requirements for planning, scheduling
and execution systems that constitute the back-end of
a customer-oriented manufacturer.

E-commerce came as a tool that facilitates accepting
orders, captures the logic of customer/vendor commu-
nication and tracks shipments. The vast majority of e-
commerce efforts are intended for production-free busi-
nesses. There are several serious issues of production-
based e-commerce that have not been fully addressed.
In this paper we attempt to identify those and resolve
them effectively under realistic assumptions.

There seems to exist a shift of interest within the
order entry process for customizable products. As
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long as the complexity of the product is below a cer-
tain, "Common Sense" level, customers are mostly in-
terested in the availability of the product. However,
as soon as the configuration process becomes compli-
cated, non-intuitive, then customers are primarily in-
terested in the correctness of their choices, in the com-
patibility of the selections. Over time, the "Common
Sense" level of the configuration complexity tends to
grow along with the educational level of users. E-
commerce provides a great hosting environment that
promotes such type of education.

This paper introduces a set of order promising and
production planning problems arising due to mass-
customization and, hence, augmented by the popular-
ity of e-commerce. Besides the problem introduction,
we describe another way of modeling manufacturing
environemnts in the AI style. We also show that un-
der a simplifying assumption for such models one can
build extremely efficient order promising, planning and
scheduling algorithms.

Manufacturing Planning Problems

Current state of manufacturing modeling is several
dozen years old. Earlier Material Requirement Plan-
ning (MRP) systems had to find a compromise between
the modeling expressiveness, computational power and
slow access to peripheral devices, such as tape-based
memory systems. Although MRP itself was viewed
as a "Copernican Revolution" (Vollmann, Berry, 
Whybark 1992), it has been identified that the cur-
rent "state-of-the-art" manufacturing modeling used in
plain MRP and its successor Manufacturing Resource
Planning (MRP II) do not support anymore the grow-
ing need in providing efficient grounds for the enter-
prise level of integration. One of the main question to
be answered with respect to the modern state of com-
puter equipment is as follows: "Why is the product
structure’s file segmented into the BOM and Routing
files?" (Goldratt 1990).

The inertia of the field keeps the above splitting
principle untouched for old projects, as well for newly
launched ones, thus adding even more to the inertia’s
spinning momentum. However, it is becoming more
and more obvious that such a modeling approach has
certain limits, in particular when applied to a highly
customized product line. For example, a PC with
15 types of hard drives, 10 types of RAM, 5 types
of video cards, 5 types of modems, 5 types of I/O
Buses, 10 types of monitors, etc. would require at least
15,10 ̄  5 * 5 * 5 * 10 = 187,500 different Bills of Ma-
terials (BOMs). Dealing with dozens and hundreds 
thousands of BOMs is a regular situation in on-demand
manufacturing.

However, the traditional manufacturing modeling
approach requires all BOMs for orderable products to
be listed explicitly. This tough requirement leads to
an exponential blow-up of the representation of the
model, which significantly slows down search and op-

timization, thus, making an efficient production-based
e-commerce an almost impossible problem.

On the other hand, Artificial Intelligence (AI) has
evolved as a mature discipline, capable of solving a
variety of realistically sized planning and scheduling
problems. AI planning systems have gained a definite
advantage in computationally intensive problem do-
mains. Whereas previous successful implementations
of MRP systems were relying primarily on Operations
Research (OR) tools, for example Linear Program-
ming, there are more and more successful examples
of AI-based solutions (Ilog, i2, etc.). AI has accumu-
lated enough knowledge to be applied across different
engineering areas in a non-traditional manner. Manu-
facturing modeling, planning and scheduling definitely
provide a rich and responsive testing field for innova-
tive AI technologies.

E.Goldradt identified the current manufacturing
modeling system as obsolete (Goldratt 1990), even
when one considers traditional manufacturing plan-
ning driven by forecasts and actual sales orders. The
requirement of reactive, on-demand architecture com-
pletely rejects existing approaches. Thus, a latest shift
from selling a standard suite of products, from a make-
to-stock production to mass customization has added
new tough requirements on order processing and quot-
ing, on production planning and demand planning.

In this paper we apply a cross-fertilization approach
(Smirnov 1997) between AI and manufacturing plan-
ning. To be precise, we apply STRIPS-like AI mod-
eling techniques (Filkes & Nilsson 1971) to combine
BOMs and Routings in a single model. This novel
manufacturing modeling approach allows to avoid the
exponential blow-up for re-configurable products and
captures the AND/OR inventory item logic without
additional modeling efforts. Furthermore, for the in-
troduced type of models, we construct order promising
and resource allocation (scheduling) procedures that
are linear under a simple, realistic assumption for any
homogeneous objective function.

Manufacturing Modeling in the AI

Style

AI and manufacturing modeling have a lot of common
features. Nonetheless, the latter one still prefers to
separate its key modeling items - Bills of Materials
(BOMs) and Routings. BOM is a hierarchical collec-
tion of inventory items that show all sub-assemblies
and raw materials. BOM corresponds to a set of states
in AI planning, with manufacturing products being
equivalent to goal states in AI, and quantities-on-hand
(QOH) - to an initial state. Table 1 presents a short
glossary of differences in AI and manufacturing plan-
ning terminology.

One of the main drawbacks of BOM/Routings sep-
aration is the unnecessary complexity that a modeler
has to introduce to maintain inventory items and rout-
ing options separately. As we showed in an exam-
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Artificial Intelligence Manufacturing Planning

States Inventory Items

Goal States (goals) Products

Actions Routings

Action Pre-Conditions Consumable Resources
for a Routing

Action Effects Inventory Items
(co-products) of a Routing

Table 1: A Comparison of Key Planning Terms.

ple in Section 1, the number of BOMs that an on-
demand manufacturer needs to maintain, grows expo-
nentially on the size of the input. Furthermore, an
additional modeling effort is needed to properly rep-
resent the logic of alternative Routings and kitting.
Some of the inventory items may be built in several al-
ternative way, purchased or transferred from another
site. Certain groups of inventory items may form al-
ternative kits that can be substituted only as groups of
items. For example, a high-resolution monitor requires
a more powerful video card, selection of an IBM’s In/o-
Print as a faster device for printing the body of a book
requires to apply IBM RIPing procedure to convert the
Postscript format into an InfoPrint-readable format.

With BOMs on the scale of millions and special
grouping (kitting) requirements, manufacturing plan-
ning becomes a very inefficient procedure with expo-
nential complexity, when modeled through separate
BOMs and Routings. Thus, planning is not the only
one to blame, the modeling phase itself transforms in-
put data into BOMs and Routings, number of which
may become exponential on the size of the input. Thus,
the inefficiency of traditional manufacturing modeling
and planning has become an important issue in the En-
terprise Management, which has been identified in the
literature on manufactUring planning (Goldratt 1990).

On the other hand, AI planning has realized long ago
that for certain problem types, it is beneficial to com-
bine states and actions in a single model, thus, prevent-
ing the exponential blow-up of the size of the problem
domain. We identified that a well-known STRIPS-like
modeling approach (Filkes & Nilsson 1971) provides
the best fit for manufacturing purposes. Figure 1 shows
an example of a Commercial Print Center model that
specializes in printing books. States and actions form
a directed graph, in which states alternate with ac-
tions along any directed path from a book request to a
finished product. To proceed with the analysis of ben-

Figure 1: An Example of a Book Publisher Model.

e/its of the novel manufacturing modeling approach,
we need to state an important resource non-sharing
assumption.

Resource Non-Sharing Assumption: List
of all reusable resources that are applicable to the
manufacturing process of any particular product
does not have repeated entries.

Note that unlike a common assumption about non-
repeated entries of inventory items in each BOM
adopted by many planning and scheduling software
providers, we relax this requirement and allow inven-
tory items to repeat in BOMs as long as they do not
induce repeated reusable resources.

Lemma 1 Under the resource non-sharing assump-
tion, STRIPS-like model captures the AND/OR logic
of alternative routings and kitting with the number of
states that is linear on the number of different inven-
tory item entries on all BOMs, and the number of
actions is less or equal to the number of reusable re-
sources.

Proof: Each routing contains a list of reusable and
consumable resources. Since reusable resources are not
shared, the number of actions is equal to the num-
ber of routings. If item substitutions are not allowed,
then for each routing, consumable resources form the
set of required inventory items. Thus, satisfaction of
pre-conditions of every action constitute mandatory
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("AND") relations. They correspond to di-edges em-
anating from inventory items (states). Each inventory
item (state) is associated with a list of alternative rout-
ings (actions) and carries the functionality of an effect
of each such action. Thus, the effects of each action
(routing) form a set of alternative ("OR" - one out 
many) relations.

If item substitution is allowed, then for every al-
lowed substitute one introduces an auxiliary state that
denotes one of the substitutes and an auxiliary action
that selects a particular substitute. Thus, in the case
when substitutes are allowed, the introduced modeling
approach keeps track of the AND/OR logic without
additional modeling efforts. ¯

As Lemma 1 shows, there is no need in listing all
BOMs for all possible products. When applied to man-
ufacturing planning, STRIPS-like modeling approach
allows to represent the logic of manufacturing processes
without explicit exploration of all BOMs and, further-
more, captures the AND/OR logic of alternative rout-
ings and kits without any additional modeling efforts.

Order Promising and Production
Planning

In Section 3 we introduced a novel manufacturing mod-
eling approach based on AI modeling techniques. This
approach resolves the problem of unnecessary exponen-
tial growth of the Bills of Materials and captures the
logic of alternative routings without additional model-
ing efforts. In this Section we describe on-line, single-
request order promising and production planning algo-
rithms that have linear worst-case complexity. These
algorithms utilize the advantages of the newly intro-
duced manufacturing modeling style and may be used
as the back-end of an e-commerce system tailored to-
wards re-configurable products.

A modification of a simple, recursive order promis-
ing algorithm (OPA) is presented in Table 2, it pro-
vides an earliest possible date that a considered order
can be satisfied. The difference between State and Ac-
tion nodes is reflected in the date selection mechanism.
Since an action requires all pre-conditions to be satis-
fied, OPA selects the latest date when all supplies are
available. In case of the state node, if there are several
alternative actions (alternative routings) that provide
the same effect, OPA selects the one that finishes the
earliest. GetEndDate method takes into consideration
all tasks that are currently assigned to a reusable re-
source that corresponds to the current action node and
finds the earliest possible time that a pending produc-
tion task can be executed.

In the original form, OPA has an exponential worst-
case complexity, because the same state and action
nodes of the directed graph can be investigated repeat-
edly. However, this algorithm can be modified to avoid
exponential complexity. If one introduces a flag that a
node has been investigated, clears it before executing

OPA and memorizes the earliest date that an action
can be finished or a state can be reached, then re-
peated recursive requests will not proceed if the flag is
already set. If a node has been investigated, the ear-
liest execution date can be obtained from the earliest
date member of the node object.

procedure Order Promising (current node,
start node, quantity)

IF (current node.examined)
return current node.earliest

IF (current node OF TYPE Action THEN
Node[ ] predecessors = Predecessors(current node);
Date earliest date = -co;
FOR i:=l TO #predecessors

Node predecessor = predecessors[i];
Date available = Order Promising (predecessor,

start node, quantity)
IF available AFTER earliest date THEN

earliest date = available;
end

end
Time duration = Duration (current node,quantity);
current node.earliest = GetEndDate(current node,

earliest date, duration);
current node.examined = true;
return current node.earliest;

end
IF (current node OF TYPE State THEN

IF (current node = start node)
current node.earliest = NOW;
current node.examined = true;
return current node.earliest;

end
end
ELSE

Node[ ] predecessors = Predecessors(current node);
Date earliest date = co;
FOR i:=l TO #predecessors

Node predecessor = predecessors[i/;
Date available = Order Promising (predecessor,

start node, quantity)
IF available BEFORE earliest date THEN

earliest date = available;
end

end
current node.earliest = earliest date;
current node.examined = true;
return current node.earliest;

end
return c~

Table 2: The Single-Request Modified Order Promis-
ing Procedure.

Theorem 1 Under the resource non-sharing assump-
tion, a modified Order Promising algorithm (MOPA)
is linear on the number of states and actions.

Proof: After an edge is traversed for the first time,
both of its end nodes have "examined" flags set to
true. This memorization "trick" prevents repeated ex-
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ploration of edges. Hence, a modified Order Promising
algorithm is linear on the number of edges. If the num-
ber of edges is asymptotically less that the number of
nodes, then the entry point is disconnected from the
end point and MOPA will figure out that the earliest
date is infinite after examining a connected subset of
nodes. ¯

MOPA outputs only the earliest date, when a cur-
rent pending request can be satisfied. To perform
a complete resource allocation with the earliest start
and end dates assigned to tasks according to the best
choices of alternative actions, one needs to add another
selection flag, memorize the best (chosen) predecessors
and perform one more sweep along the model to prop-
agate the selection of best predecessors and assign the
dates. This addition converts MOPA into a production
planning (scheduling) algorithm- PPA.

Theorem 2 Under the resource non-sharing assump-
tion, PPA is linear on the number of states and ac-
tions.

In this section we discussed order promising and pro-
duction planning approaches that find the earliest pos-
sible date that a Sales Order (SO) can be furnished.
The same approach remains true for many other ob-
jective functions besides the earliest availability: Min-
imal cost, maximal price, maximal profit, etc. We
call those objective functions homogeneous. Unfortu-
nately, a mixture of time and price/cost objectives or
constraints may lead to an NP-hard class of problem.

Conclusions
We showed that the tradition of separating BOMs and
Routings does not always lead to more expressive or
compact manufacturing modeling. As the result, order
promising and production planning approaches often
have to deal with the exponential blow-up of the num-
ber of Bills of Materials for re-configurable products.
This is an especially hot issue for mass-customization
production promoted through e-commerce applica-
tions.

If AI modeling techniques are applied to model man-
ufacturing processes, one can often avoid exponential
exploration of BOMs and construct extremely efficient
on-line order promising and production planning algo-
rithms.

Novel manufacturing modeling approach, order
promising and production planning algorithms based
on this modeling technique has been filed in 1998 by
the author of this paper to the US Beaurau of Patents.
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